
Parallel and Distributed Programming with Pthreads and Rthreads

Bernd Dreier Markus Zahn
University of Augsburg
Institute of Informatics

D-86135 Augsburg, Germany
fdreier,zahng@Informatik.Uni-Augsburg.DE

Theo Ungerer
University of Karlsruhe

Institute of Computer Design and Fault Tolerance
D-76128 Karlsruhe, Germany

ungerer@Informatik.Uni-Karlsruhe.DE

Abstract

This paper describes Rthreads (Remote threads), a soft-
ware distributed shared memory system that supports shar-
ing of global variables on clusters of computers with phys-
ically distributed memory. Other DSM systems either use
virtual memory to implement coherence on networks of
workstations or require programmers to adopt a special
programming model. Rthreads uses primitives to read and
write remote data and to synchronize remote accesses sim-
ilar to the DSM systems that are based on special pro-
gramming models. Unique aspects of Rthreads are: The
primitives are syntactically and semantically closely re-
lated to the POSIX thread model (Pthreads). A precom-
piler automatically transforms Pthread (source) programs
into Rthread (source) programs. After the transformation
the programmer is still able to alter the Rthread code for
optimizing run-time. Moreover, Pthreads and Rthreads can
be mixed within a single program. We support heteroge-
neous workstation clusters by implementing the Rthreads
system on top of PVM, MPI and DCE. We demonstrate that
programmer based optimizations may reach a significant
performance increase. Our performance results show that
the Rthreads system introduces few overhead compared to
equivalent programs in the baseline system PVM, and a su-
perior performance compared to the DSM systems Adsmith
and CVM.

1. Introduction

Distributed computing on clusters of workstations pro-
vides a low-cost alternative to the use of multiprocessors.
Message-passing models - in practice PVM and MPI - are
most commonly used for distributed programming due to
the physically distributed memory of networked computers.
In contrast, the operating systems of single or multiproces-
sor standard workstations support a shared-memory model
based on threads. The POSIX thread model (Pthreads), as
established standard, is adopted by most workstation oper-
ating systems like e.g. Sun Solaris 2.5 and IBM AIX 4.1.

However, POSIX threads cannot be spread over a clus-
ter of workstations due to the mismatch of its underlying
shared-memory model and the physically distributed mem-
ory within a workstation cluster.

Software distributed shared memory systems (DSM)
provide the programmer with the illusion of shared mem-
ory on top of physically distributed memory. The first
DSM systems extended virtual memory management to
maintain coherence on page-level and followed the sequen-
tial consistency model. However, applications running on
such software DSM systems suffer high communication and
coherence-induced overheads that limit performance. False
sharing of data within a memory page can be reduced by
a smaller grain size (cache line size or data object size in-
stead of page size). Communication overhead can be further
reduced by use of relaxed consistency models, namely the
lazy release consistency that maintains coherence of data
only when the data is really needed by a remote thread (or
process).

Each consistency model introduces a static scheme that
cannot adjust to the peculiarities of a specific algorithm. A
further major improvement may only be reached by a flex-
ible algorithm-dependent maintenance of consistency by
the programmer. Most DSM systems, however, are imple-
mented by changes of the operating system, by modifying
a standard compiler, by a function library, or by a combi-
nation of some of these features. The programmer is there-
fore prevented from further optimizations based on his/her
knowledge of the algorithm.

Rthreads uses primitives to read and write remote data
and to synchronize remote accesses. The primitives are
syntactically and semantically closely related to the POSIX
thread model (Pthreads). An overview of the Rthread sys-
tem is provided in Section 2. A precompiler automatically
transforms Pthread (source) programs into Rthread (source)
programs. After the transformation the programmer is still
able to alter the Rthread code for optimizing run-time, in
contrast to other software DSM systems based upon com-
piler changes or virtual memory management. The pro-
grammer is therefore able to reach an efficiency level for the
distributed program that is beyond the efficiency reachable

1



by other DSM implementations based on the most advanced
consistency models. This is demonstrated in Section 3. The
automatic generation of Rthread programs from Pthread
programs is advantageous to other software DSM systems
that solely define and implement a programming interface
the programmer has to use. Pthreads (POSIX threads) and
Rthreads can be mixed within a single application using the
Rthread package. Rthreads may run on different (poten-
tially heterogeneous) machines, while Pthreads are used to
exploit the parallelism among multiple processors of a sin-
gle shared-memory machine.

