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Direct numerical simulation data for turbulent Rayleigh-Bénard convection in air and
sodium are used to perform an analysis of the transport equation of temperature variance
dissipation rate e7. The budget of e reveals that at higher turbulence levels the dominant
terms are the generation and destruction due to fine scale turbulence interaction. The
turbulent diffusion is small but not zero. Therefore, the generation and destruction terms
are only approximately in local equilibrium. Our analysis shows that the model commonly
used for closure of generation/destruction of ez performs reasonably well, while those for
turbulent diffusion based on simple gradient assumptions have strong deficiencies.

1. INTRODUCTION

In the past few years great efforts have been devoted to the development of statistical
turbulence models which can accurately predict the heat transfer in turbulent buoyant
flows for rather universal situations. A recent discussion of the limitations and achieve-
ments in modelling and computation of buoyant turbulent flows and heat transfer is
presented by Hanjali¢ [1]. One of his major conclusions is that adequate definition of the
turbulent heat flux vector requires the use of both the mechanical and thermal turbulence
time scales. Since for most situations the ratio R of these two scales varies apprecia-
bly across the flow (see e.g. [2]), Hanjalié¢ recommends that the thermal time scale be
determined by solution of transport equations for the temperature variance 7" and its
dissipation rate er. However, he emphasizes that the modelled er-equation has to undergo
a detailed scrutiny before a standard form for buoyant flows is established.

In the present paper we use results of direct numerical simulations of turbulent convec-
tion to perform a detailed analysis of the transport equation for er. By computing each
term in the exact equation we evaluate the budget of er and discuss the relative impor-
tance of the different terms. In addition, we analyse some models which are commonly
used for closure of the ep-equation. Thus, the scope of the present contribution is to pro-
vide reliable data for the er-equation, to improve the general understanding of different
terms in this equation, to point out some deficiencies of current turbulence models, and to
suggest some possible improvements. Although we consider a rather simple geometrical
and physical application, i.e. the Rayleigh-Bénard convection, and modest turbulence lev-
cls we believe that our results are of fundamental interest for the development of reliable
and more universal models.



Table 1
Parameter and grid data of simulations
Pr Ra Bo Gr X1’2 N],,g N3 AIL‘LQ Afb‘g)u/a‘“
0.71 630,000 447,300 887,324 7.92 200 49 0.0396  0.005
0.006 24,000 144 4,000,000 8.0 250 49 0.032 0.005

2. PHYSICAL AND NUMERICAL MODEL

2.1. Rayleigh-Bénard convection

This is a process of natural convection developed in a large horizontal fluid layer, which
is bounded by rigid walls at top and bottom and is heated from below. The Rayleigh-
Bénard convection is characterized by the Prandtl number Pr = v/k (where v = kinematic
viscosity, & = thermal conductivity) and the Rayleigh number Ra = gB8ATwD?/(vk)
(where g = gravity , # = thermal expansion coefficient, ATy temperature difference
between the walls, D = channel height). From Ra and Pr two further dimensionless
numbers can be defined: the Grashof number Gr = Ra/Pr and the Boussinesq number
Bo = Ra.- Pr.

In this paper we discuss results of two simulations. In the first one, the fluid is air
with Pr = 0.71 and Ra = 630,000, while in the second simulation the fluid is liquid
sodium with Pr = 0.006 and Ra = 24,000. Thus, the Prandtl number, Rayleigh number
and Boussinesq number of both simulations are quite different, see Table 1. However, the -
Grashof number is of magnitude 10° in both cases. Physically, the high values of Gr mean
that the velocity field in both simulations is clearly turbulent. In air, where Bo =~ 4 - 10°
the temperature field is highly irregular too. In liquid sodium, the very low value of the
Boussinesq number Bo = 144 indicates that the temperature field is governed by the high
thermal conductivity and thus is predominantly regular.

2.2. Computer code TURBIT

The direct numerical simulations of turbulent Rayleigh-Bénard convection are per-
formed with the TURBIT code [3]. It is based on a finite volume method and solves
the full three-dimensional, time dependent conservation equations of mass, momentum
and energy in dimensionless form. For normalisation the channel height D, the velocity
V9BATwD, and the temperature difference ATy are used. Incorporating the Boussinesq
approximation, the governing equations may be summarized for a Cartesian coordinate
system as follows:
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Here, the summation convention applies and z; and zp correspond to the horizontal
directions and z3 to the vertical direction. For spatial disretization, a staggered grid



and central finite differences are used. Time integration of the momentum equation is
performed by the explicit Fuler-Leapfrog scheme, involving the projection method of
Chorin to fullfil the conservation of mass. For time advancement of the energy equation,
the semi-implicit Leapfrog-Crank-Nicolson scheme is used.

