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ABSTRACT

Direct numerical simulation data for turbulent natural
convection in different fluids (liquid sodium, mercury and
air) at various Rayleigh numbers are used to investigate
the molecular destruction and the molecular diffusion terms
in the transport equation of the turbulent heat flux. In
modelling the molecular destruction two main results have
been obtained. First, it is neccessary to include a term in
the model which explicitly accounts for the influence of the
Prandtl number. Second, a suitable formulation for a model-
function which can adequately describe the influence of the
turbulence level has to be based on the sum of the turbu-
lence Reynolds and Peclet number. For liquid metals a new
approach for modelling the molecular destruction and diffu-
sion in the turbulent heat flux equation is suggested, where
both molecular terms are modelled together by approxima-
tion of one single term.

INTRODUCTION

Computation of isothermal flows by second moment clo-
sure models, which solve the differential transport equations
for each component of the turbulent stresses %;%;, has made
considerable progress in the past few years and has now
reached a level of maturity. However, the situation is not as
well satisfactory for non-isothermal buoyant flows. In this
case, additional transport equations for the turbulent heat
fluxes u;8, the thermal variance 2 and half its dissipation
rate €o need to be solved. The available models for these
equations present some important limitations, as shown re-
cently by Hanjali¢ (1994). Beside other open questions, wall
functions for different terms need to be developed and the
effects of low Reynolds and Peclet numbers need to be con-
sidered. With respect to these topics, detailed information
for rather different physical situations is required for both,
the behaviour of the molecular terms in the u;6-equation
and the performance of available models for these terms.

In the present paper, we use results of direct numerical

simulations (DNS) of turbulent convection in different flu-
ids and for different turbulence levels and perform a detailed
analysis of the molecular terms in the turbulent heat flux
equation. In addition, we analyze some models suggested
in literature for closure of these terms. Thus, the scope of
the present contribution is to provide reliable data for the
molecular terms in the u;0 equation, to improve the gen-
eral understanding of the role of these terms, to point out
deficiencies of model assumptions, and to suggest improve-
ments.

In the following, we first discuss the Rayleigh-Bénard con-
vection application, give a short introduction to the DNS-
code used, and specify the simulations performed. Subse-
quently, results will be given for the budget of u;0, including
the molecular diffusion and destruction of u;0. Finally, we
analyze models commonly used for closure of these terms
and give concluding remarks.

PHYSICAL AND NUMERICAL MODEL
Rayleigh-Bénard Convection

The Rayleigh-Bénard convection is a geometrical simple
model which can be used to investigate turbulent heat trans-
fer phenomena in natural convection from a more fundamen-
tal point of view. It is given by an infinite fluid layer be-
tween two rigid horizontal isothermal walls. The lower one
is heated and the upper one is cooled. The physical prob-
lem is characterized by two dimensionless numbers: The
Rayleigh number Ra = g8AOw D*/(vk) and the Pran-
dlit number Pr = v/k (where g = gravity, 5 = thermal
expansion coefficient, A@w = temperature difference be-
tween the walls, D = channel height). Here, three fluids
with very different Prandtl numbers are considered: lig-
uid sodium (Pr = 0.006), mercury (Pr = 0.024), and air
(Pr =0.71). The Rayleigh numbers of the simulations span
the range 3,000 < Ra < 630,000 , see Table 1. Though in
the liquid metal cases Ra is very low, the Grashof number



Gr = Ra/Pr is in the order of 10°. This indicates that the
velocity field is fully turbulent.
Simulation Method

In this paper we discuss results for turbulent Rayleigh-
Bénard convection which are achieved by the direct simu-
lation method. This means that the full three-dimensional

time-dependent conservation equations of mass, momentum,

and energy are solved on grids which resolve the largest and
smallest scales of turbulence. Thus no statistical turbulence
model is used and the simulations do not depend on any
model coefficients.

The simulations presented are performed with the TUR-
BIT code {Grotzbach, 1987). This code is based on a finite
volume method and allows for direct numerical simulation
of turbulent flow and heat transfer in simple channel geome-
tries. With the exception of the buoyancy term, where the
Boussinesq approximation is used, the fluid is assumed to
be incompressible. The governing equations are solved in
dimensionless form. For normalization the channel height
D, the velocity v/gBA®w D, and the temperature difference
AOw are used. Time integration of the momentum equa-
tions is performed by the explicit Euler-Leapfrog scheme,
whereas for the energy equation the semi-implicit Leapfrog-
Crank-Nicolson scheme is used.