A further weakness of most existing DSM systems is
the lack of support of heterogeneous systems. Today, a
workstation cluster very often consists of machines of dif-
ferent manufacturers even running different operating sys-
tems. Most DSM systems are only implemented for ho-
mogeneous environments since their memory access mech-
anisms are based upon the virtual memory management
which is deeply embedded in the operating system and pro-
cessor hardware. In consequence, even portability is often
restricted.

A reason for the success of the message-passing envi-
ronments PVM and MPI is the high degree of portability
and their support for heterogeneous workstation clusters.
Pthreads is the standard for shared-memory systems, that
provides source-code level compatibility of various shared-
memory systems similar as PVM and MPI do for message-
passing systems. Pthread programs cannot be spread over
distributed computers - not to mention over heterogeneous
machines.

Function library implementations of the Rthread pack-
age exist on top of the message-passing systems PVM and
MPI and on top of the RPC-based client-server software
DCE thereby providing portability and executability on het-
erogeneous machines. The top-level implementation intro-
duces a slight overhead that was measured and quanticised
by running Rthread programs versus programs written to
the underlying communication system. The performance
results are given in Section 4. Related work is described in
Section 5 and Section 6 draws the conclusions.

2. Overview of Rthreads

The software DSM system Rthreads (Remote threads)
provides primitives for control and synchronization of re-
motely executed threads and specific primitives for remote
access of scalar variables, distributed arrays and structures.

The Rthread control and synchronization primitives pro-
vide an Rthread equivalent of each Pthread function and
of each Pthread type. The Rthread synchronization is
implemented to work between Rthreads on different ma-
chines and are sequentially consistent. Explicit remote read
or write operations are used to preserve the consistency

of shared data. Therefore, we introduce additional func-
tions to exchange shared data between the Rthreads: By
rthread r(var) andrthread w(var), the shared variablevar
in the local buffer is marked to be read or written from or to
the shared data space.

To access parts of an array, two further functions are
available:

rthread_ra(array, first, last, stride)
rthread_wa(array, first, last, stride)

For efficiency reason we decided thatrthread w()- and
rthread wa()-operations are collected by the RThread’s run-
time system until arthread wflush() is executed and the
aggregated data is sent by a single network transaction.
Accordingly, read operations are buffered until the next
rthread rflush()is executed.

The Rthread package consists of a precompiler (see next
section) that transforms Pthread programs into Rthread pro-
grams under control of the programmer and by a supporting
C-based function library and run-time system that imple-
ments the Rthread primitives.

3. From Pthreads to Rthreads

3.1. Developing Rthread programs

Rthreads concurrency is controlled with the same meth-
ods as known from POSIX threads. Furthermore, it is pos-
sible to combine both Rthreads and Pthreads, i.e. medium-
grained parallel calculations may be processed by Pthreads
and coarse-grained parallel tasks may be distributed with
Rthreads. Since the POSIX thread library is an extension
to the standard C library, ANSI C is the appropriate pro-
gramming language for programming with Rthreads. Thus,
the Rthreads precompiler is able to process ANSI C source
codes to provide the necessary information about the dis-
tributed shared memory data, including type information of
basic datatypes and arrays of basic data types.

The first step to create a distributed program with
Rthreads is to develop a local version using Pthreads. This
is demonstrated by innermost code fragment of a Mandel-
brot calculation (the rectangle of pixel colors defined by the
columnsmin x to maxx and the rowsmin y to maxy is
computed as a single task using a bag-of-tasks scheme):

for( x = min_x; x < max_x; x++ )
for( y = min_y; y < max_y; y++ )

colours[x][y] =
compute_color( x, y ) % cmax;

Although an explicit Pthread version is not necessary, it
gives the opportunity to test and debug the newly created
code locally. When designing the POSIX threads source



program, the programmer should keep the following restric-
tion in mind to allow a smooth transformation into Rthread
code: pointers within global data are not allowed in Rthread
programs. Therefore, programmers should avoid global
pointers in the Pthread program already. Use of pointers
within the single address space formed by local Pthreads is
not restricted.

As fine-grained algorithms do not perform very well
in a distributed environment, the second step would be to
decide which tasks to distribute with Rthreads and which
ones to process by local Pthreads. By default, threads with
low communication needs should be transformed to remote
threads by substituting the Pthreads function calls with their
Rthreads equivalents.

3.2. Identifying Shared Data by the Precompiler

In a shared-memory multiprocessor, data items are iden-
tified by their address in physical or virtual memory. Due to
their architecture, page-based DSM systems are able to use
similar mechanisms. In an object-based DSM system, es-
pecially in heterogenous environments, a memory address
of data items on another computer can not be used to iden-
tify the address of the corresponding data item on the local
machine.