To simulate the semi-infinite fluid layer of the Rayleigh-Bénard convection, periodic
boundary conditions are used in both horizontal directions. The corresponding lengths of
the channel are chosen to be X o & 8D and thus they should be large enough to cover even
the largest macroscopic scale of the convective layer. At the lower and upper walls, i.e.
x5 = 0 and z3 = 1 respectively, the no slip condition and constant wall temperatures are
specified. The numbers of mesh cells NV; used in the equidistantly discretized horizontal
and non-equidistantly discretized vertical directions are given in Table 1. The resulting
mesh widths Az; are small enough to resolve the smallest scale of turbulence, while
Az wan is sufficient to resolve the boundary layers near the walls.

The simulations with the mesh parameters listed in Table 1 are the last of a series of
simulations. Starting from the final data of a simulation with the same Pr but smaller
Ra, the results are interpolated to a finer grid and advanced in time. After the flow is
fully developed, another interpolation to an even finer grid and additional integration in
time is performed until finally a mesh is reached which meets the requirements of a direct
numerical simulation. The procedure described drastically reduces the computation time
needed to perform the simulations. For a detailed verification of the numerical results by
experimental data we refer to [4].

3. RESULTS FOR THE e7r-EQUATION

3.1. Analysing procedure

In a statistical sense, in turbulent Rayleigh-Bénard convection the physical conditions
are homogeneous with respect to the horizontal dimensions. Thus, for evaluation of
statistical quantities, averaging is performed over horizontal planes. The resulting vertical
profiles f(z3) are averaged over time, where only data within the fully developed flow
regime are used. As a consequence of this averaging procedure, the mean vertical velocity
T3 is zero and derivatives of statistical quantities with respect to z; and x do vanish.

3.2. Temperature variance dissipation rate

Engineering computational methods solve statistically averaged transport equations,
closed by turbulence models, which describe turbulent flow and heat transfer. In buoy-
ant flows, the need arises to determine the temperature variance T to account for the
production/destruction of turbulent heat fluxes by buoyancy forces. Usually, the quan-
tity 772 /2 is calculated from its own transport equation. In a recent paper, we used our
direct simulation data and performed an analysis of this transport equation [2]. The sink
term in the T72/2-equation is the temperature variance dissipation rate er. With the
normalisation used here, it is defined as

1 T ar "
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In Figure 1 we show the evaluated vertical profiles of 7 for the simulation with air and
sodium. In both cases er is maximum near the walls. In sodium, the variations of e7 over




the channel height are relatively small. In air the value of e7 is low in the centre of the
channel, while there are sharp peaks near the walls. These differences in the profiles of
er in both cases can be related directly to the different characteristics of the temperature
fields. In sodium, the profile of T' is nearly linear and the thermal boundary layers extend
almost over the whole channel crossection. For air, a mean temperature profile is found
which shows thin boundary layers and an isothermal core, see Figure 2. In the isothermal
core region the amplitude of temperature fluctuations and the gradient 07"/dz3, which
appears in definition 4, may be expected to be reduced as compared to the boundary
layers, where strong gradients of the mean temperature do exist.
A simple model often used to determine er is [5]

1 T7%2
RS Rk
where k is the turbulent kinetic energy and € is its dissipation rate. In this model, the ratio
of mechanical and thermal turbulence time scale R is assumed to be constant. However,
for most situations this is a crude approximation, because R depends on Prandtl number
and turbulence level, see e.g. [2] and [6]. A more general concept is to determine e by
solution of a seperate transport equation.
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Figure 1. Profiles of e7: air(0), sodium(A). Figure 2. Profiles of T air(0), sodium(A).

3.3. Transport equation for er
For Rayleigh-Bénard convection the exact transport equation (see e.g. [6]) for the
dimensionless temperature variance dissipation rate er reduces to:
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Here, P, P2, and P2, arc generation terms due to the mean temperature and mean

velocity field, and P2 and 7., are the generation and destruction due to fine scale tur-
bulence interaction. The diffusive transport of e consists of a turbulent and a molecular
contribution, i.e. D.,. = D,y i + Deym. The net contribution of D,,. to the budget of e

is zero, since it only acts as a redistribution term.

