2" Int. Symposium on Turbulence, Heat and Mass Transfer
K. Hanjalié¢, TW.J. Peeters (Editors)
(© 1997 Delft University Press 331

Modelling turbulent dissipation rate
for Rayleigh-Bénard convection

Q.Y. Ye!, M. Worner!, G. Grotzbach! and J. Jovanovié?

! Forschungszentrum Karlsruhe, Institut fiir Reaktorsicherheit, Karlsruhe, Germany
2Lehrstuhl fiir Stromungsmechanik, Universitcit Erlangen-Niirnberg, Erlangen, Germany

Abstract — Both the two-point correlation technique with the assumption of local homogeneity and
invariant theory were used to study the turbulence closure for the dissipation rate in turbulent natural
convection. The structure of an analytically derived equation for the turbulent dissipation rate was
analyzed by using direct numerical simulation data of turbulent natural convection in different fluids. It
was found that the local homogeneity assumption holds for the two-point velocity correlations of third
rank. However, the same conclusion does not seem to be applicable to the two-point temperature-velocity
correlation. The time scale ratio R = 74/7 should be included in modelling of the buoyant production
term in the dissipation equation. The sink term in the dissipation rate equation was modeled using
invariants of anisotropy tensor and the DNS data for Rayleigh-Bénard convection were shown in the
anisotropy invariant map.

1. Introduction

Turbulence modelling plays an important role in computational fluid dynamics and computa-
tional heat and mass transfer, which are emerging as major tools for solving flow problems
encountered in engineering applications. The most widely used approach for the prediction
of turbulent flows is based on the equations for the moments of fluctuating flow quantities.
The modelling of the dissipation rate correlation which is one of the unknown quantities in the
second moment equations is very important for reliable flow prediction but is recognized to be
quite difficult due to the lack of adequate data for the validation of the fundamental closure
assumptions.

With the development of advanced numerical simulation techniques, it is possible to test
various closure assumptions directly against a simulation database and make significant progress
towards the development of turbulence closure. Based on the two-point correlation technique
which was first introduced by Chou [1], and subsequently improved by Kolovandin & Vatutin
(2], the structure of an analytically derived equation for the dissipation correlation was analyzed
using direct numerical simulation (DNS) data of turbulent channel flow at low Reynolds number
by Jovanovi¢, Ye & Durst [3]. The detailed closure assumptions for dissipation rate were
investigated by the authors against DNS data for a variety of turbulent shear flows [4, 5].

For some complex flow and heat transfer problems, e.g. flows dominated by buoyancy, it is
recognized that turbulence modelling requires special care [6]. The influence of the molecular
Prandtl number Pr, time scale ratio R and the turbulence Reynolds number Re; has to be
carefully considered in order to obtain accurate models [7, 8]. Thus, it is necessary to study
the above mentioned closure assumptions for the turbulence dissipation rate in turbulent flows
induced by thermal buoyancy.

In this paper, DNS data (W6rner & Grétzbach [8]) for turbulent natural convection, specially
for Rayleigh-Bénard convection, in air and sodium are used to study the closure for the dissipation
rate. First, the structure of the equation that governs the turbulence dissipation rate, including
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the buoyancy influence, is analyzed. The assumption of local homogeneity which is used to
simplify the derived equation of dissipation rate is examined using the DNS data. Then the
invariant theory introduced by Lumley & Newman [9] is used to derive the closure for the sink
term in the dissipation rate equation. The buoyant production term should also be correctly
modeled in turbulent natural convection with low Rayleigh number, although this term has a
smaller contribution than other terms in the budget of the dissipation rate equation for forced
convection, and usually can be neglected at high Reynolds number. In this paper, the influence
of the Pr number and time scale ratio R on the closure of this term is considered.

2. Basic equations

The equations which describe the transport of the second-order moments U;T; can be derived
from the Navier-Stokes equations. For incompressible buoyant flow under the Boussinesq
assumption one can write:

omE; . Ou; oU; oU; 0w+ 809
Y + Uk Bz, + ujukaxk + U;uy . + B9;0u; + Bg;0u;
o 1. 0 0 Ou; Ou; S
SR L —[uj‘*p + ui—p~] + 2w 00 vAuu; = 0, (1)
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where A, corresponds to the Laplace operator (A, = 62 /0z;0z,) with respect to the variable x.
The dissipation correlations of u; Uy are represented by the terms:

ek (2)