The most popular solution to this problem is the mod-
ification of compilers to insert specific function calls and
appropriate identifiers for every read or write access [10].
However, the portability of compiler supported systems de-
pends on the availability of the (modified) compiler. Ad-
ditionally, for each new compiler version the modifications
must be integrated again.

Several object-based DSM systems with explicit
read/write operations in the program source code like
Rthreads use numerical or textual identifiers, which are
specified in explicit declaration of the shared data item. In-
ternally, Rthreads also uses numerical identifiers which is
the most efficient way. However, these identifiers are not
visible to the programmer. The programmer simply speci-
fies the same textual name as it is used in the definition of
the corresponding global variable. All global variables in
the Pthread program become shared variables, i.e. variables
that are global to the Rthread node programs.

The internal identification of shared variables is gener-
ated by the precompiler (see Figure 1). First, the precom-
piler creates a label for every defined global variable of the
program and combines these labels to an enumerated type.
Second, it generates an array with one entry for each global
variable, the array is sorted corresponding to the enumer-
ated type. At this point the most important information in
each entry is the type and the address of the global variable
on the node the program runs on. An explicit read/write
function called with an identifying label as parameter is now

.

generated header

int i, j;

char string[256];

double number;

.

.

}

  .

  .

  .

table containing addresses and types

  RTHREAD_number,

  RTHREAD_string,

  RTHREAD_j,

  RTHREAD_i,

enum variablen {
  RTHREAD_int, &i
  RTHREAD_int, &j,
  RTHREAD_char, &string[0],
  RTHREAD_double, &number,
  .
  .
  .
}

rthread_variable_t vars[]={

source program

precompiler

labels used as indexes

Figure 1. Identifiers generated by the precom-
piler

able to use the label as an index to the array. In the case of
a write call, a value of the type specified by the array ele-
ment is read from the address specified by the element and
is then transfered (after data conversion) over the network
to the home node of the data item together with the iden-
tifying label. On the home node, the label transfered with
the incoming call can be used to retrieve the datatype and
the address of the variable on this node again by use of the
label as index in the precompiler generated array.

3.3. Precompiler Steps from Pthread to Rthread
programs

The precompiler starts from a correct parallel program
compliant to a Pthread model that satisfies the only restric-
tion: exclusion of pointers for data that will be distributed.
All precompiler actions take place within the source code.
The precompiler performs a type analysis of the global vari-
ables and places type and naming information in a header
file, as described in the previous section, and automatically
generates the shared data information.

Then eachpthread-function is replaced by its equivalent
rthread -function. Next, the already described remote read-
/write marking functions and flush-functions are inserted to
access the distributed shared memory. A read marking func-
tion is inserted preceeding each occurrence of a global vari-
able asrvalue, and a write marking function succeeds each
lvalueuse of a global variable in the Pthread program. This
is demonstrated for the Mandelbrot example as follows:

for( x = min_x; x < max_x; x++ )
for( y = min_y; y < max_y; y++ )
{

colours[x][y] =
compute_color( x, y ) % cmax;

rthread_wa( colours, x *
pixels_per_column + y,
x * pixels_per_column + y, 1 );

}
rthread_wflush( NULL );

The color of each pixel in the task rectangle is marked
for remote write immediately after calculation. This is per-



formed by the rthread wa-function that is used to access
array elements. The Rthread run-time system buffers point-
ers to the marked array elements and initiates transfer of the
whole rectangle block of pixel values in a single message
when therthread wflush-function is called.

3.4. Programmer Optimizations of Rthread Pro-
grams

Even after the precompiler run, the developer of the dis-
tributed application is able to optimize the automatically
created Rthread source code to improve its performance.
Potential programmer optimizations concern:

1. Communication aggregation by reducing number and
size of messages by combiningrthread rflush- or
rthread wflush-functions, or by eliminating consecu-
tive rthread w*- and rthread r* -functions to the same
variable.

2. Shunting rthread r* -functions and its corresponding
rthread rflushas far as allowed by the chosen consis-
tency model to the beginning of a critical section, re-
spectively movingrthread w*-functions and its corre-
spondingrthread rflushas far as allowed to the end of
a critical section.

