Proc. 5th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-5),
Salt Lake City, USA. Sept. 21-24, 1992, Vol. Il, pp. 358 - 365, Am. Nucl. Soc., LaGrange Park, lll.

ANALYSIS OF SECOND ORDER TRANSPORT EQUATIONS BY
NUMERICAL SIMULATIONS OF TURBULENT CONVECTION IN LIQUID METALS

G. Grotzbach, M. Worner
Kernforschungszentrum Karlsruhe GmbH, Institut fir Reaktorsicherheit
Postfach 3640, 7500 Karlsruhe, Federal Republic of Germany, Fax 07247 823718

ABSTRACT

The method of direct numerical simulation is used to provide a data base for turbulent Rayleigh-Bénard con-
vection in air and sodium at small but comparable Grashof numbers. The results are analysed regarding the
similarity of the small scale structures in the velocity fields of both fluids. The data base is also used to calculate
some analytical terms of the k and g equations and of corresponding model assumptions used in a standard k-
e-g model. The resulting mode! coefficients indicate that such standard models need methodological exten-
sions to be applicable to pure natural convection in liquid metals at least at moderate Rayleigh numbers.

INTRODUCTION

There is intensive work going on to analyse
the heat transfer capabilities of natural convection
in new designs of liquid metal cooled fast breeder
reactors [1,2]. The experimental results from scaled
reactor models using water as a model fluid will
mainly be transfered to reactor conditions by com-
puter codes [3,4]. The turbulence models used for
this purpose are going to be improved to be appli-
cable to heat transfer in purely buoyant flows [5,6]
and to mixed convection in liquid metals [7]. Data
are required to improve model assumptions and to
calibrate models for use with pure natural convec-
tion in liguid metais. Due to the extreme experi-
mental deficiencies in working with liquid metals
only very few suitable data are available [7,8]. Thus,
there is a good chance for the method of direct nu-
merical simulation of turbulence [9] to provide such
data for at least small turbulence levels.

In this paper we consider the Rayleigh-Bénard
convection, that is an infinite horizontal fluid layer
heated at the lower wall and cooled at the upper
wall. Results from two numerical simulations, for air
and sodium at small but comparable Grashof num-
bers, will be presented and analysed. They will be
used to show some peculiar features of turbulence
in liquid metals, to predict some terms in the equa-
tions for the kinetic energy k and for the tempera-
ture variance g, and to analyse in a first step some
coefficients of the standard k-¢ and the k-¢-g model,
especially those used in heat transfer models.

SIMULATION MODEL

The method of direct numerical simulation of
turbulence is based on the full mass conservation,
Navier-Stokes, and thermal energy equations. The
features of turbulence require to solve these equa-
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tions in three dimensions and in time, and to use
grids which resolve the largest and smallest scales of
turbulence. When these requirements are met, no
assumptions for the subgrid scales and no wall
models are needed. Here the grids are chosen to
record all relevant flow structures. Thus, the simula-
tions do not depend on any model coefficients.

The simulation model used is the TURBIT code
[9]. It is based on the complete three-dimensional
time-dependent conservation equations for mass,
momentum, and thermal energy. The validity of the
Boussinesq approximation is assumed. For normal-
ization we use the channel height D, velocity ug =
(g B aTw D)2, time D/u,, and temperature differ-
ence oTw, where g = gravity, p = volume expansion
coefficient, ATw = temperature difference between
the hot lower wall and the cold upper wall, D =
channel height. The resulting equations are solved
in terms of mesh cell surface averaged velocities iu;
and volume averaged pressure YP and temperature
vT by use of a finite difference scheme on a stagger-
ed grid. The code was recently extended by a semi-
implicit time-integration scheme for the thermal en-
ergy equation to improve considerably the efficien-
cy with simulations of liquid metal convection [10].
The momentum equations are solved explicitly. The
Poisson equation for the pressure is solved by a di-
rect pseudo-spectral method.

The code was verified by applications to a
large number of different flows [9], inciuding the
Rayleigh-Bénard convection of air used here for
comparison [11} and blind predictions for a bench- .
mark with natural convection of a liquid metal in a
rectangular box [10, 12]. Of course there appear no
serious problems with direct simulations except for
the fact that the user of the code has to know how
to specify grids which are adequate to the consid-
ered physical problem.