For Rayleigh-Bénard convection, periodic boundary con-
ditions in both horizontal directions, z; and z2, are appro-
priate to simulate the semi-infinte fluid layer. The hori-
zontal extensions of the channel are selected to X2 &~ 8D
and thus should be large enough to cover even the largest
macroscopic scales of the convective layer. At the lower and
upper walls, which correspond to £3 = 0 and x3 = 1, respec-
tively, the no slip condition and constant wall temperatures
are specified. The numbers of mesh cells N; used in the
equidistantly spaced horizontal directions and in the non-
equidistantly spaced vertical direction are given in Table 1.

The simulations listed in Table 1 are the most recently
ones of a series of simulations for the same Rayleigh and
Prandtl numbers. Starting either from a coarse grid with
zero velocities and random temperature fluctuations or from
the final data of a simulation with the same Pr but smaller
Ra, the results are interpolated to a finer grid and advanced
in time. After the flow is fully developed, another interpola-
tion to an even finer grid and additional integration in time
is performed until finally a mesh is reached which meets the
requirements of a direct simulation of the physical problem.
The procedure described drastically reduces the computa-
tion time needed to perform the simulations. For a detailed
verification of the numerical results for sodium and air see
Wérner and Grotzbach (1993a) and Grétzbach (1994). The
simulations with mercury are in progress and have not been
published up to now.

RESULTS FOR THE u;6-EQUATION

Averaging Procedure

In a statistical sense, in turbulent Rayleigh-Bénard con-
vection the horizontal directions z; and z» are homoge-
neous. Therefore, for evaluation of statistical quantities av-
eraging is performed over horizontal planes. The resulting
vertical profiles f(x3) are then averaged over several time
planes, distributed in the fully developed flow regime. As

Table 1: Parameter and grid data of simulations

Pr Ra Gr Nia | N3
0.006 3,000 500,000 128 31
0.006 6,000 | 1,000,000 200 31
0.006 12,000 | 2,000,000 250 39
0.006 24,000 | 4,000,000 | 250 39
0.024 3,000 125,000 128 39
0.024 6,000 250,000 160 39
0.024 12,000 500,000 | 200 39
0.024 | 25,000 | 1,041,667 | 200 | 39
0.024 | 50000 | 2,083,333 | 250 | 57

0.71 381,000 536,620 180 32
0.71 630,000 887,324 | 200 39

a consequence of this averaging procedure, the time mean
vertical velocity U3 is zero and all derivatives of statistical
quantities with respect to £; and x2 do vanish.

Transport equation of u3f

In turbulent Rayleigh-Bénard convection the turbulent
heat fluxes in the horizontal directions are zero and only
u30 exists. With the averaging procedure discussed above,
the exact transport equation in dimensionless form for u30
reduces to:
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Here, Psp is the production of u3zf. It consists of a contri-
bution due to the mean temperature field (first part of Pss)
and due to buoyancy forces (second part of Psg). Next, ¢ay
is the pressure scrambling term and D¢, is the turbulent
diffusion. The last two terms are due to molecular effects,
i.e. the molecular destruction €33 and the molecular dif-
fusion D3s.m. In isotropic turbulence e3¢ is zero and the
pressure scrambling term @3 is the only sink of u38.

Budget of u3f

From our direct numerical simulation data, we calculate
each term in the uzB-equation and thus evaluate the budget
of uzf. In a previous paper, this was done for the simulations
with air (Re = 630,000) and with sodium (Ra = 24,000),
see Worner and Grotzbach (1993b). The results indicated
that in natural convection the molecular destruction €39 is
not zero but is an important sink of turbulent heat flux, at
least, for low Reynolds or Peclet number flows. The reason
is that natural convection is well known to be anisotropic,
as it is driven by buoyancy forces.
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Figure 1: Budget of u3f for sodium, Ra = 3,000:
D3¢(0), P3s(0),€30(A), ¢30(+), out of balance (- - -)

In Fig. 1 we present results for the evaluated budget
of the uzf-equation for the simulation with sodium and
Ra = 3,000. First it should be mentioned that for this sim-
ulation the Nusselt number is only little bigger than unity.
Thus, far most of the heat is transported by conduction and
the turbulent heat flux is not really important. Neverthe-
less, it is worth to study this limiting case and to investigate
the budget of uz0 in some detail. The production Psy is
zero near the walls and maximum in the centre of the chan-
nel. The pressure scrambling term ¢3¢ is very small and the
molecular destruction €3¢ is the dominant sink term. Fig. 1
shows that €3¢ is almost constant in the centre of the layer
and decreases in the viscous boundary layers. The diffusive
transport Dsg = Dsg.¢ + D3¢,m redistributes the surplus of
Py, in the centre of the layer toward the walls. A close in-
spection of the diffusion D3, not shown here, reveals that
D3y ¢ is almost zero and thus D3y = Dsg. ..