3.4. Budget of er

From our direct numerical simulation data, we calculate each term on the right-hand
side of equation 6 and evaluate the budget of er. Figure 3 shows the results for the
simulation with air, where P.,. represents the sum of the four generation terms. Different
axes of ordinates are used for the lower and upper parts of the channel to yield a better
resolution of the various (symmetric) curves. Outside the thermal boundary layers, the
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Figure 3. Budget of ep for air: P,,. (0), 7., Figure 4. Budget of e7 for sodium: P, (O),
(+), D.,. (O), balance difference (- - -). Yeq (+), Dep (A), balance difference (- - -).

evaluated balance difference (which corresponds to the rate of change of er but also
incorporates inaccuracies due to numerical computation of the different balance terms) is
very small. In this region, the diffusive transport of er appears as a source term, taking
about half the value of P,,. Thus, we get the result that the generation and destruction
terms are approximately in local equilibrium. Inside the boundary layers, I, and 7.,
show sharp peaks. Since these peaks occur at somewhat different distances from the
walls, the diffusive transport is very important in these regions in balancing the difference
between P, and ., by redistribution of er towards the centre of the channel.

The budget of e for the simulation with sodium is clearly different from that in air,
see Figure 4. As the thermal boundary layers extend almost over the whole channel, the
profiles of P.,. and ., are rather uniform and do not show sharp peaks. The diffusion
term D,,. redistributes e from the regions near walls toward the inner part of the layer,
like in the simulation with air.

Figure 5 shows results for the four generation terms for the simulation with air. In the
centre of the channel the only important generation term is due to fine scale turbulence
interaction P . This result is consistent with the arguments of Launder [6] that at high



Reynolds numbers (i.e. here at high Bo and Gr) the mean-field generation terms are
negligible. At the edges of the thermal boundary layers, however, the mean temperature
exhibits strong gradients and thus the mean-field generation terms P, and P2, become
important. Of special interest is the term P2 which shows a rather unusual behaviour.
Positive values occur at the edges of the thermal boundary layers, indicating generation
of e7. However, as the wall is approached PEZT changes sign. Thus, in the direct vicinity
of the walls PEZT acts as a sink term. In turbulent Rayleigh-Bénard convection mean

velocities 7; are zero and thus the term P2 is zero, too.
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Figure 5. Profiles of P (0), P2 (o), P3.(A)  Figure 6. Profiles of P! (3), P2.(0), P2,.(A)

er

and P2 (++) for air. and P! (+) for sodium.

The generation terms in sodium are quite different as compared to air, see Figure 6.
Because of the low value of Bo, the most important production term is not that due
to fine scale turbulence interaction (i.e. P! ) but is due to the generation by the mean
temperature field, i.e. term P! . The term P2, is now a sink term in the whole layer and
does not change sign. As in the simulation with air, P2 is zero.

For the simulation with air, the diffusion term D,,. ,, is zero in the centre of the layer
while D.,.; takes a finite value, see Figure 7. Near the walls, where sharp gradients of er
exist, De,., is one of the dominant terms in the budget of er. For sodium, the diffusive
transport of er is dominated in the whole layer by the molecular contribution, see Figure
8. It is interesting to note that in sodium the molecular and turbulent parts of diffusion
act in opposite directions.

4. ANALYSIS OF MODEL ASSUMPTIONS

To close the er-equation following terms need to be modelled: the turbulent diffusion
Dey 4, the generation terms P, P2, P2, P. and the destruction term 7.,.. In this section
we use our direct simulation data to analyse some model assumptions for these terms which

are commonly used in the literature.
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4.1. Models for generation and destruction terms of er

Usually, the generation and destruction terms due to fine scale turbulent interaction
are modelled together with the mean-field generation terms P! and P2 by the following
ansalz [7]:
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Here, in the production terms M; and M, the term Pr is the production of temperature
variance and P is the strain production of turbulent kinetic energy:
oT

N ot;
Pr=—-uT" - — P, = =l - —
) J 8’1’7 ’ £ 8’57

(8)

In the following, we restrict our attention to the regions outside the boundary layers. Thus
we put the wall functions for simplicity to fp1 = fre = fp1 = fp2 = 1.0 and take the
following standard values for the coefficients: Cpy = 1.8, Cpy = 0.72, Cp1 = 2.2, Cpy =
0.8 [7]. The results of the evaluated model terms My, M, M3, and My are shown in Figure
9 for the simulation with air and in Figure 10 for sodium. Since the mean velocities are
zero in Rayleigh-Bénard convection, the evaluated model term M; is zero too. In air,
in addition, term M; vanishes in the isothermal region of the layer. In sodium, where
0T /0x3 is finite everywhere, the profile of M, shows a plateau. As the sink terms M3
and M, are concerned, we identify for both fluids M3 as the dominant one in the model
of equation 7.