CASE SPECIFICATIONS

The Rayleigh-Bénard convection is character-
ised by the Rayleigh number Ra = g B ATy D3/(va)
and the Prandtl number Pr = v/a (where v = viscous
diffusivity, a = thermal diffusivity). Two simulations
are compared here, Tab. 1. The simulation for air, Pr
= 0.71, with Ra = 220 - Rac is in the fully turbu-
lent regime, the one for sodium, Pr = 0.006, with Ra
= 3.5 - Ragr is also expected to be turbulent in the
velocity field [13,14]. '

Tab. 1: Parameters and grid data for both
simulations (i = 1,2).

Pr Ra Gr X; | Ax; Axzwl| Ni N3

0.71 13.8-105 |5.4-105 17.92§0.044 0.005{180 32
0.006 | 6-103 106 80 ] 0.04 0.01 (200 3N

The grids have to meet two important criteria:
The grid widths Ax;, i = 1,2 horizontal, i = 3 verti-
cal, have to be fine enough to resolve the smallest
scales of turbulence and to resolve adequately the
thin boundary layers. The horizontal extension X; of
the control volume has to be large enough to avoid
hindering of large scale structures as periodic
boundary conditions are used in both horizontal di-
rections.

For the simulation with air sufficient expe-
rience is available to specify adequate ?rids [11]. it
was shown in [13] that the grid specitied for air,
Tab. 1, is surely fine enough for simulation pur-
poses, it could be finer for analysing purposes, and
that such large periodicity lengths X; are absolutely
necessary to allow for the development of realistic
large scale structures.

For the simulation with sodium there is only
negligible experience to specify grids. From some
physical arguments and a sensitivity study, see be-
low, we deduced a grid which is a bit finer than the
one for air for a channei which is a bit larger, Tab. 1.
The numbers of mesh cells N; follow directly from
the values chosen for X; and Ax;, except for the ver-
ticaclj direction in which non-equidistant grids are
used.

The simulations are started from zero veloci-
ties and from approximated vertical mean tempera-
ture profiles on which random fluctuations are su-
perimposed. To save computing time, the sodium
case was run up to tmax = 960 on a coarser grid us-
ing 1602-25 nodes. The final 3d results were inter-
polated to the finer grid. The time needed to find
again fully developed flow even in the high fre-
quency range of the spectra was about one time
unit.

RESULTS

The complete three-dimensional results for
the three velocity components, pressure, and tem-

Tab. 2: Problem time simulated and time
interval used for time averaging

Pr tmax Aty Ntav
0.71 107.2 329 11
0.006 995.9 31.2 9

perature are stored for a certain number of time
steps. To obtain reasonable statistical data from the
time dependent results, averages y for a calculated
variable y are formed over horizontal planes, and
these are averaged over N,y time steps distributed
within the period At,y at the end of the simulated
problem time tmax, see Table 2. It is this averaging
over all points in each horizontal plane which im-
proves strongly the statistical results and which al-
lows to use much smaller sampling times than
known from analysing experimental data.

Verification

The simulation for air is one of a series which
has been verified extensively by comparison to ex-
perimental results [11,13]. The simuiation for sodi-
um can not be verified to the same extent because
there are only very few suitable experimental data
available. The calculated Nusseit number of 1.05
compares roughly with the experiments of Kek [8],
which give for all small Rayleigh numbers about
1.10 * 0.03. This result is not very relevant because
it shows that most heat is transfered by conduction,
not by convection. A more important comparison
can be performed by using the only second type of
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Figure 1. Time trace of (T'2)12 averaged over hori-
zontal mid-plane and error band of
data by Kek [8]; Pr = 0.006.



data available at this Rayleigh number from Kek:
The time trace of horizontally averaged rms-value
of the temperature fluctuations is for t beyond 100
well within the error band of his experimental data,
Fig. 1. In addition we should show that none of the
computational parameters, like Ax;, X; or tmax, has a
considerable effect on the results.

