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Abstract — Direct numerical simulation data of two types of turbulent natural convection in horizontal

fluid layers are used to compute turbulent diffusive transport terms for turbulence kinetic energy and

vertical turbulent heat flux. For both quantities turbulent diffusive transport is represented by a pressure

correlation and a triple correlation. While for Rayleigh-Bénard convection in air the pressure correlation

dominates the triple correlation, for the convection in an internally heated layer the opposite behaviour

is observed. The dominance of pressure transport in the Rayleigh-Bénard convection and its minor

importance in the internally heated layer is explained by the coherent structures and dynamics of the

respective flow. The coherent structures are intermittent and exist only for short time intervals. Thus,

conventional closure relations for turbulent diffusive transport, which are used in statistical turbulence

models based on long-time averaged quantities, may not be appropriate for the flows under consideration.

1. Introduction

To calculate turbulent flow and heat transfer, in second-order statistical turbulence models

balance equations are solved for characteristic turbulent quantities such as the turbulence kinetic

energy, its dissipation rate, the Reynolds stresses, the turbulent heat fluxes, and temperature

variance. The balance equations actually solved are derived from analytical equations by

introducing simplifications and model assumptions. In each analytical balance equation, terms

can be classified in the categories: (1) rate of change, (2) convective transport, (3) production

P , (4) sink S, and (5) diffusive transport D.

In fully developed natural convection where no mean flow through the channel is present,

e.g. in the classical Rayleigh-Bénard convection in the fully turbulent regime, terms (1) and (2)

drop out when averages are taken over long times. The balance equation for a general turbulent

quantity � then simplifies to

P

�

+ S

�

+D

�

= 0: (1)

In a state of local equilibrium, the local production and sink of a quantity � are in balance, thus

P

�

= S

�

and D

�

= 0. However, in many situations � is mainly produced in the center of the

flow domain, while the sink term is maximum near walls. Thus, there is no local equilibrium

and the diffusive transport is important, as it redistributes � across the flow domain. In such

situations, accurate modelling of the turbulent part of diffusive transport D
�;turb

is of special

significance.

In this paper, we focus our attention on the balance equations for turbulence kinetic energy
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variables (see section 2), the turbulent diffusive transport is represented by the correlations
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Thus, velocity and pressure fluctuations contribute to D
k;turb

and velocity, pressure and temper-

ature fluctuations to D

q

i

;turb

.

Modelling the pressure transport is particularly difficult, because pressure fluctuations within

a turbulent flow are one of the Great “Unmeasurables” [1]. Lumley [2] suggested to account for

the pressure transport of k by
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Mansour et al. [3] use direct numerical simulation (DNS) data of forced turbulent channel flow to

compute budgets for Reynolds stresses u0

i

u

0

j

. Besides the region very close to the wall, they find

the diffusive transport due to pressure-velocity correlations indeed being smaller than that due to

triple velocity correlations. Wörner and Grötzbach [4] [5] performed a series of direct numerical

simulations of Rayleigh-Bénard convection in various fluids. From their results it appears that

in this special type of convection not the triple correlation but the pressure correlation is the

dominant term, both in equations 2 and 3. However, no physical explanation for this surprising

result is given by the authors.

The objective of the present paper is twofold. First, we investigate whether the special

relevance of diffusive transport by pressure fluctuations is a general feature of natural convection

in horizontal fluid layers or not. Besides the Rayleigh-Bénard convection, we therefore analyse

direct numerical simulations of another type of pure natural convection, this is the convection

in an horizontal fluid layer which is internally heated by a volumetric heat source. As will be

shown, the relative importance of pressure diffusion as compared to the triple correlation in this

type of convection is much smaller than in the Rayleigh-Bénard case. The second objective is

therefore to give a physical interpretation for the dominance of pressure correlations in turbulent

diffusive transport in Rayleigh-Bénard convection.

