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SUMMARY

Fully explicit time integration schemes are very inefficient for numerical
simulation of diffusion dominated problems. In case of natural convection flow
in liquid metals an implicit treatment of the thermal diffusion terms allows for
the use of substantially increased time steps without involving loss of physically
relevant information. Two suitable semi-implicit time integration schemes are
investigated analytically by a Von Neumann stability analysis and a spectral ana-
lysis of the numerical error. Numerical solutions by the semi-implicit schemes
are compared to the exact solution of a 1D linear test problem. The results show
the crucial influence of the discretization ratio A = At/Ax on the accuracy of the
numerical solutions. First 3D time dependent numerical simulations of natural
convection in liquid metals with the semi-implicit time integration schemes con-
firm the theoretically estimated gain in the time step width and result in CPU-
time savings up to a factor of 50 compared to the fully explicit scheme.

1. INTRODUCTION

New developments for sodium cooled fast breeder reactors aim at more
inherent safety features. The decay heat, e.g., shall be removed by natural con-
vection only. In this context many experiments with model fluids are per-
formed. Computer codes using turbulence models are developed to extrapolate
the experimentally based knowledge to reactor conditions. To improve and to
calibrate the problematic turbulence models for pure natural convection in lig-
uid metals we intend to provide statistical turbulence data from direct numeri-
cal simulations.

In the code TURBIT [1] the time dependent, three-dimensional Navier
Stokes equations and the thermal energy equation are solved in simple channel
geometries using a finite volume method. The time integration is done by an
explicit Euler-Leapfrog scheme. TURBIT has been successfully used for direct nu-
merical simulation of different heat transfer problems, as for example Rayleigh-
Bénard convection in air [2] and natural convection in an internally heated fluid
layer [3]. However, application of the code to natural convection in liquid met-
als leads to enormous CPU-time requirements. The inefficiency of the code for
this type of flow is due to the fully explicit time integration scheme. For numeri-
cal stability it requires the use of much smaller time steps than would be phys-
ically necessary to resolve even the highest frequencies of turbulence in time.
Similar problems arise in the numerical simulation of isothermal channel flow



with spectral methods [4]. Here very fine meshes have to be used near the walls
to resolve the viscous boundary layers. In those cases the viscous diffusion terms
are treated implicitly to avoid a physically irrelevant time step restriction.

In this paper we investigate two semi-implicit time integration schemes
for the thermal energy equation. These are the Adams-Bashforth Crank-
Nicolson scheme and the Leapfrog Crank-Nicolson scheme. In section 2 we will
show that in case of direct numerical simulation of natural convection in liquid
metals the strong time step restriction of explicit schemes is overcome by the
implicit treatment of the thermal diffusion terms. In section 3 we will carry out
a Von Neumann stability analysis and a spectral analysis of the numerical error.
Comparison of numerical solutions of a one-dimensional linear test problem
with the exact solution will be done in section 4. We will discuss the results in
section 5 and make some remarks about the realization and practical exper-
ience with the semi-implicit schemes in TURBIT in section 6.

2. NECESSITY FOR SEMI-IMPLICIT TIME INTEGRATION

The stability criterion of the fully explicit time integration scheme used in
TURBIT can be written, by using the summation convention, as
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Ui denotes the components of the velocity vector and v and a the viscous and
thermal diffusivity, respectively.

Liquid metals are characterized by very low Prandtl numbers Pr =v /a
(e.g. Pr = 0.025 for mercury and Pr = 0.006 for liquid sodium) and thus by a
very high ratio of thermal to viscous diffusivity. So the temperature field in nat-
ural convection of liquid metals is governed by a large thermal conductivity al-
lowing only for large scale structures and thick thermal boundary layers. In con-
trast the velocity field has very small spatial structures and very thin boundary
layers near walls. For direct numerical simulation of turbulence it is essential to
choose a grid which resolves all physically relevant length scales of the flow.
Therefore we are enforced by the velocity field for the use of very fine mesh
cells Axj. Thus in the stability criterion (1) the diffusion type terms become
dominant. Because of the very low Prandtl-number of liquid metals it is not the
viscous, but the highly efficient thermal diffusion process which requires the
use of very small time steps. This is really a kind of paradoxon since the tem-
perature field does not show any rapid variations which would justify the use of
such small time steps. Substantially larger time steps (typically of one to two or-
ders of magnitude) can be reached when the thermal diffusivity is removed
from the stability criterion (1). This can be achieved by treating the diffusive
terms in the thermal energy equation implicitly and the convective terms and
the complete momentum equation still explicitly.