The influence of Ax;, that is of the resolution
of fine scales, was investigated by five simulations
using 802-13 up to 2002:31 mesh cells for a fix
channel size of Xj = 8. There is a systematicincrease
in the simulated fluctuation amplitudes, e.g. in the
kinetic energy of turbulence, which vanishes for
grids using more than about 1202-19 to 1602-25
mesh cells. Nevertheless, we used the finest grid
mainly because of analysing purposes. The corre-
sponding grid widths found on this way to be re-
quired for the simulation with sodium are compara-
ble to those required for the simulation with air. In-
deed, vertical cuts through the instantaneous veloc-
ity fields at any time and place show for both simu-
lations very similar structures at small scales, e.g.
thin shear layers, Fig. 2. Thus these results agree
with conclusions from dimensional anaylsis that in
natural convection in liquid metals the velocity field
is governed by convection. Therefore very small
scales exist and the velocity fields are comparable
for comparable Grashof numbers, Gr = Ra/Pr. Here
th% Grashof numbers are of the same magnitude,
Ta . 1 - &

1
X3
}

The influence of X;, that is the capability to re-
solve large scale structures, was investigated by
simulations on a coarse grid using X; = 4, 6, 8, 10
and 16. The four larger channels allow for develop-
ment of irregular roll-like structures with horizontal
axes. Analysis of the wavelength A of the irregular
rolls results in values for A of about 2.6 to 2.8. As ex-
pected this is larger than the theoretical value A, =
2 at the onset of convection {14]. On the other hand
it is smaller than the vaiue found in the air fiow [13],
which is about 3.4, despite the strong thermal con-
ductivity which allows for strong coupling over
large distances. Indeed, the temperature field for
air shows small spatial structures comparable to
those in the velocity fields, whereas the tempera-
ture field for sodium is very smooth and shows only
weak influences of convection, Fig. 2. Due to the
large thermal diffusivity of sodium it is dominated
by conduction. A caretul statistical analysis shows
systematic influences of Xj on e.g. rms-values of ve-
locity and temperature fluctuations and on their en-
ergy spectra for X; = 4 to 8, but no significant dif-
ferences for X; = 8 and greater. Thus X; = 8 is con-
sidered adequate for our purposes.

Considering the influence of the problem time
tmax over which the simulation for sodium is per-
formed, Tab. 2, we found statistically stationary
flow after t = 200 to 300, see e.g. the rms-value of
the temperature fluctuations in Fig. 1. Some small
long wave random oscillations occured in the flow
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Figure 2. Vertical sections through instantaneous temperature and velocity fields at any position and time for

Pr = 0.71 (top) and Pr = 0.006 (bottom)



field with periods around 20 to 150, as was similarly
observed in experiments [8]. The extremely long
problem time was chosen to ensure at least in one
simulation that at this small Rayleigh number no re-
laminarisation or regular time periodic flow will oc-
cur. In the future we may simulate shorter time in-
tervals again.

Analysis of turbulent momentum transfer

Before we study some terms of the k-e-g heat
transfer model we present the results for the verti-
cal_profiles of the kinetic turbulence energy k =
u'i2/2 and its dissipation ¢ which were analysed from
the simulation results using their analytical defini-
tions. The profiles for k, Fig. 3, compare for both flu-
ids quite well in the near wall range. The k bound-
arY layer is somewhat thicker for sodium, despite of
a larger Grashof number. in the inner part of the
channel the sodium flow gives only one maximum in
the middle of the channel as it occurs with air at
much smaller Grashof numbers.

The analytical form of the complete conserva-
tion equation for k in Rayleigh-Benard convection is
ak/ot = ‘GrlReo‘ u'T' -div [EE + IJ_-'?] + vdivgrad k-¢

prod. turb.diff. visc. diff.
withRe, = u Divand -

e = v((rotu")2 + 2div(u'grad u’)).

Statistical analysis of the production, diffusion,
and dissipation terms of this equation results in only
small differences in the dissipation of k, Fig. 4. The
dissipation of k is governed by the smallest scales in
the velocity field which are very similar according to
Fig. 2. The production term is proportional to the
turbulent heat flux, and thus shows considerable
differences between both cases. In air most heat is
transfered upwards by convection whereas with so-
dium a relatively small amount of heat is transfered
by convection. The form of the vertical profiles is
consistent with the large differences in the thicknes-
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Figure 3. Vertical profile of the kinetic turbulence
energy k
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Figure 4. Terms of the k-equation for Pr = 0.71
(top) and Pr = 0.006 (bottom)

ses of the thermal boundary layers. For Pr = 0.71
the thickness of the thermal goundary layer is about
0.1-D whereas for Pr = 0.006 both boundary layers
meet at half height. As a consequence, the term of
the molecular plus turbulent diffusion which is re-
sponsible for the vertical redistribution of k, looks
very different in both cases. Thus, closure assump-
tions for the turbulent diffusion will have to ac-
count for the influences of the molecular Prandtl
number.