2. DNS of Internally Heated Convection

2.1. Formulation of problem

The natural convection in a horizontal fluid layer of height D which is internally heated by a

homogeneously distributed volumetric heat source q
v

is of interest in several geophysical and

technical systems. An example is reactor safety analysis in case of a hypothetical core melt

down, see e.g. [6] [7] for a literature survey.

The important dimensionless groups which characterise the physical problem are the internal

Rayleigh number Ra
I

= g�q

v

D

5
=(���) and the Prandtl number Pr = �=�, where g = gravity,

� = thermal expansion coefficient, � = kinematic viscosity, � = thermal diffusivity, and � =

thermal conductivity. In the present study, the fluid Prandtl number is Pr = 7 and the internal

Rayleigh number ranges between 5 � 105
� Ra

I

� 109.

Another important dimensionless number is the Damköhler number Da = q

v

D

2
=(�∆T

max

),

where ∆T
max

is the maximum temperature difference across the channel. As ∆T
max

is not

known a priori for a given q

v

, the same holds for Da. For fully developed convection, where

q

v

is completely removed across top and bottom wall, it follows by an energy balance that

Da equals the sum of the Nusselt numbers, i.e. Da = Nu

top

+ Nu

bottom

. Other dependent

dimensionless numbers are the Grashof numberGr = Ra

I

=(Pr �Da) and the external Rayleigh

number Ra
E

= Ra

I

=Da.

2.2. Numerical model

The direct numerical simulations are performed with the TURBIT code [8]. It is based on a

finite volume method and solves the complete time-dependent three-dimensional conservation
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Table 1: Parameter and grid data of the simulations: ∆x1;2 = horizontal mesh widths (equidistant

spacing), ∆x3 = vertical mesh widths (non-equidistant spacing, W=wall), N1;2;3 = number of

mesh cells.

Pr Ra

I

X1;2 ∆x1;2 ∆x3W;bottom

∆x3;max

∆x3W;top

N1 N2 N3

105 6 0.1000 0.0370 0.069 0.0320 60 60 21

5 � 105 6 0.0750 0.0250 0.064 0.0190 80 80 27

106 5 0.0625 0.0231 0.054 0.0161 80 80 31

7 5 � 106 5 0.0500 0.0228 0.049 0.0115 100 100 35

107 5 0.0417 0.0180 0.036 0.0092 128 128 39

108 4 0.0250 0.0120 0.026 0.0057 160 160 55

109 3 0.0150 0.0061 0.019 0.0024 200 200 80

Ra

E

0.71 630; 000 7.92 0.0396 0.0050 0.037 0.0050 200 200 49

equations of mass, momentum, and energy. The Boussinesq aproximation is employed, and

the equations are solved in dimensionless form. For normalisation the channel height D, the

velocity u0 =

p

g�∆T0D, the pressure �u

2
0, and temperature difference ∆T0 are used. The

latter is related to a guess for the Damköhler number Da0 = q

v

D

2
=(�∆T0), which needs to be

specified at the begin of a simulation. Using the summation convention, the governing equations

are given for a Cartesian coodinate system by:
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The boundary conditions used are rigid upper and lower horizontal walls at x3 = 0 and x3 = 1,

respectively. For the simulations of the internally heated layer, both walls are isothermal and

have equal temperature. In the horizontal directions x1;2 periodic boundary conditions with

periodicity lengths X1;2 are applied. From an experimental point of view, this corresponds to

the convection occuring in a container with large aspect-ratio.

Equations (5 - 7) are also valid for the Rayleigh-Bénard case. Since there is no heat generation

in the fluid, q
v

and Da0 are zero. The temperature difference ∆T0 is that one between heated

lower and cooled upper isothermal wall: ∆T0 = ∆T
max

= T

Wall;bottom

� T

Wall;top

.

In Table 1 we give the parameters and grid data of the simulations for the internally heated

convection and for a recently refined simulation of Rayleigh-Bénard convection in air (Pr =

0:71; Ra
E

= 630; 000) [9]. We carefully ensured that the grids resolve the largest scales of

convection and the smallest scales of turbulence and thus meet these indispensible requirements

of the DNS method.