With increasing turbulence level, i.e. increasing Rayleigh
number, the molecular terms in the uzf-equation become
less and less important. For air and Ra = 630,000 e.g.,
D3, is only of relevance in the direct vicinity of the walls,
whereas in the centre of the layer this term is negligible
and D3 = Ds3s¢. The molecular destruction, however, is
not zero even at this Rayleigh number and takes a value of
€36 & B3 /3, see Worner and Grétzbach (1993b).

From these results we conclude that for anisotropic flows,
as natural convection, not only modelling of the pressure
scrambling term and the turbulent diffusion in the turbulent
heat flux equation is essential but also adequate modelling
of molecular destruction. In addition, for liquid metals the
molecular diffusive transport may not be negelected for most
technical applications and needs to be modelled, too.

ANALYSIS OF MODEL ASSUMPTIONS

In this chapter, we use the results of the direct numerical
simulations and perform a detailed analysis of models which
are suggested in literature for the molecular destruction and
molecular diffusion in the turbulent heat flux equation.

Models for the Molecular Destruction

3
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Figure 2: Evaluated profile of function f.35. Sodium:
Ra = 12,000 (0),Ra = 24,000(0); airr Ra =
381,000 (x ), Ra = 630,000 (+).

One possibility to model the molecular destruction e;g is
(Hanjali¢, 1994):
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gig = fEi()——'; u;d (2)
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Here, k is the turbulent kinetic energy and e its dissipation
rate, and R is the ratio of thermal time scale 79 = 62/(2¢y)
to mechanical time scale 7 = k/e :
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Hanjali¢ (1994) suggests fe;o to be a function of the turbu-
lence Peclet number Pe, = k*/(ke), which should go to zero
at sufficiently high Pe. and takes the value of unity if Pe,
approaches zero. He emphazises that an adequate form of
this function remains to be specified.

From our direct simulation data, we calculate each quan-
tity in (2) and thus determine the values of function f.;s for
different Rayleigh and Prandtl numbers. In Fig. 2 we show
the evaluated vertical profiles of fe3s for the simulations with
sodium and air for two different Rayleigh numbers in each
case. For both simulations with air the value of f.3y in the
centre of the channel is about 1.2. Though the Rayleigh
numbers of both simulations differ by a factor of 1.6, feas
seems to be almost independent of Ra in this range of the
Rayleigh number. The increase of Ra only results in a shif
of the peaks of f.3p toward the walls. This behaviour is di-
rectly linked to the thicknesses of the thermal and viscous
boundary layers, which decrease as the Rayleigh number
increases. The dependence of f.3s from the Rayleigh and
Prandt] number is much more pronounced for the simula-
tions with sodium, see Fig. 2 again. We identify both, a
shift of the peaks of fe3s toward the walls and a general de-
crease of the value of fezs. We therefore expect for sodium
at much higher Rayleigh numbers than considered here that
a profile of f,35 may be found which is quite similar to the
one found for air: an almost constant value in the centre



Figure 3: Vertical profile of the value of function f,
(symbols as in Fig.2.)

of the channel and peaks in the boundary layers. For the
parameters considered here, however, the analyzed values of
fe3s do far exceed the expected range 0 < f.3p < 1.

Some turbulence models do not solve a separate transport
equation for €. Instead of this, a constant value for the
time scale ratio R is prescribed (typically R =~ 0.85) and
€y is calculated directly from (3). However, if we evaluate
feap from (2) assuming R = 0.85 =const., the values and
variations of f.3p become even larger. This result is not
surprising since it is well known that R is not a universal
constant, but strongly depends on the Prandlt number and
the turbulence level, see e.g. Wérner and Grétzbach (1994).

The results achieved up to now suggest that model (2) is
not able to describe the molecular destruction of turbulent
heat flux in fluids with very different Prandtl numbers in
an adequate form. Therefore it seems appropriate to extend
model (2) by a term that explicitly accounts for the influence
of Pr. Such a model is proposed by Shikazono and Kasagi
(1993):

1+ Pr € v (4)
2VPrVR k
Here, fo1 depends on the ratio of energy-dissipating range
timescale to energy-containing range timescale, and f.2 de-
pends on /R/Pr. Model (4) was mainly developed for
calculation of scalar transport in isotropic and sheared tur-
bulence. Nevertheless, it is worth to investigate its per-
formance for pure natural convection. We do not use the
formulations for the functions f.; and f.2 given in Shika-
zono and Kasagi (1993) but use our direct simulation data
to evaluate the product