2.1. Two-point correlation technique

The dissipation tensor (2) can be expressed as functions of two-point correlations by introducing
a coordinate system relative to two arbitrary points A and B [1]: o

& = (zk)B — (T1)a, 3)
(Tk)ap = %[(xk)A'*“(xk)B]- 4)

From equations (3)-(4) various partial differential operators can be derived, which are functions
of (zx)ap and &, such as:
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Applying the operator (7) to the velocity fluctuation product at two points, (u;) 4(u4) g, taking
the average and setting &, equal to zero, we get:

Ou; Ou; 1 —
€ij = Va*a:,cai - ZVAzuiuj — v(Aguiuj)o, ®)
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its trace € is:

du, ou, 1 -
e=v azk azk = VAT — v(Adiq)s, )

RN

~~ =

inhomogeneous homogeneous

where the prime ’ in Eq. (9) indicates a value for the two-point correlation function at point
B ((ui)a(u;)p = u;u;) and the subscript o represents the zero separation between the two
points. The inhomogeneous parts of €;; and ¢ are especially important near the wall [3]. The
homogeneous parts in the equations (8) and (9) can be obtained through the derivatives of the
two point velocity correlations of second rank.

2.2. Dynamic equation for ¢,
The equations for v(Agusul)o can be obtained by applying the operator vA¢ to the dynamic
equations for the two point velocity correlation (u;) 4 (u;) 5 and taking the limit & — 0. Since

the components of the dissipation tensor €;; can be analytically interpreted in terms of its trace e
and second order velocity correlation u;G;j [1, 2], we are interested only in the contracted form

of the equation for v(Agu;u})o, which can be expressed as follows:
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Chou [1] has shown that this complicated equation can be simplified, if the assumption of local
homogeneity for the small scale structure of turbulence is applied. This assumption permits the
following properties valid for homogeneous turbulence to be used (see [10]):

usuy = upul, (1D
UsuLu = —ugupul, (12)
U, = —ugp. (13)

Differentiating equations (11)-(13), setting ¢ = 0 and substituting the corresponding results into
Eq. (10), we get the approximate equation for the homogeneous part of the dissipation rate:

Oep, Oep, — oU, v oU, 0
s A= - = |2 s T T A UsUs
En + U axk ZV(AEUWS)OB:C;; -+ ) ': UsUr A PN + (A Uk)c?:z;ku U J
—— — o Uy ( 0 *>
+v09s((AcOul)o + (Acust’)o] + 2v Usthy | —— — 2U | Ag—u upu]
G e e ]
+%I/Azéh — 202 (AeActustil)o, (14)

where €), = —v(Agu,sul)o.
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One of the differences between the equation (14) and the approximate equation derived by Jo-
vanovié et al. [3] is that the second-order derivatives of the triple correlation = % [(Acusugul)o+

(Agusufug)o] disappear because of the assumption of local homogeneous turbulence for small
scales. Using the DNS data of channel flow they showed that away from the wall the properties
of homogeneous turbulence (Eq. (11) and Eq. (13) ) can be used. However they argued that,
because of the lack of the appropriate correlations from the simulation database, it is difficult to
justify the applicability of the assumption of local homogeneity for the second-order derivatives
of the triple correlation in Eq. (10). Hence they kept the term %a-i- [(Agusurul)o + (Agusulul)o]
in the governing equation of €. This point will be discussed in the next section.

The term v(g;[(A¢ful)o + (A¢us8')o] in Eq. (14) accounts for the influence of buoyancy.
It is interesting to notice that this term should vanish, provided that the assumption of local
homogeneity for small scale of turbulence can be used, because similar to Eq. (13), for homoge-
neous turbulence the relation fu/, = —u,@ is hold. The present DNS data for turbulent natural
convection will be used to clarify this question.

3. Validation of the derived governing equation for ¢;,
3.1. DNS data for turbulent Rayleigh-Bénard convection

Rayleigh-Bénard convection takes place in an infinite fluid layer which is bounded by two
horizontal isothermal walls. The lower one, corresponding to z3 = 0, is heated and the
upper one (z3 = 1) is cooled. The dimensionless numbers used for characterizing Rayleigh-
Bénard convection are the Rayleigh number Ra, the Prandtl number Pr, the Grashof number
Gr = Ra/Pr, the turbulence Reynolds number Re, = k%/(ve;) (where k = U, ) and the
turbulence Peclet number Pe; = Re, Pr, all given in Table 1. The simulations were performed
with the TURBIT code (Grétzbach [11]). The parameters and grid data of the simulations, as
well as the averaging procedure, are referred to [7, 8]. The DNS data used in this paper are
available in [12].
The transport equation for € can be simply expressed as [3]:

D
Ee:Pj+P€2+PE3+P;‘+P5,,+TE+HE+D€—T, (15)

where the terms P! - P? are production of €. Other terms on the right hand of Eq.(15) represent
buoyant production, turbulent diffusion (7, + I1.), viscous diffusion and viscous destruction of
€ fespectively. In the following treatment, all terms of the dissipation equation are normalized
according to [8].