3. Using aggregation by therthread ra- and rthread wa-
functions.

The latter is demonstrated with the Mandelbrot example
as follows:

for( x = min_x; x < max_x; x++ )
{

for( y = min_y; y < max_y; y++ )
colours[x][y] =

compute_color( x, y ) % cmax;
rthread_wa( colours,

x * pixels_per_column + min_y,
x * pixels_per_column + maxy - 1,
1 );

}
rthread_wflush( NULL );

The optimized version combines the marking of remote
writes within each row. Network transfer is again triggered
by the rthread wflush-function as in the previous sample
version.

4. Performance Evaluation

Our experimental environment consists of IBM RS/6000
(Model 220W, 32 MB main memory) workstations running
IBM AIX 4.1. The machines are connected by a 10-Mbps
Ethernet.

In Figure 2, we present the performance results of the
already described Mandelbrot calculation. We compare five
different implementations of the algorithm: two Rthreads-
based implementations, a message passing version based on
PVM, an implementation in the page-based DSM system
CVM [6] (Version 0.2), and an implementation in the DSM
system Adsmith [9] (Version 1.8f) which is closely related
to the Rthreads system.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8

T
im

e 
in

 s
ec

on
ds

Number of processors

Rthreads, single elements
CVM
PVM

Rthreads, line by line
Adsmith

Figure 2. Performance evaluation of the dis-
tributed Mandelbrot calculation

The graphs in the figure demonstrate three different im-
plications that were supported by further performance mea-
surements not shown here:

The first implication concerns the two different
Rthreads-versions. One of the two Rthreads-based imple-
mentations is implemented without array optimization, i.e.
each color entry is marked separately to be written to the
DSM, the other one uses the aggregation of marking func-
tions as described in the previous section. The latter method
makes it possible for the Rthreads system to minimize de-
scriptive data that has to be exchanged over the communi-
cations network to allow heterogeneity. Thus, a noticeable
performance gain is reached by Rthread’s array operations.
All benchmarks below use Rthreads array operations.

A second implication concerns the overhead that is intro-
duced by Rthreads compared to the underlying PVM sys-
tem. The performance comparisons show that the Rthread
overhead measured versus an application programmed in
the original underlying system is nearly not measurable.
This is not a matter of course as the performance measure-
ments for the related Adsmith DSM systems show.

A third implication is the comparison with related soft-
ware DSM systems namely CVM as representative for
page-based DSM systems and Adsmith which is an object-
based system and therefore more closely related to Rthreads
(see also next section). Adsmith uses the same underlying
communication system (PVM) and implements the shared



memory also by explicit remote reads and writes that have
to be set by the programmer. The Mandelbrot version based
on Adsmith already uses the most efficient DSM operation
with Adsmith, to move newly calculated blocks to the dis-
tributed memory. With Adsmith, as with all object-based
DSM systems known to us, access to groups of DSM data
items is only possible if they were formerly allocated to-
gether within the DSM. Therefore, we had to rearrange al-
location and access of global data to improve performance
of the Adsmith version.

The CVM performance is in between the optimized
Rthreads and the Adsmith versions.

As a second example, we show the results of SOR (Suc-
cessive Over-Relaxation). To obtain another comparison to
an existing DSM-system, we ported an algorithm included
with the distribution CVM to Rthreads. During each itera-
tion, every element of a two-dimensional input grid is up-
dated by the average of four of its neighbours two times
(from the RED to BLACK matrix and vice versa). Af-
ter each half step, processors are synchronized by Barriers.
For the measurements shown in Figure 3 we used the na-
tive implementation of CVM Version 0.2 (i.e. the socket-
based, not the MPI-based one). Figure 3 shows that the
optimized Rthreads version is noticeable faster as the CVM
and the Adsmith versions for 600� 400 matrices. Due to
the hand optimization possibilities with Rthreads data ex-
change can be reduced to the elements really accessed by
neighbor nodes.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

T
im

e 
in

 s
ec

on
ds

Number of processors

Adsmith
CVM

Rthreads

Figure 3. SOR evaluation, 600 � 400

We assume that the performance loss of Adsmith is
caused by its complex buffer handling. Buffer handling in
Adsmith must be implemented separate from the applica-
tion processes, because Adsmith is not multithreaded. Ad-
smith dæmons on each machine coordinate the exchange of
messages with other nodes. Consequently, each message is
handled five times: From the application process to the Ad-
smith dæmon, from this dæmon to the local PVM dæmon,

from the PVM dæmon to another machines PVM dæmon,
from there to the corresponding Adsmith dæmon, and from
the Adsmith dæmon to the receiving application process.
Rthreads is multithreaded itself and can therefore handle in-
coming and outgoing messages by a separate thread within
the application process. Moreover, buffer handling is sim-
ple as we use global variables as buffers.

