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Abstract
A new volume of fluid reconstruction and advection algorithm is presented which
correctly reproduces a plane interface regardless of its orientation. The interface is
represented by an interpolating plane; their unit normal vector is determined out of
tangential vectors at the cell faces. These tangential vectors are obtained straight
forward by analytical integrations of local plancs defined by the volume fractions of
adjacent cells. The algorithm is named EPIRA which is a synonym for Exact Planc
Interface Reconstruction and Advection. Numerical tests for different fluid configura-
tions were performed. Results are presented in the paper for spherical drops which are
resolved by 8, 16 and 32 mesh cells per diameter, respectively. The encouraging results
let us expect to achieve accurate numerical simulations of clusters of bubbles by using

10 - 12 mesh cells per bubble in cach direction.

1 Introduction

The phenomenon of gas bubbles rising in a continuous liquid is of significant practical rel-
evance for a variety of engineering applications. The physics of a bubbly flow is - as well
as that of any other type of two-phase or multi-fluid flow - to a large extend governed by
the interface across which momentum (and in general also heat and mass) are exchanged
between the phases. A number of algorithms have been developed for the detailed numerical
investigation of physical systems involving interfaces, e.g. front-tracking methods (Univerdi
and ‘Tryggvason, 1992), level set methods (Osher and Sethian, 1988), and volume-tracking
methods, such as the volume of fluid scheme (Hirt and Nichols, 1981).

All the above methods have their strengths and weaknesses. In the front-tracking method
of Univerdi and Tryggvason (1992) the evolution of the interface is accurately described by
advecting the front using an unstructured grid that moves through the stationary grid used
for the Navier-Stokes solver. However, with this method it is difficult to treat interfaces that
interact (e.g. two coalescing bubbles). Volume of fluid methods and level set methods do
not require special procedures to model topological changes of the interface. Common to
both latter methods is the introduction of a marker function to track the interface. In the
level set method this marker function is the signed distance from the interface, whereas in
the volume of fluid method it is the volume fraction f of one of the fluids. The advantages
and disadvantages of the level set and volume of fluid method are almost reverse. In the
volume of fluid method the evolution of the interface is described by solving a conservation
law for the volume fraction. A main advantage is therefore that the volume of each fluid is
conserved. The level set method does not have the same conservation property. IHowever,
an advantage is that there is no need to explicitly reconstruct the interface position from the
level set function. In the volume of fluid method the reconstruction of the interface position
from the discrete volumetric fractions is a central part. Because of the conservation property
and clear physical interpretation of the marker function, in the present stucdy the volume of
fluid concept is chosen to develop a code for numerical investigation of single bubbles and
clusters of bubbles.



For two-dimensional configurations a number of VOF reconstruction and advection algo-
rithms exist (sce the recent review by Rider and Kothe, 1998). With respect to the recon-
structed interface geometry, these can be classified in piecewise constant and piecewise linear
methods. Two-dimensional piecewise linear methods - like the FLAIR algorithm of Ashgriz
and Poo (1991) - reproduce an interface represented by a line correctly. The extension of
these methods from two-dimensional to three-dimensional configurations is not straight for-
ward. E.g. the extension of the FLAIR algorithm would result in an exaggerated case check
procedure with an enormous computational effort. For this reason a reconstruction algo-
rithm which correctly reproduces a plane interface regardless of its orientations was missing
up to now. Perhaps, the most accurate three-dimensional VOF reconstruction algorithm
available is the one proposed by Gueyffier et al (1999). The authors, however, find that in
gencral for a planar interface the algorithm does not yield exact results. In the worst case,
the accuracy is within 10%.

To minimize the computational costs in a numerical simulation of a cluster of bubbles, it is
essential to have an reconstruction and advection algorithm available which yields suffiently
accurate results while resolving the diameter of a single bubble by as few mesh cells as possi-
ble. Therefore, there is a strong need for an improved three-dimensional VOF reconstruction
and advection algorithm.