Pr Ra Gr Re; | Pe;
0.7 | 630,000 | 8.9 x 10° | 154 | 107
0.7 | 381,000 | 54 x 10° | 109 | 76
0.006 | 24,000 | 4 x 10° | 2240 | 13
0.006 | 6,000 10° 497 | 3

Table 1: Parameter of the simulation data. Values of Re; and Pe, are calculated at z3 = 0.5.
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3.2. Two-point velocity correlations of third rank

In order to determine the applicability of the local homogeneity for the derivatives of two-point
velocity correlations of the third rank, i.e.

(Agusugul)o + (Asusuluf)o == 0, (16)

the following correlation is considered by means of the two-point correlation technique:

= = A:z: 1 1T A A 7 ; A i £l .
Y our 07 Omp 47 By it — 5V g l(Aeunau)o + (Aquiu)ol. - (17)

If the assumption of local homogeneity is fulﬁlied, the equation (17) can be approximated as

follows:
, 0 Ou; Oupu; 11/ 0 - (18)
A = SV AgUiUgU;
¥8xk 83)1 al‘[ | ﬂ- Bxk k
1 Tr

Figure 1 shows the comparison between the two terms 7'/ and T'r in Eq. (18). The results
support the approximation given by Eq. (18) except for a few points in the vicinity of the wall.
This means that the assumption of local homogeneity, Eq. (16), is satisfied in the flow field away
from the wall.

/

3.3. Two-point temperature-velocity correlations
Using the two-point correlation technique, the buoyant production P, of € can be written as:

Py = _zyﬁgiﬁ—xl% = _EyﬁgiAzgui = Vﬁgi[(Aﬁeui)o + (Afui9 Jo)- (19)

If the flow is locally homogeneous,
(ABul)o + (Aguif)o = O, - (20)

then P, can be approximated as

1 —
Peb = —El/ﬂngxﬁul (21)

The DNS data of Rayleigh-Bénard convection with the largest turbulence Peclet number (Pe; =
107, at z = 0.5 for air, Ra = 630, 000) are chosen to test the equation (21). Figure 2 shows
a comparison between the data for P, obtained from the direct numerical simulation and the
approximation Eq. (21). It is clear that the assumption of local homogeneity for the two-
point temperature-velocity correlations is not applicable to the investigated turbulent natural
convection. This is probably due to the low turbulence Peclet number. The turbulence Reynolds
number for this data is, however, sufficiently large to ensure the statistical state of the small
structure of the velocity field, at least far away from the wall, to be locally homogeneous.

3.4. Budget of the approximate equation for ¢,

Based on the above analysis, we will keep the derivatives of the two-point temperature-velocity
correlation in Eq. (14). In contrast, the derivatives of the two-point velocity correlations of third
rank, which are usually interpreted as the turbulent transport, are neglected in Eq. (14). Using
the terms of the € equation (15) from the simulation data, terms in Eq. (14) can be evaluated
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Figure 1: Distribution of correlation T; (DNS  Figure 2: Distribution of P., (DNS data

data Ra = 381,000, Pr = 0.71) Ra = 630,000, Pr = 0.71)
and 7, deduced from the DNS data. and the approximation given by
Eq. (21)

[3]. Figure 3 shows the budget of Eq. (14) computed from the DNS data of fully developed
Rayleigh-Bénard convection for air (Ra = 381,000). The results given in Fig. 3 confirm that
the derived equation (14) balances the data reasonably well across the flow field, especially
away from the wall.

Neglecting the turbulent transport term in the current model for €, might be critical in
isothermal turbulence shear flows. In the center of channel flow, e.g., this term is expected to
balance the sink term in the € equation, although in this region every term is small. Some further
work is still required to clarify this point.