2.3. Verification

To verify the numerical results for the internally heated convection, the computed Nusselt

numbers at top and bottom wall are compared with the experimental correlations of Jahn [10]
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Figure 1: Comparison of computed Nusselt numbers at top and bottom wall with experimental

correlations for internally heated convection.

and Kulacki & Goldstein [11], see Figure 1. Besides the simulation with Ra

I

= 109, where

the Nusselt number at the lower wall in the computation is little too high as compared to the

correlation of Jahn [10], a very good agreement is achieved for the total heat transfer. For a

more detailed verification of the simulations with Ra

I

= 106 and Ra

I

= 107 we refer to [12].

There, we also discuss the patterns and dynamics of the convection, whereas the present paper

is limited to the analysis of turbulent diffusive transport of k and u

0

3T
0.

3. Results forD
k;turb

andD
q3;turb

3.1. Case selection

For analysis of turbulent diffusive transport of k and u

0

3T
0 we focus for the internally heated

layer on the simulation with Ra

I

= 108. The Grashof number is about 407,000 and thus is

comparable to the Rayleigh-Bénard case, where Gr � 887; 000. The Grashof number is the

relevant dimensionless number in the momentum equation (6). As Gr is of similar magnitude in

both simulations, the turbulence level and thus velocity and pressure fields should be comparable,

too. In the dimensionless energy equation (7), the relevant parameter is the Boussinesq number

Bo = Pr

2
�Gr. In the simulation with Ra

I

= 108 the value is Bo � 2 � 107. This is about 50

times higher than in the Rayleigh-Bénard case, where Bo � 447; 000. Thus, for the statistics

of the temperature fields in both simulations we can not expect similarity.

3.2. Evaluation of statistical data

Statistical quantities are evaluated from the DNS data by ensemble averaging over horizontal

planes and additional time averaging. This procedure results in vertical profiles of averaged
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Figure 2: Vertical profile of mean temperature hT i. 2: Internally heated convection (Pr =

7; Ra
I

= 108), �: Rayleigh-Bénard convection (Pr = 0:71; Ra
E

= 630; 000).

quantities and is indicated by angled brackets, whereas the overbar denotes the conventional time

averaging. Fluctuations with respect to hΦi are denoted by Φ
00, and fluctuations with respect

to Φ by Φ
0. For the geometries and boundary conditions used in the present DNS, statistical

data are homogeneous with respect to the horizontal directions. Therefore, for fully developed

turbulent flow both types of averages should be equivalent.

In Figure 2 we show evaluated profiles of mean temperature hT i. The core region is almost

isothermal, both, for the internally heated convection and for the Rayleigh-Bénard convection.

In the Rayleigh-Bénard convection, both boundary layers near top and bottom wall are stratified

thermally unstable. For the internally heated layer, there is a thin thermally unstable stratified

boundary layer near the top wall and a thicker stably stratified one near the bottom wall.

3.3. Internally heated fluid layer

In Figure 3 we show vertical profiles of the correlations hu00

3u
00

i

u

00

i

i=2 and hu

00

3p
00

i, which cause

according to equation (2) diffusive transport of k in vertical direction. With exception of

the regions near bottom and top wall, the absolute value of the triple correlation of velocity

fluctuations exceeds that of the pressure correlation. The same holds for the absolute values of

the vertical gradient of both correlations.

Figure 4 gives profiles of correlations hT 00

p

00

i and hu

00

3u
00

3T
00

i, which contribute to turbulent

diffusive transport of vertical turbulent heat flux. In natural convection, fluctuations of temper-

ature and vertical velocity are closely related, since the first ones induce buoyancy forces which

drive the vertical motion. Thus, one should expect that the profiles of triple correlation and

pressure correlation, respectively, in Figures 3 and 4 are similar. While this is partly true from

a qualitative point of view, substantial differences are identified, too. Figure 4 shows that in the

centre of the layer hT 00

p

00

i is almost zero, whereas the triple correlation obeys an almost constant

spatial gradient. Thus, in the centre of the layer diffusive tranport of u0

3T
0 is only due to the

triple correlation. At the edges of the thermal boundary layers hT 00

p

00

i shows peaks. Especially

the one close to the upper wall is very sharp, indicating considerable pressure transport.