€ = Csfslf52
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The vertical profiles of f3, are, for the four cases consid-
ered above, given in Fig. 3. Now, as the effect of Prandtl
number is included directly in model {4) and is no more hid-
den in f.;, as it is done in model (2), a clear improvement is
achieved: the value of f]5, in the centre of the layer is always

Figure 4: Vertical profile of Re;(0) and Pes(A) for air
(Ra = 630, 000)

Table 2: Local values of Re,, Pe;, and ff5, at z3 = 0.5

Pr Ra Re; | Pey fese
0.006 3,000 284.4 1.7 | 0.815
0.006 6,000 595.4 3.6 | 0.663
0.006 12,000 | 1,104.1 6.6 | 0.491
0.006 24,000 } 1,804.3 | 10.8 | 0.321
0.024 3,000 122.2 3.1 | 0.894
0.024 6,000 432.0 | 10.8 | 0.789
0.024 12,000 623.9 | 15.6 | 0.643
0.024 25,000 7473 | 18.7 | 0.593
0.024 50,000 974.7 | 24.4 | 0.424

0.71 | 381,000 107.1 | 76.1 | 0.809
0.71 | 630,000 128.3 | 91.1 | 0.774

less then unity, regardless of Pr. However, in the boundary
layers still sharp peaks are present and f3; reaches values
up to two.

We now investigate the dependence of fj35 on the turbu-
lence Reynolds and Peclet number. As k and ¢ are both
functions of the vertical coordinate, Re; and Pe: depend on
z3, too. For the simulation with air and Ra = 630,000 the
vertical profiles of both quantities show a constant plateau in
the centre of the channel and small peaks at the edges of the
boundary layers, whereas in the direct vicinity of the walls
Re; and Pe; approach zero, see Fig.4. For sodium, the pro-
files of Re; and Pe; are qualitatively similar to those found
for air, thus they are not shown here. However, because
the ratio Pe;/Re; equals the Prandtl number, Pe; and Re;
differ by about two orders of magnitude for liquid metals.
Because both, f3, and Pe, (or Re:, respectively) individu-
ally depend on z3, it is necessary to consider them as local
quantities in order to establish a relationship. Here, we se-
lect the values of fl30, Pe:, and Re; in channel midwidth,
ie. 23 = 0.5, as being representative. The corresponding
values are summarized in Table 2.

In Fig. 5, the local values of f35 are plotted against
the local turbulence Peclet number. For each fluid consid-
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Figure 5: f}3, plotted against Pe; for sodium (O), mer-
cury (o) and air (A)

ered, flso decreases as Pe; increases. This is reasonable, be-
cause with increasing Pe; (or Req, respectively) the molec-
ular terms in the turbulent heat flux equation become less
and less important. However, due to the great spreading of
the data in Fig. 5 it becomes evident that f35 does not ex-
clusively depend on Pe;. If we plot f!;, over Re; instead of
Pe., the spreading of the data is clearly reduced. However,
the correct scaling for fl3, is the sum of turbulence Reynolds
and Peclet number. This is demonstrated in Fig. 6, where
all data do almost fall together to one single curve. The
result that the sum Re: + Pe; is the suitable scaling for f};,
is not very surprising. Note that in the dimensional form
of the u;0-equation the factor (v + ) enters in €;5. Thus
both molecular processes, namely friction and conduction,
are responsible for generation of £;9. To account for both of
these molecular effects, Re; and Pe; need to be included in
a suitable formulation of f;,. This is of special importance
if model (4) is intended to be quite general, and thus may
be used with fluids which represent a broad range of Pr.
Inspecting Fig. 6, we propose that for natural convection

f:ia = exp (—Ceig (Re; + Pey)) (6)

may be a reasonable approximation for a variety of Rayleigh
and Prandtl numbers. Eq. (6) fits best to our direct simu-
lation data if a value Ce3o ~_0.0007 is used, see Fig. 6. In
Rayleigh-Bénard convection u10 and 128 are zero. There-
fore we can not evaluate Cr19 and C,9. Nevertheless, as a
first. approximation Ce19 &= Ce20 = Ce30 may be used.

Models for the Molecular Diffusion

For flows where Re; and Pe; are both high, the molec-
ular diffusion Djg ., is of some importance near walls, but
outside the boundary layers it is very small as compared
to the turbulent part Dis:. In turbulence models D;g ,, is
therefore often neglected. If it is modelled at all, usually
the following simple approach is adopted (e.g. Shikazono
and Kasagi, 1993):
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Figure 6: f5, plotted against (Pe; + Re;); symbols as in
Fig. 5, dashed line = Eq. (6) with C.3p = 0.0007

Note that in the dimensionless form used in this paper, v
and & correspond to 1/v/Gr and 1/(PrvGr), respectively.