__ Thesimilarity at small scales obvious from both
dissipation profiles does not help very much in mod-
elling this term. This is indicated by analysing
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Figure 5. Length scale UCp of Rotta's dissipation
modele = Cp k32/L



LCp = k3/2/e,

Fig. 5, which is the Rotta mode! for the dissipation in
a one-equation k model at large turbulence levels
[15]. This length scale strongly depends on Pr mainly
because of the differences in the k profile. For sodi-
um a much larger value for UCp is predicted. This
length is assumed to give a measure for the size of
the large flow structures; here this qualitatively
agrees with the above mentioned existence of roll-
like structures with an axial extent of 6 to 8. In the
simulation with air such large horizontal roll-like
structures do not exist. There we find spoke pattern
like structures forming highly irregular cells with
typical diameters of about 3.4 [13].

Analysis of turbulent heat transfer

The analysed vertical profile of the time mean
temperature which should be the result of a turbu-
lent heat transfer model is given in Fig. 6. For air the
well known behaviour is found with thin thermal
boundary layers corresponding to a Nusselt number
of 6.26, and an isothermal core. For sodium at this
Rayleigh number a roughly linear temperature pro-
file is developed which means, the convection is, in
accordance with the small value of the Nusselt num-
ber, of negligible influence on heat transfer.

The analysis of the turbulent Prandtl number
Pr. = vi/ap, which is often used to calculate heat
transfer with the k-¢ model, is not possible in a sim-
ple manner. The turbulent eddy diffustvity

vij = -u'3 u’j /(aU,-/axg),
is not well defined in Rayleigh-Bénard convection
because the time mean vertical momentum fluxes as
well as the time mean horizontal velocities uj, j =

1,2, are zero. To circumvent this problem we assume
the validity of the standard k-¢ model [15],

with Cy, = 0.09, and calculate vt from the simulation
results for k and ¢. The turbulent eddy conductivity

a = -u'3T/(aT/ax3)
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Figure 7. Turbulent Prandtl number analysed by
using the expression for v¢ from the
standard k-¢ model. (Pry < 10 enforced
in this plot)

is well defined and can be analysed directly from
the simulation results. The values for Pry gained on
this way show strong vertical variations, Fig. 7. Espe-
cially in the inner part of the channel where the as-
sumption for vy should be valid we find values which
do not coincide with values used practically. The
reason for Pry to become zero locally with air is its
definition as thermal gradient diffusion. The air
flow has an isothermal core, Fig. 6, which gives Pry
= 0, whereas in practical calculations no gradient
model will give an isothermal core. Thus gradient
diffusion should not be assumed in this type of flow.
For sodium at this small Rayleigh number the prob-
lem does not occur and Pry is larger than one as it is
expected.

The problem of using uncertain turbulent
Prandtl numbers is circumvented in models using
combinations of k-e__models, Algebraic Stress
Models, and the g = T'2/2 equation [15]. Thus we
need the distribution of g and of the terms in the
conservation equation of g. This equation in
Rayleigh-Benard convection reduces to:
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Figure 8. Vertical profile of time mean tempera-
ture variances.g = T'2/2
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Figure 9. Terms of the g-equation.
Prod = - u'3T 4T/axs; Diff = -d u'3 g/
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The vertical profile of g for air has two maxi-
ma, each near the edge of the thermal boundary
layer, Fig. 8. For sodium the values are much smaller
and only one maximum occurs, also near the edge
of the thermal boundary layer.

Statistical analysis of the analytical terms of
the g equation results in a production term which is
for both simulations very similar to the g profiles,
Fig. 9. The dissipation eg of g looks at the larger
Prandtl number comparable to that of k, but it is
roughly constant for the sodium case. As a conse-
quence the diffusion term for g has also two distinct
minima at the edges of the thermal boundary layers
at Pr = 0.71 and a wide relative maximum in the
middle of the channel. The latter feature cannot be
found at Pr = 0.006 because of the relative domi-
nance of conduction over convection. Comparing
the results for both fluids we cannot separate the
influences of Ra and Pr. Besides, the diffusion terms
in Fig. 4 and 9 are very much suited to judge on the
accuracy of the analysis, of the simulation, and of
the status of development of the flow. This term,
which is analysed indepently from the other ones,
has always to balance the differences between the
two other curves.
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Figure 10. Coefficient Cq of Meroney's k-e-g heat
flux model.