A comparison of the correlations given in Figures 3 and 4 for Ra
I

= 108 with those obtained

for Ra
I

= 109 shows no major influence of the increase of the internal Rayleigh number. In
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accordance with the thinner boundary layers, for Ra
I

= 109 only a sharpening and shift of the

peaks in the profile of hT 00

p

00

i towards the walls is observed.

3.4. Rayleigh-Bénard convection in air

As discussed in the introduction, from results of DNS of Rayleigh-Bénard convection in air and

sodium at different Rayleigh numbers it is found that the pressure correlation represents the

dominant turbulent transport term [4] [5]. See e.g. Figure 5, where profiles of hu00

3u
00

i

u

00

i

i=2 and

hu

00

3p
00

i are given for Rayleigh-Bénard convection in air. Furthermore, a remarkable similarity

between both pressure correlations and both triple correlations in equations (2) and (3) is found.

Compare hu00

3p
00

i in Figure 5 with hT 00

p

00

i in Figure 6, and hu00

3u
00

i

u

00

i

i=2 in Figure 5 with hu00

3u
00

3T
00

i

in Figure 6, respectively. For the triple correlations the similarity is striking, while the peaks in

the profile of hT 00

p

00

i are more pronounced than in that of hu00

3p
00

i.

Thus, we find that in the Rayleigh-Bénard convection the turbulent diffusive transport of k

and u

0

3T
0 is mainly due to pressure transport, whereas in the internally heated convection the
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pressure transport is only of minor importance and the triple correlations in equations (2) and

(3) represent the dominant terms. This result is quite surprising, since both physical problems

under investigation are pure natural convection flows, taking place in the same geometrical

configuration, and having quite similar boundary conditions. Therefore, in the next section

we try to illuminate this phenomenon by analysing the transport mechanisms occuring in both

convection layers.

4. Mechanisms of Pressure Transport

4.1. Rayleigh-Bénard convection in air

To illustrate the mechanism of heat transfer and the dynamics of Rayleigh-Bénard convection in

air (see also [13]), we show the instantaneous isosurface for a dimensionless temperature value

of T = 0:7 (bottom wall: T = 1, upper wall: T = 0), see Figure 7. The color code is for

vertical velocity (red: upward flow, green: u3 � 0, blue: downward flow). Hot fluid rises in

plumes from the heated lower to the cooled upper wall. Near the lower wall the upward velocity
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Figure 7: Rayleigh-Bénard convection in air (Ra
E

= 630; 000). Isosurface for instantaneous

temperature T = 0:7 and color code for vertical velocity u3.

Figure 8: Rayleigh-Bénard convection in air (Ra
E

= 630; 000). Instantaneous local values of

u

00

3p
00 in plane x3 = 0:852.
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of a rising hot plume is initially low. In the core region, it is accelerated by buoyancy forces and

eventually penetrates the boundary layer at the upper wall with high kinetic energy. As Figure

7 shows, the plumes are concentrated in a few regions. In the boundary layer, these regions

are connected by thin spoke patterns of slower upward movement. The dynamics of the flow

involves two time scales. The generation and rise of plumes and the horizontal translation of

spokes are fast processes, while a horizontal translation of the areas with concentrated plumes

occurs only on a much larger timescale.

In Figure 8 we give a visualisation of the local value of correlation u00

3p
00 in plane x3 = 0:852.

From comparison of Figures 7 and 8 we find that near the top wall high positive values of u00

3p
00

occur at locations where hot plumes rise and penetrate the boundary layer at the upper wall. At

such a location, the local values of u00

3 and T

00 are positive. Since the vertical velocity of the

rising plume is retarded as it approaches the upper wall, the local pressure increases, i.e. p00

> 0.