Tn Figures 11 and 12 we show results for the left-hand and right-hand side of equation
7, where each side is evaluated seperately from our direct simulation data. By this, we
investigate how well the model of equation 7 performs for both cases under consideration.
As was shown in Figure 3, in air the production and destruction terms are not exactly
in local equilibrium. Thus, the evaluated left-hand side of equation 7 is negative in the
centre of the layer, see Figure 11. This corresponds to a loss of e which is balanced by



Figure 9. Profiles of M;(0), My(o), M3(A) Figure 10. Profiles of M;(0), Ma(o), M3(A)
and My(+) for air. and M,(+) for sodium.

turbulent diffusion (compare with Figure 7). The profile for the sum of the four terms
on the right-hand side of equation 7 shows that the model also does not exactly predict
local equilibrium. However, the predicted loss of 7 is much smaller than the actual loss.
For sodium a similar conclusion holds for the centre of the layer, see Figure 12.

Z3

Figure 11. Left-hand side (O) and right- Figure 12. Left-hand side (O) and right-
hand side (A) of equation 7 for air. hand side (A) of equation 7 for sodium.

For the mean-field generation term PET in equation 6 usually a seperate model is

adopted, see e.g. [7]. In the present paper we do not analyse corresponding models but
conclude from the results discussed in section 3.4 that in the boundary layers adequate

modelling of term P2, is of great importance.



4.2. Models for turbulent diffusion of ep
The unknown correlation appearing in the turbulent part of the diffusion D.,. is often

modelled by the simple gradient hypothesis [8]
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Sometimes, the tensorial exchange coefficient kuluj/e in equation 9 is replaced by the
scalar form k?%/e, resulting in:
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Figure 13. Tvaluated profile of ef-uj for air.  Figure 14. Profile of e7ujy predicted by
model 10 (O) and model 11 (A).

In the following, we compare the correlation efu} predicted by models 9 and 10 with the
profile of efuj}, evaluated from our direct simulation data. For the coeflicients we use
the values Cs = 0.22 and Cpp = 0.03, respectively. Here, we restrict our discussion to
the simulation with air. From a qualitative point of view, the profile of efu} predicted
by model 9 (Figure 14) compares quite well with the exact curve (Figure 13). However,
quantitatively the diffusion predicted by both models is about 3 orders of magnitude
too low. This strong underestimate of turbulent diffusive transport by models 9 and 10
may be of some importance for the simulation considered here where the diffusion term
is relatively important. As has been shown in section 3.4, in the centre of the layer it
assumes a value of D,,. =~ P,,./2. At much higher values of Gr and Bo, however, the
importance of turbulent diffusion will decrease and the generation/destruction terms may
approach really a state of local equilibrium. Nevertheless, the present analysis indicates
that simple gradient models are not adequate for physical situations where gradients of
statistical quantities are almost zero (i.e here der/0x3).



5. CONCLUSIONS

In this paper we used results of direct numerical simulations of turbulent Rayleigh-
Bénard convection in air (Ra = 630,000) and sodium (Ra = 24,000) and performed a
detailed analysis of the transport equation of temperature variance dissipation rate er.

The analysed budget of e7 showed that in the simulation with air, where the convec-
tion is clearly turbulent, the dominant terms are the generation and destruction due to
fine scale turbulence interaction. In this case the mean-field generation terms are only
of importance in the boundary layers, where strong gradients of mean temperature ex-
ist. At the turbulence level considered, the turbulent diffusive transport of er is still
of some importance and the generation/destruction terms are only approximately in lo-
cal equilibrium. In sodium, where the velocity field is turbulent while the temperature
field is governed by thermal diffusion, the production of e7 is mainly due to mean-field
generation, not due to fine scale turbulence interaction.

The numerical results are used to scrutinize models commonly used in literature for
closure of the ep-equation. Focusing our attention to regions far from walls, the model
for the generation/destruction terms in the er-equation is found to perform reasonably
well. However, the model predicts a state which is much closer to local equilibrium than
it is found in the direct simulation. In modelling the turbulent diflfusion of e7, simple
gradient models are found to be inadequate. As in most parts of the channel the spatial
gradient of e is about zero such models strongly underestimate the diffusive transport.
This failure of gradient diffusion models may not be of special relevance at much higher
turbulence levels than considered here, where for the generation and destruction terms a
state of local equilibrium may really be expected to exist. Nevertheless, there is a strong
need for a reliable diffusion model which is not based on a gradient assumption.
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