3. ANALYTICAL INVESTIGATION OF SEMI-IMPLICIT SCHEMES

Two semi-implicit time integration schemes which are suitable for diffu-
sion dominated problems are recommended e.g. in [5]. Both handle the diffu-



sive terms L = aV2T by the implicit Crank-Nicolson scheme, CN, whereas for the
nonlinear convective terms N = uVT the explicit Adams-Bashforth, AB, or the
Leapfrog scheme, LF, is used, respectively:
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Here T denotes the temperature and n the time level. Both schemes are of sec-
ond order in time and exhibit only small numerical diffusion.

For simplicity we consider the following one-dimensional linearized
model for the thermal energy equation
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An exact solution is

—ik(x—u t) 2
T (x t) = ¢ : * u() . e—ak t (5)
ex 7

wherei = V-1and kis representing a wavenumber.

3.1 Von Neumann Stability Analysis
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The Von Neumann stability analysis of the ABCN- and LFCN-time integra-
tion schemes for the problem of equation (4) results in the curves of stability
given in figure 1 where the Courant number C = (upAt)/Ax and the diffusion
number D = (a At)/(Ax2) are used. The stability criterion of the LFCN-scheme is
just the well known Courant-Friedrichs-Lewy (CFL) condition C = 1. Thus the
time step is, as desired, unaffected by the thermal diffusivity. In contrast the
ABCN-scheme requires always a certain minimal diffusivity for numerical stabil-
ity. On the other hand it is not limited to the CFL-condition for higher values of
D. However, this is not an advantage compared with the LFCN-scheme since in
TURBIT we have to meet the CFL-condition for reasons of numerical stability of
the explicit integration of the momentum equations.
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Fig. 2: Spectral analysis of the numerical error of ABCN- and LFCN-scheme for
the Courant number C = 0.1 and three diffusion numbers.



3.2 Spectral Analysis of the Numerical Error

The damping in time of the amplitude of a spatial wave with wavenum-
ber k follows from equation (5) to be
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where ¢ = k Ax is representing a phase angle. By a spectral analysis of the nu-
merical error [6] this physical damping due to diffusion is compared to that of a
numerical scheme, which is falsified by numerical diffusion, for a wide range of
wavenumbers. The damping in time by a numerical scheme is characterized by
the maximum of the absolute value of its complex eigenvalues.

The results for a Courant number C = 0.1 and three different diffusion
numbers D = 0.1, D = 1 and D = 10 are given in figure 2. The numerical
schemes are working very well for small values of ¢. This means that the time
characteristics of structures associated with large wavelengths are well approxi-
mated by both numerical schemes. In contrast figure 2 shows that small scaled
spatial structures (¢ =m corresponds to the lowest resolvable wavelength 2 Ax)
are damped too weakly by both schemes. Furthermore a clear tendency is out-
lined that the wavenumber range of which the time characteristic is well ap-
proximated becomes more and more limited as the diffusion number increases.
The ABCN scheme works slightly better at high values of D than the LFCN sche-
me. Nevertheless it becomes evident that, with regard to the accuracy of the nu-
merical results, a limitation with respect to the diffusion number will be neces-
sary for both schemes.

However, one should keep in mind that we want to use these schemes for
the solution of the thermal energy equation for turbulent natural convection in
liquid metals. As stated above, for this type of flow the temperature field con-
tains only large spatial structures. Thus both schemes may be expected to yield
“physical” results.

4. NUMERICAL EXPERIMENTS

To get more information about the accuracy of the ABCN- and LFCN-
scheme both are used for numerical solution of equation (4) on a domain
0 = x = L. Corresponding to the initial condition

T (x,0) = sin (k-x) (7)
and the boundary conditions
T(0,t) = -sin (kuot) - e-k?at
T(Lt) =sin[k(L-ugt)]- ekt a
there exists the exact solution
Tex (X, t) = sin [k (x - upt) ] - e-k?at (9)

which can be used for comparison to the numerical solutions.