In the present paper a new algorithm (EPIRA) for three dimensional interface reconstruction
and advection on a structured non-equidistant grid consisting of rectilinear mesh cells is
presented. EPIRA is a synonym for Exact Plane Interface Reconstruction and Advection.
EPIRA avoids case checks by calculating the unit normal vector out of tangential vectors at
the cell faces. These tangential vectors are straight forward and numerical efficiently obtained
by analytical integrations of local planes defined by the volume fractions of adjacent cells.
With the EPIRA algorithm a plane interface of arbitrary orientation is always reconstructed
and advected in an exact manner. The EPIRA reconstruction and advection steps are
presented in chapter 2. In chapter 3 test cases for a drop in a uniform velocity field are
presented. The paper is closed by the conclusions and outlook, where the next step of code
development, i.e. the coupling of EPIRA with a Navier-Stokes solver, is outlined.

2 EPIRA algorithm

2.1 Computational grid

For the discretisation of the flow domain we use a structured rectilinear grid with mesh cell
centers located at x; ;1 = (74,5, 2¢)" and mesh cell faces located at z41/0 = 2; + Ax;/2,
Yit1/2 = Y5 = Ay;/2 and 2419 = 2 £ Az, /2. The corresponding mesh width Az, Ay, and
Az, may vary. For brevity of nomenclature, we denote the six faces of cell (4, j, k) by E(ast)
(@ir172), W(est) (zi-1/2), N(orth) (2x11/2), S(outh) (zx_1/2), B(ack) (yj41/2), F(ront) (y;_1/2)
and use Fj ;. as abreviation to denote face East of cell (7, j, k). Within each mesh cell, the
liquid volumetric fraction f; ; is defined as the volume occupied by the liquid phase divided
by the total volume V; ; of the cell. Thus, in a pure gas cell it is f = 0, in a pure liquid cell
it is f =1 and in an interface mesh cell it is 0 < f < 1.

2.2 Reconstruction

To reconstuct the interface from the discrete liquid volumetric fractions f; 5, we assume
a functional interface of zero thickness which can locally be described by a single valued



height function z = h(x,y), where 2, y, z define a local Carthesian co-ordinate system. From
a Taylor expansion of h(x,y) around (g, yo) we obtain
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In the EPIRA algorithm it is assumed that the interface can locally be approximated by a
plane, i.c. by the first three terms on the r.h.s. of Eq. (1). In the vicinity of hg this is always
a good approximation.

A plane is completely defined by a normal vector n = (ng,n9,n3)" and a point b =
(b1,b2,b3)" lying within the plane. In the following we describe how within the EPIRA
algorithm n; ;4 and b; ;x are determined for each interface cell from the discrete values f; .
This is done in three main steps. In the first one, tangential vectors t are computed for cach
face of a mesh cell. In the second step, from these tangential vectors one normal vector,
which is representative for the mesh cell center, is determined. Finaly, b; ;4 is determined in
such a way, that the planar interface divides the computational cell into two parts containing
the adequate volume of each fluid.

2.2.1 Determination of face-centered tangential vectors

For determining the tangential vector t at a certain cell face, the corresponding neighbouring
cell needs to be also considered. If this neighbouring mesh cell is not an interface cell (i.c.
f =0or f =1) the interface does not cut this face of the mesh cell, and t is set to zero.
Otherwise, this face is called an interface-face and t is non-zero and must be computed. As
an example, this is demonstrated here for t; and the configuration sketched in Figure 1.

Figure 1: Cells (4,7,k) and (i +
1,4,k) with plane h(x,y) repre-
senting the interface. The fluid
is below A(z,y).