With the results given up to now the coeffi-
cient Cy in one of the existing k-c-g models [16],

at = CHkg/Cg

can be calculated, Fig. 10. For air Cq shows strong
vertical variations which are due to the definition of
at as an effective conductivity in a gradient model
for the turbulent heat flux. Again the .isothermal
core and some local temperature inversion (perhaps
caused by insufficient time averaging) leads to
abrupt changes in Cq and thus shows 31e problem
with gradient models. For sodium a sufficiently
smooth distribution of Cy is found, but in the rel-
evant region, that is within the thermal boundary
layers, the value of Cy is much larger than the one
of Cy = 0.03 - 0.1 found with air and of C4 = 0.1
used practically in [16]. Thus, this model needs care-
ful consideration of the influence of Ra and Pr on
CH.

Closure assumptions are required to solve the
g equation numerically. One of the models for the
dissipation eq relates this to ¢ by a time scale ratio R
[15]:
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Figure 11. Time scale ratio R of the model for the
dissipation ggq.
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Figure 12. Triple correlation u'3 g in the diffusion
term of the g quation.

eg = £g/(kR).

The value of R varies for air between 0.45 and
0.7, Fig. 11. The complicated vertical variation is due
to the different locations at which the maxima in k,
g, and e occur. In calculations using this modei often
constant values between 0.5 and 1 are used. These
values obviously do not hold for low Rayleigh num-
ber convection in sodium because the time scales of
the temperature fields for air and sodium are very
different. -

in choosing a closure model for the triple cor-
relation u'3 g, Fig. 12, from the turbulent diffusion
of g we have again to consider that models contain-
ing mean shear terms cannot be used here. A possi-
ble alternative is

u'3g = -C'tk2/edglaxs,

[15]. The value of the analysed coefficient C't for air
varies strongly with x3 and shows large peaks near
the walls, Fig. 13; this means the model gives no
adequate results for this type of convection. In addi-
tion we find no distinct regions in which C'r takes a
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Figure 13. Coefficient C'r used in Spalding's model
foru'sg.
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locally constant value of 0.13 which is the recom-
mended number for this coefficient. The results for
sodium do not show this problem; the Rayleigh
number is too small to give such strong variations in
the channel. The model deficiency found is not of
importance at low Rayleigh numbers in liquid met-
als because the molecular diffusion dominates the
turbulent diffusion of g.

CONCLUSIONS

The method of direct numerical simulation
was used to produce a data base for Rayleigh-
Bénard convection in air and sodium at about com-
parable Grashof numbers at small turbulence levels.
The results were used to investigate the flow struc-
ture in liquid metal convection and to give first val-
ues for the large scale structures of the flow. The
small scale structures in the velocity fields of both
fluids look very similar in accordance with the
Grashof number similarity.

Statistical analysis was performed for the tur-
bulent heat flux models, for terms in the k and g
equation, and for some model assumptions in a
standard k-e-g model. The widely used turbulent
Prandtl number concept can not give accurate re-
suits. It will enforce non-isothermal cores. In addi-
tion Pry strongly depends on the molecular Prandtl
number. The dissipation of kinetic energy is in both
cases comparable. Nevertheless models available
suffer from-influences by the Prandt! number. The
other models considered, especially those for the
dissipation of temperature variances g and for its
turbulent diffusion, depend strongly in an up to
now not analysed manner on the Rayleigh and
Prandtl numbers. The diffusion model seems not to
be adequate to the physical problem considered.
The results for the model coefficients may suffer
from considering a standard k-¢ model which has no
special model extensions to incorporate effects of
near wall damping, of buoyancy contributions, or of
low Reynolds numbers. Thus the given coefficients
for air are valid only apart from walls, and those for
sodium should be considered only as tentative re-
sults because the “turbulence level” in the scalar
field is very small. In future work we will try to cir-
cumvent these discussed limitations in our analysis
and will also try to compare our results with those
of standard k- codes. Anyway, it is evident from the
available results that all molecular thermal diffusion
type terms have to be included, e.g. in the g equa-
tion, in a model when it shail be used with liquid
metals and that low Reynolds number extensions
have to be used to treat more accurately the wall
proximity.
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