4. Modeling the approximate equation for ¢,

In Rayleigh-Bénard convection where no mean flow is present, the equations governing the
dynamics of the turbulent dissipation rate for homogeneous part €, can be further simplified:

% >~ vfgs[(Acbul)o + (Acusl')o] —20% (AeAgusul)o — 2v Aem—usuptt, | +=vAgep,.
ot &y 5 2

~ ~
-~ ~

~

v~

Ty T
(22)
The closure for the buoyant production term T}, and the sink term 7 in the equation (22) will be
described below.

4.1. Model for the sink term T

The modeling of the sink term is always important, since it is one of the dominant terms in
the dissipation rate equation. Using the invariant theory [9] and the DNS data of turbulent
channel flow at low Reynolds number, Jovanovic et al. [4] have investigated in detail the closure
for the sink term 7 in Eq. (22). Some limiting values of Ty at different turbulent states were
utilized to construct the model for T} valid across the entire anisotropy invariant map (AIM),
e.g. (Ts)2c = —0.0517\/20Rese; /k for two-component turbulence, (Ty);c = —1.4€}/k for

one-component turbulence, (T5);50 = —7% fe€s/k for isotropic turbulence and (T%)ac_iso =
—1.2¢} /k for two-component isotropic turbulence. Invariant functions were used to match the
derived expressions for 7. A similar method is used here.

Let us first locate the data of the Rayleigh-Bénard convection along the AIM (see Fig. 4). In
order to compare the results, the data for forced convection of turbulent channel flow are also
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Figure 3: Terms in budget of Eq. (14) deduced from DNS data (Ra = 381,000, Pr = 0.71).

(a) Budget of € Eq. (15): ——, P! + P2+ P ---, P* ——— P4, ——— T. +

Il; A, De; %, =Y; o, sum of all terms. (b) Budget of Eq. (14): ——, T1 =

—20[A¢(0/06) (usurul)]o; ---, T2 = 1/2vAzen; ———, T3 = =202 (AcAguul)o;

———, T4 = vfg,[(AOu}) + (Agusé”)] o, sum of all terms.

plotted in Fig. 4. 11 and 111 denote the second and third invariants of the anisotropy tensor of
the Reynolds stress, where 11 = a;;a55, I11 = a5a:005k, a;; = 2U;u;/k — 1/36;;. For turbulent
Rayleigh-Bénard convection ( a;; = 0 (2 # 7)), only the diagonal components of the anisotropy
tensor a;; exist.

The level of anisotropy for Rayleigh-Bénard convection is quite smaller compared to the
forced convection both in the near wall and in the buffer region. This is expected, since there is
no mean strain in turbulent natural convection. Very close to the wall the invariants in the AIM
for sodium reside on the boundary for two-component turbulence. The right hand boundary of
the AIM is approched for 3 — 0.5. The invariants for air located however on the left hand
boundary of the AIM. Considering the possible values of T for different turbulent states the
sink term may be written as:

62
Ty = —wf, (23)
Y = (1= F)hoc + Fibazi, (24)
Yy = [0.02 + 0.03 exp(— Re;)]1/20Re;, (25)

Yazi = 1.4+ {1 - 9{3(;—1111)2/3 - III]}(Zﬁfé —1.4), III>0 (26)

7f

>4 1113 — III]}(—fE—lz) III <0 (27)

77/}aacz = 1. 2+{1 —9[4(3

F = 54\/_[1—0222exp( 0.3364/ Re;)], (28)

where the decay function f, proposed by Coleman & Mansour [13] is used. The parameter F,
which is defined as F' = J?/[1 —9(3/4(4/3 | III |)*? — III], where J = 1 —9(1/211 — I1D),
equals unity when the stress field is isotropic but vanishes in two-component turbulence. It
is found that the function F' can match the stress fields for two-component turbulence and
axisymmetric turbulence quite good for the present simulation data. Expressions (26) and
(27) are identical to the model derived in [4]. In the equation for 1,c a modification factor
[0.02 + 0.03 exp(— Re;)] deduced from the present DNS data, is added here to take account the
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Figure 4: Anisotropy invariant map of Figure 5: Distribution of sink term T, —
Reynolds stress. A, DNS Ra = —, Eq. (23); o, value evaluated
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381,000, Pr = 0.71; +, Ra = see Fig. 3).

630, 000, Pr = 0.71; x, DNS data
( Kim, Moin and Moser, 1987)

influence of the turbulence Reynolds number.