Both CVM and Rthreads don’t scale well. We identify
two reasons: The used data sets are too small and conse-
quently communicating dominates computation due to the
simple averaging update function and the slow underlying
10 Mb/s Ethernet connection of the test environment. Un-
fortunately, memory consumption of CVM for page man-
agement seems to be too aggressive for higher dimensional
inputs.

CVM and Adsmith show noticeable performance loss
compared to Rthreads with one processor already. With Ad-
smith, all DSM accesses have to be performed with respect
to the dæmon of the local machine. This leads to process
communication resulting in the obeyed performance loss of
the one processor version compared to Rthreads. In the case
of CVM the performance loss is caused by overhead for
the consistency protocol. An unsynchronized one proces-
sor version (no consistency information has to be evaluated)
reaches almost the performance of Rthreads. Rthreads itself
does not suffer from any of the mentioned disadvantages.

A third example is the 3-D FFT code of the NAS bench-
mark suite [2]. With this application, 1-D-FFTs are applied
to the three dimensional working matrix in different phases.
The matrix is implemented as a one dimensional array. In
each 1-D FFT, the array represents a three dimensional ma-
trix with changed order of dimensions. The 1-D FFT is dis-
tributed to the processors along the first dimension of the
matrix. Therefore, the distribution of shared data to the pro-
cessors differs from phase to phase.

With Adsmith, it is not possible to rearrange the group-
ing of DSM data after the initial allocation. As efficient
handling of communication forall phases is prevented and
expected performance is poor, we omit an Adsmith version
of this application.

The impossibility of an efficient data distribution for all
phases holds for Rthreads, too. Independent of data dis-
tribution, Rthreads’ flexible array operations allow suitable
access of data in each phase, but access is more complicated
than for the previously shown applications.

Figure 4 illustrates the results of the CVM- and
Rthreads-based FFT implementations. CVM reaches the
minimal execution time. However, the qualitative behaviour
of Rthreads is more stable and scaling is slightly better.

Due to the complicated array accesses with changing di-
mensions the performance gain of Rthreads vs. CVM like
in the SOR application can not be found with FFT. Another
reason for this can be found in the less frequent synchro-



0

5

10

15

20

25

30

35

40

1 2 3 4 5 6

T
im

e 
in

 s
ec

on
ds

Number of processors

CVM
Rthreads

Figure 4. FFT, 16 � 64 � 64

nization in FFT compared to SOR leading to less consis-
tency protocol overhead. This can also be noticed in the
execution times of the one processor versions of CVM and
Rthreads for FFT, which are almost identical.

The most important results of the shown performance ex-
periences are: Rthreads introduce only very little overhead
compared to programs written in the underlying commu-
nication system. Rthreads outperforms the closely related
DSM-system Adsmith. The possibility of hand optimiza-
tions with Rthread programs even leads to superior or sim-
ilar performance compared to the page based system CVM
for all evaluated applications. Finally, we expect that data
distribution will further increase scalability of Rthreads and
applying a lazy release consistent protocol will help to make
the precompiler generated programs more efficient.

5. Related work

Software-based DSM systems for workstation clusters
are an active area of research starting from the late eighties.
The original idea dates from Kai Li’s IVY system [8] that
provides virtually distributed shared memory as extension
of the virtual memory management within a single machine
implementing sequential consistency. Further page-based
DSM systems are Mermaid, Munin [10], TreadMarks [1]
and CVM. TreadMarks and CVM employ the lazy release
consistency model [7].

Rthreads do not fall in the class of page-based systems
(i.e. DSM systems with page- or cache-line-sized coherence
blocks). Granularity of data sharing is on basis of objects,
i.e. variables of simple data types or variables of combined
data types as e.g. arrays and structures. Other object-based
DSM systems, Adsmith and Phosphorus [4], provide a sim-
ilar administration of data on the basis of simple or com-
bined data types. In contrast to Rthreads, however, in both
systems an identificator (string or integer), type and, in the

case of Phosphorus, node-local source and destination ad-
dresses have to be explicitly specified for each remote read
or write access. The Rthread system generates these infor-
mations by the precompiler. Only the names of the con-
cerned variables have to be specified.

In page-based DSM systems the memory accesses are
triggered by the virtual memory management. In object-
based systems remote accesses are either introduced by an
modified compiler (e.g. Midway [3]) or must be set expli-
citly in the program. The latter is the case with Adsmith
and Phosphorus, where the accesses cannot be introduced
automatically by a precompiler.