Peeters and Henkes (1992) rewrite the molecular diffusion
term:

g ( a6 0 Ju; ) %u;0

D, m = = (j—— —_— ) =
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This derivation is not unique. In a similar way one can ob-
tain a decomposition with k as a leading term. However, for
our purposes where we are mainly interested in low Prandtl
number fluids, decomposition (8) is most suitable.

From (8) we see that for a fluid with Pr =1 Eq. (7) is an
exact, representation of D;p . However, in fluids where the
Prandtl number is far from unity, and thus v and x differ
considerably, a simple averaging of both molecular transport
coefficients seems not to be justified, as may be concluded
from our resulis obtained above.

As for such fluids adequate modelling of both, the molec-
ular destruction and molecular diffusion is essential, we pro-
pose a different approach for modelling the molecular terms
in the turbulent heat flux equation. Instead of approxi-
mating both terms by separate models, e.g. (4) and (7),
we suggest to take into account both molecular effects by
one single model. Using identity (8) we rewrite the sum of
molecular destruction and diffusion and get:

et Do L 8*u;0 2 du; 96
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The first term on the right hand side of (9) may be inter-
preted as the diffusive transport of ;8 caused by viscous



Figure 7: 23,1(D),S372(0),S3,3(A) for sodium, Ra =
24,000

forces only. Tt does not require any modelling and can be
added to the modelled u;0-equation in its original form. The
second term on the r.h.s of (9) represents twice the molecular
destruction of u;@ due to viscous forces. It may be modelled
by (4) and (6), where for calculation of function f;, in-
stead of the sum of turbulence Reynolds and Peclet number
2Re; should be used as argument. The third term on the
r.h.s of (9) finally may be interpreted as a representation of
the summarized effects in the u,0-equation due to thermal
conductivity. To authors knowledge, the term ;.3 has not
appeared in literature up to now. Thus, its modelling is a
task still to be done.

As a first step in this direction, we investigate the mag-
nitude of the three terms on the r.h.s. of (9) and evaluate
Y31, %32 and X3 3 from our direct simulation data. In Fig.
7 we give the results for sodium at Ra = 24,000. Obviously,
Y31 and Y32 are almost negligible as compared to X33.
This just reflects the fact that in liquid metals effects due to
thermal conductivity are very important, whereas those due
to viscous friction are not really relevant in the uaf-equation.
The analysis for the simulations with air (not shown here),
where v = &, yields the expected result that £3.1,%3,2 and
Y33 are of same magnitude and are all important.

CONCLUSIONS

In this paper we used results of direct numerical simu-
lations of turbulent Rayleigh-Bénard convection in sodium,
mercury and air at various Rayleigh numbers and performed
a detailed analysis of the molecular terms in the turbulent
heat flux equation.

The analyzed budget of u30 indicated that due to the
anisotropic character of buoyant flows the molecular de-
struction €34 is not zero in natural convection, but is an
important sink of u38, at least for low Reynolds or Peclet
number flows. For low Prandtl number fluids redistribution
of u38 by molecular diffusion D3, is important, too. Thus,
for computation of natural convection adequate modelling
of both molecular terms is essential.

From the analysis of conventional models for €,s two major
conclusions can be drawn. First, with respect to the general-
ity of a £,9-model inclusion of a term is needed which explic-

itly accounts for the influence of Prandlt number. Here, the
model proposed by Shikazono and Kasagi (1993) is found to
perform quite well. Second, to account for the effect of the
turbulence level a model function f[;, is required. From our
results we conclude that this function should be based on
the sum of turbulence Reynolds and Peclet numbers. For
horizontal fluid layers, an exponential relationsship is pro-
posed, see Eq. (6).

For Liquid metals we suggested another approach for clo-
sure of the molecular destruction and diffusion in the turbu-
lent heat flux equation. It is demonstrated that the effect of
both physical processes may be modelled by approximating
just one term, namely ¥;3 in Eq. (9). However, a model
for this term has still to be developed and the feasibility of
the present proposal needs to be demonstrated. Finally, we
remark that the common modelling of €, and D,y ,, may
also be reasonable for high Prandtl number fluids. In this
case an expression equivalent to Eq. (9) can be obtained if
in rewriting the sum of €, and D,s . an identity is used,
where & is the leading term in Eq. (8).
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