The approximate form of T (Eq. 23) is tested by using the DNS data for Rayleigh-Bénard
convection. The data presented by circle symbol in Fig. 5 are evaluated from the numerical
stmulation, where fourth order derivatives are required (see [3]). In the near wall region, where
large gradients of the statistical quantities exist, the spatial discretization is not fine enough
to calculate the high order derivatives with high accuracy. Therefore the circle data scatter
somewhat. In general, the results in Fig. 5 show a good agreement between the evaluated and
the predicted data.

4.2. Model for the buoyant production 7},

For the closure of T}, in Eq. (22) it is assumed that the derivatives with respect to £ can be
expressed in terms of a single-point second order correlation fu,. Using the scaling analysis
proposed by Tennekes & Lumley the buoyant production in Eq. (22) can be approximated:

- - €
vB9:((Acbul)o + (Acus8')o] = Ces /G, (29)
where G = —fg,u,0. In the literature the coefficient Ce; is usually adopted as a constant

or corrected by considering the influence of the flow form [14]. However the influence of
Prandtl number should be also taken into account. It is appropriate to consider C.; as a
function of Prandt]l number as well as the ratio of turbulent thermal and mechanical time scale
R = 14/7 = (62/2¢4)/(k/€) ( € is the dissipation of 82). The insight into this dependence
can be clearly seen in the modelling of molecular destruction ;5 (€9 = (v + &) (%%’;) ) in the

Ouj 96

transport equation of heat fluxes u;0 (Shikazono & Kasagi[15]). The same derivatives 95, Ba;
appear in both terms P, and ¢;4.
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Figure 6: Distribution of the buoyant produc- Figure 7. Terms in the budget Eq. (22) de-

tion Ty in Eq. (22).—, Eq. (23); duced from the DNS data Ra =
o, DNS data Ra = 381,000, 381,000, Pr = 0.71. --- T,
Pr = 0.71; A, Ra = 24,000, calculated from Eq. (23); ——-,
Pr = 0.006; O, Ra = 6,000, 1/2vAze; ———, Ty calculated
Pr = 0.006. from Eq. (30); o, sum of all terms.

The scale ratio R, as shown by Worner and Grétzbach [8], is not an universal coefficient,
but strongly depends on the Prandtl number and turbulence level. Introducing the heat flux
anisotropy invariant 4, = u;0u;0/6?%;w; instead of R, one can avoid to solve a separate
transport equation for €g. This parameter ( Ay) was used, e.g. by Haroutunian & Launder
[16] in the u;0 transport equation for free buoyant shear flows. However, it is difficult to find
appropriate functions in terms of Ay, which can account for the wall effects for the model of P,,
or €p. Based on the above considerations, the buoyant production of Eq. (22) can be proposed
as follows: Py 07

T\ " €
R ) k G (30)
where the term (Pr/R)% is obtained by fitting our DNS data. Above proposed form for 7}, as
shown in Figure 6, agrees well with the DNS data except for the region near the wall. The small
difference between the results from Eq. (30) and the DNS data in this region will not influence
the budget of dissipation rate seriously, since the contribution of this term in Eq. (22) is smaller
than that of the other two terms in the near wall region, which can be seen in Fig 7.

Ty = v3gs[(Acful)o + (Agusd')o] = (

5. Conclusions

In this paper the closure of the equation for turbulent dissipation rate, which was developed
earlier based on two-point correlation technique and invariant theory for thin shear turbulence,
was investigated by means of the DNS data of turbulent Rayleigh-Bénard convection in air and
sodium.

The assumption of local homogeneity for the small scale turbulence, which is used to simplify
the analytically derived equation for the turbulent dissipation rate, was tested. It was found that
for the derivatives of two-point velocity correlations of third rank the above mentioned assump-
tion can be used, but not for the derivatives of the two-point velocity/temperature correlation of
second rank.

It was found that the anisotropy of Reynolds stress for the turbulent natural convection is
weaker than for the wall bounded turbulent shear flow. The derived closure for the sink term in
€, equation shows a good agreement with the results from the DNS data. For turbulent natural
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convection the buoyant production term in the dissipation rate equation plays an important role.
An appropriate form for this term was proposed by introducing the time scale ratio R, which can
account for the influence of Prandtl number and turbulence level. The budget of the modeled
equation for e, was analyzed. With the closure proposed in this study it is possible, except for a
few points close to the wall, to balance the present DNS data to a reasonable degree of accuracy
across the channel.
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