Thus, the correlations u00

3p
00 and T

00

p

00 take locally high positive values. Averaging of u00

3p
00 over

the horizontal plane results in hu00

3p
00

i > 0 and also hT 00

p

00

i > 0 in the upper half of the channel

(see Figures 5 and 6). For the lower half of the channel, where cold plumes released from the

top wall penetrate the boundary layer at the lower wall, the argumentation leading to hu00

3p
00

i < 0

and hT 00

p

00

i < 0 is equivalent.

4.2. Internally heated convection

The dynamics of convection in an internally heated fluid layer is as well similar to that in

Rayleigh-Bénard convection as it is different, too. Similar, because in both configurations there

is an unstable thermal stratification at the top wall. This causes the Rayleigh-Taylor instability to

generate cold plumes which leave the upper wall. In the Rayleigh-Bénard case, these downward

falling plumes hit the boundary layer at the lower wall, which is stratified thermally unstable,

too. In contrast, in the internally heated convection the thermal stratification of the quite thick

boundary layer at the lower wall is stable (see Figure 2). The fluid in the lower part of the channel

is therefore almost motionless. In the core region, cold plumes released from the top wall warm

up. As they approach the boundary layer at the lower wall, there temperature is higher than

that of the surrounding fluid. Thus, the orientation of buoyancy force is no longer downward,

but has switched to upward direction. Since now buoyant and viscous forces counteract the

downward directed inertial one, the falling plumes are slowed down smoothly. They penetrate

the boundary layer at the lower wall with much less kinetic energy than it is the case in the

Rayleigh-Bénard configuration. In the core and in the lower part of the internally heated layer,

therefore correlations involving flucuations of pressure are low. Since there are no plumes which

rise from the bottom wall, one should expect that this also holds for the region close to the upper

wall. Figure 4 however shows, that hT 00

p

00

i > 0 takes a high positive value in the quite thin

thermal boundary layer at the upper wall. A visualisation of local instantaneous correlation

T

00

p

00 (similar to that in Figure 8 but not shown here) indicates that this result is due to sheets

of cold (i.e. T 00

< 0) downward falling accelerated fluid (i.e. p00

< 0). Neighbouring vertical

sheets are connected. In a visualisation of T 00

p

00 in a horizontal plane close to the upper wall,

this yields the well known characteristic network of irregular cells [8].

5. Conclusion

Direct numerical simulation data of Rayleigh-Bénard convection in air (Pr = 0:71; Ra
E

=

630; 000) and of internally heated convection (Pr = 7; Ra
I

= 108) are used to investigate

turbulent diffusive transport of turbulence kinetic energy and vertical turbulent heat flux. The

results show that the dominance of pressure fluctuations in turbulent diffusive transport of k
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and u

0

3T
0, found in ealier numerical studies for the Rayleigh-Bénard problem, is not a general

feature of natural convection in horizontal fluid layers. It appears that the importance and

efficiency of pressure transport is closely linked to the flow mechanisms and to the dynamics

of the convective layers. Namely in the Rayleigh-Bénard case, the efficient pressure transport

of turbulence kinetic energy and vertical turbulent heat flux is related to coherent structures

(plumes), which are strongly intermittent.

In statistical turbulence models, closure assumptions are usually based on long-time averaged

mean quantities (e.g. velocitity or temperature). However, in turbulent Rayleigh-Bénard con-

vection the long-time averaged mean velocity is zero, while on the time scale of the lifetime

of coherent structures well defined mean values do exist. It is thus an open question whether

statistical turbulence models based on long-time averaged mean values can at all yield reliable

results for the flows under consideration.
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13. G. Grötzbach: Direct numerical and large eddy simulation of turbulent heat transfer. In

Turbulence, Heat and Mass Transfer 1, Eds.: K. Hanjalić and J.C.F. Pereira, Begell House,
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