By page-based DSM systems, distributed memory is
seen as a linear array of bytes. Therefore the correct data
passing in heterogeneous systems cannot be guaranteed.
Mermaid is the only page-based DSM system that tackles
the problem of heterogeneous systems: only data of the
same type are allowed within the same page. Besides the
Rthread system, Phosphorus is the only object-based DSM
system that supports heterogeneous networks.

It is specific to the Rthread system that Rthreads and
Pthreads can be mixed and synchronization of Pthreads
within a Rthread can be done by the same Rthread func-
tion calls as for Rthread synchronization. This explicit sup-
port of node local multithreading is essential due to the in-
creasing importance of SMP workstations interconnected
by a LAN or high performance networks, e.g. used by the
IBM SP series. SoftFLASH [5] is the only DSM system
with similar possibilities.

Rthreads reaches a high degree of portability by its im-
plementation on top of PVM, MPI, DCE and soon Active
Messages. Other systems usually use operating system or
even hardware-based communication mechanisms. Excep-
tions are Adsmith, Phosphorus, both based upon PVM. Be-
sides its native implementation, CVM offers an MPI-based
version, too.

6. Conclusions

The software DSM system Rthreads implements an
object-based approach to distributed shared memory.
POSIX thread programs – often developed for multiproces-
sor workstations – are automatically transfered to Rthread
programs and explicit remote read and write functions are
introduced.

The precompiler is implemented such that type informa-
tion and header file are generated automatically.pthread-
to rthread -function transformation and introduction of the
remote read and write functions is still done by hand. Elim-
ination of unnecessary remote reads and writes proved easy,
but hand optimizing beyond the level provided by the soft-
ware buffer and flush-functions of the Rthread implemen-
tation is not always possible. In principle, parallelizing



compilers for shared-memory machines (e.g. SUIF) already
generate Pthread programs, thereby rendering a fully au-
tomatic generation of Rthread programs from a sequential
program possible. However, we did not yet evaluate if such
compiler back-ends would provide us with transformable
Pthread programs.

Besides the precompiler the Rthreads system relies upon
already implemented function libraries based on PVM, MPI
or DCE. We also develop an Active Message based imple-
mentation. The Rthreads system can be used on all parallel
computers and even on heterogeneous workstation clusters
that support one of these underlying platforms.

Performance evaluations showed that the Rthreads pack-
age does generate only a slight overhead in communication
by the top-level implementation compared to a PVM sys-
tem. This is not a matter of course as the performance mea-
surements for the related Adsmith DSM systems showed.

We are working towards the implementation of an en-
hanced Rthread package. The enhancements concern sup-
port for complex user-defined distributed data types and an
underlying lazy-release consistent implementation.

References

[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. Treadmarks: Shared
memory computing on networks of workstations.IEEE
Computer, 29(2):18–28, February 1996.

[2] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. Technical Report TR RNR-91-002,
NASA Ames, Aug. 1991.

[3] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The
midway distributed shared memory system. InCOMPCON,
pages 528–537, 1993.

[4] I. Demeure, R. Cabrera-Dantart, and P. Meunier. Phospho-
rus: A Distributed Shared Memory System on Top of PVM.
In Proceedings of EUROMICRO’95, pages 269–273, Sept.
1995.

[5] A. Erlichson, N. Nuckolls, G. Chesson, and J. L. Hennessy.
SoftFLASH: Analyzing the performance of clustered dis-
tributed virtual shared memory. InProc. of the 7th Symp. on
Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-VII), pages 210–220, Oct. 1996.

[6] P. Keleher.CVM: The Coherent Virtual Machine. University
of Maryland, Department of Computer Science, 1996.

[7] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy re-
lease consistency for software distributed shared memory.
SIGARCH Computer Architecture News, 20(2), May 1992.

[8] K. Li. IVY: A shared virtual memory system for parallel
computing. InInternational Conference on Parallel Pro-
cessing, pages 94–101, 1988.

[9] W.-Y. Liang, C.-T. King, and F. Lai. Adsmith: An efficient
object-based distributed shared memory system on PVM.
Proceedings of the 1996 International Symposium on Par-
allel Architecture (ISPAN 96), pages 173–179, June 1996.

[10] M. Zekauskas, W. Sawdon, and B. Bershad. Software write
detection for a distributed shared memory. InFirst Sym-
posium on Operating Systems Design and Implementations,
1994.