The LFCN- and ABCN-scheme are both three level schemes and thus a
new time plane is calculated using values of two past time planes. Therefore
both schemes cannot be used for the first integration step where only one time
plane - corresponding to the initial condition - is available. Therefore a two lev-
el scheme has to be used for the first integration step. Here a semi-implicit Euler
scheme is used which is only of first order in time. The results we present in this
paper are gained using the following parameters: ug = 0.1,a = 0.25,L = nand
k = 2. The number of mesh cellsis M = 50 resulting in a mesh width Ax = /(M-
1) = 0.064. To judge on the accuracy of the numerical solutions the absolute
value of their deviation from the exact solution will be shown in a three-
dimensional representation dependent on space and time:
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The main result of the numerical tests is the crucial influence of the dis-
cretization ratio A = At/Ax on the accuracy of the numerical solutions. Calcula-
tions done with A = 0.2 show nearly identical error characteristics for the LFCN-
and ABCN-scheme whereas they are clearly different if a larger time step corre-
spondingto A = 1isused (Fig. 3). The results of the LFCN-scheme are more accu-
rate not only as regards to the magnitude of the error but also with respect to
statistical data of the solution. The reason is that the LFCN-scheme yields an al-
ternating over- and underestimation of the exact solution whereas the ABCN-
scheme does not show a change of sign in the deviation from the exact solution
at a fixed spatial position for long times.
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Fig.4: Error behaviour of test problem as in Fig. 3, but with discretization ratio
A =At/Ax = 2andfor 0 = t = 2.05.



The error characteristics given in figure 4 result from a discretization ra-
tio A = 2. Now the solution of the ABCN-scheme is clearly superior to that of the
LFCN-scheme. The latter exhibits strong oscillations in the error characteristic
which are only weakly damped in time. To analyze this tendency towards 2At
oscillations we consider the LFCN-scheme which can be written as:
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It becomes evident that for small values of the mesh Peclet number
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neighbouring time planes are only weakly coupled. This is the explanation why,
once atime oscillation appeared, this will be damped only weakly.

The appearence of a first error oscillation can be explained by the Euler
scheme which is used to calculate the first time plane out of the initial condi-
tion. Due to the decoupling of neighbouring time planes in case of a low mesh
Peclet number, the first LFCN-step will also mainly use the data given by the ini-
tial condition for calculation of the second time plane. However, the error in-
volved by the second order LFCN-scheme will be lower than that of the first or-
der Euler-scheme. Especially the use of larger time steps At, or larger A = At/Ax
respectively, will introduce quite different errors in the first two time planes
and thus isleading to a first oscillation.

5. DISCUSSION

In the previous sections it has been shown that a decision between both
schemes depends at least on the problem of interest. The ABCN-scheme works
very well for diffusion dominated problems over the whole range of discretiza-
tion ratios A = At/Ax investigated. Difficulties may arise due to numerical stabil-
ity for more convection dominated problems. The main advantage of the LFCN-
scheme is its superior numerical stability. However, in case of low mesh Peclet
numbers it shows a tendency to time oscillations and should not be used with
time steps corresponding to a discretization ratio A = At/Ax > 1.

In TURBIT typical values of the discretization ratio A may be expected to
range between 0.1 and 1 when a semi-implicit solution scheme for the thermal
energy equation is used. Thus application of both schemes is possible. However,
since we use a Leapfrog scheme for the integration of the momentum equa-
tions it may be reasonable to use a Leapfrog-type scheme in the energy equa-
tion too, i.e. the LFCN- instead of the ABCN-scheme. By this the possibility of
phase errors between the velocity- and the temperature field seems avoidable.
These may be introduced by the use of such different schemes as explicit Euler-
Leapfrog- and semi-implicit ABCN- scheme are representing. We took the deci-
sion to implement the ABCN-scheme in TURBIT too, since later on the necessity
may arise to solve the momentum equation also semi-implicitly. Then time steps
corresponding to A > 1 become possible and therefore the ABCN-scheme has to
be used for both, for the momentum and for the energy equation.



6. REALISATION IN TURBIT AND PRACTICAL EXPERIENCE

An important aspect according to semi-implicit time integration is the ef-
ficient solution of the arising linear equation system. The set of linear equations
arising from the implicit treatment of the thermal diffusion terms is similar to
that of a discretized Poisson equation [7]. Therefore in TURBIT we use a modi-
fied version of a direct FFT-based Poisson solver [8] for the solution of this set of
equations. The additional CPU-time per time step of the semi-implicit scheme is
about 10 to 20 percent compared to the fully explicit scheme. This is contrasted
by a gain in the time step width of one to two orders of magnitude.

In case of direct numerical simulation of Rayleigh-Bénard convection in
liquid sodium with the LFCN-scheme time steps can be used which are up to a
factor of 50 larger than those allowed for the fully explicit scheme. However, in
some of these applications numerical instability of both the ABCN- and the
LFCN-scheme was observed in case of high diffusion number. Although the Von
Neumann analysis is predicting numerical stability even for an infinite diffusion
number this instability is not surprising due to the results of the spectral analysis
of the numerical error discussed above. Further on one should mention that a
stability criterion derived by the linearized version of a nonlinear problem can
only give approximative results. To avoid these stability problems we restrict
the diffusion number to a maximum value of Dmax = aAt/(Axmin2) = 4 and thus
set an upper limit for the time step width.

In table 1 we present results for the 2D GAMM Benchmark [1, 9] on “Nu-
merical Simulation of Oscillatory Convection in Low-Pr Fluids” calculated by the
semi-implicit schemes on a Siemens VP 400 computer. Compared to calculations
on a 30:4-64 grid with the explicit scheme the use of the ABCN-scheme re-
sults in a factor of 37 for the increase of the time step width. Furthermore with
the LFCN-scheme calculations on a 50-4-102 grid could be realized, while
these were impracticable with the fully explicit scheme. This mesh refinement
resultsin a clear improvement of the requested results (see Table 1), namely the

maximum horizontal velocity amplitude U*max and the frequency of oscillation
f.

Table 1 Requested results for 2D GAMM Benchmark [1, 9] Case C, Gr =
40000, Pr = 0.015, R-R. (Remark: TURBIT is a 3D-code in which one
has to use at least 4 mesh cells in the third direction even for a 2D

problem)
Code ;
(time integration grid At Ynax CPll-kirng V% s f
[min]
scheme)
Reference-Code 81-321 - - - 1.093 21.76
(9]
TURBIT 30-4-64 2.6:104 721 1089 0.987 | 22.35
(explizit [1]) VP 50
TURBIT 30:4-64 9.8-10-3 228.1 90 0.991 22.00
(semi-implicit ABCN) VP 400
TURBIT 50-4-102 4.2-10-3 103.4 217 1.026 21.86
(semi-implicit LFCN) VP 400




7. CONCLUSIONS

Direct numerical simulation of natural convection in liquid metals using
fully explicit time integration schemes results in strong time step restrictions.
This is enforced by the numerical stability of the thermal diffusion process and
can be overcome by semi-implicit time integration of the thermal energy equa-
tion. Two semi-implicit time integration schemes - the Adams-Bashforth Crank-
Nicolson scheme and the Leapfrog Crank-Nicolson scheme, respectively - have
been investigated analytically and numerically. For both schemes an increase of
the time step width becomes possible without loosing physically relevant infor-
mation. Dependent on the Prandtl number time steps can be used that are up
to a factor of 50 larger than that allowed for fully explicit schemes. Since the
arising set of linear equations is efficiently solved by an adapted direct FFT-
based Poisson solver this time step increase results in a CPU-time saving of near-
ly the same magnitude. Results for a Benchmark problem [1, 9] gained by semi-
implicit time integration show the validity of the new method. Thus direct nu-
merical simulations of turbulent natural convection in liquid metals at moder-
ate Rayleigh numbers become feasible with justifiable computational expense.
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