In cases where the function h(x,y) does not cut the upper or lower faces of the two adjacent
cells the relations
Ax; Ayj

! / h(x,y)dy dx (2)
0

(Azi+Amiy1) Ay
/ h(x,y)dy dx (3)
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hold (origin of co-ordinate system is at (-9, Yj—1/2, 2k—-1/2) and (@9, y0) = (Aw;, Ay;/2)).
By inserting the lincar function A(x,y) of Eq. (1) in Eqs. (2) and (3), performing the
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integration analytically and subtracting both equations one obtains after some rearrangement
QAZk

:h—z—l 4
A.’L‘i -+ A',I’.'H-l (/ +L,5,k ]L ,J,k) ( )

9,
ipy1/2 = ——h(.’lf,y)
Ow (Awi,Ay;/2)

Since /9 represents the gradient of A(x, y) in a-direction, we obtain for the unit tangential
vector ty, lying here in plane 2-z, the result

tp = —_i—< L 0, e )T (5)
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Note, that for any planar interface this tangential vector is exact, if the supposed lower and
upper integration limits in Eqs. (2) and (3) are correct. This requires that the interface does
not cut the upper or lower faces of both neighbouring cells (i.e. N; s, Nit1jps Sijks Siti ik
are not interface-faces). If this is not the case, to be still exact the integration limits in Eqs.
(2) and (3) must be adapted to account for the cut of the interface with the lower and upper
cell faces. This modification would result in a number of different cases to determine the
adequate integration limits. To avoid this case distinction, here we use another approach.
Let us assume that the interface in cell (7, j, k) cuts the upper face, i.c. face Niy14k 18 an
interface-face (see Figure 2, left). To avoid the adaptation of the integration limits which
would be necessary to obtain an exact tangential vector, the idea is simply to modify the
cell volume used for determining t. This is done by an extension in the adequate direction.
For the example displayed in Figure 2 we now consider two extended neighbouring cells,
consisting of cells (4,7, k) + (2, 5,k + 1) and (i +1,5,k) + (i + 1,7,k + 1), respectively (see
Figure 2, right). Due to this extension, now Eqgs. (2) and (3) can again be used to calculate
t; exactly, when the left hand sides are replaced by fijr + fijrt1 and fip1jn + firtjnt1s
respectively, and on the r.h.s. Az is replaced by Az, + Azgyi. An equivalent procedure is
applied in cases where the interface cuts the lower faces of the cells.

If one or both of the slopes « and  (see Eq. (1)) are very steep, one upper or lower extension
might not be sufficient to obtain t exactly. Because we do not want to lose the locality of
the reconstruction, not more than one extension above and below the basic pair of cells is
used. If this is not sufficient (e.g. if face IV, j k11 in Figure 2 would be an interface-face), the
2D FLAIR algorithm (Ashgriz and Poo, 1991), adapted to non-equidistant grids, is applied
to get a guess for the slope. Thus, the interface slope 3 is assumed to be zero and the
problem is simplified to a two-dimensional configuration. Then, by considering four possible
different cases (see Figure 3) the slope « is determined analytically via a case check diagram
according to the 2D FLAIR algorithm. From this value for o, a guess for t is determined
from Eq. (5).

a b c d
Figure 3: Four cases of 2D FLAIR algorithm (Ashgriz and Poo, 1991).

By the above procedure, at each of the minimum three and maximum six interface-faces
of an interface mesh cell a unit tangential vector t is computed. The tangential vector is
flagged as ’exact’ if the slope is determined via Eq. (4) and is flagged as non-exact’ if the
2D FLAIR algorithm is used instead.
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Figure 2: Example where the interface cuts the upper face of the cells (left). An extension
of the left and right volume used to compute the slope at face E is performed (right).

2.2.2 Determination of cell-centered unit normal vector

From the tangential vectors t at the different faces of cell (4, j, k) a cell-centered unit normal
vector n is computed for each interface cell. For illustration, this is demonstrated here for
the example sketched in Figure 4. For this situation, t,y and tg are zero, whercas tg, tyw, tp
and t; are non-zero and ecither flagged exact or not. At first, for each co-ordinate direction
one representative tangential vector is determined. If e.g. t;; and tyy lic within the same
plane and obey the same flag (i.c. exact or non-exact) a simple average

tpw = = (tp +tw)
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and subsequent normalisation is performed. Otherwise, either tg or ty is selected as repre-
sentative by an appropriate procedure, where exact flagged tangential vectors are preferred.
In an equivalent way, tys and tpp are determined. From these three representative tangen-
tial vectors three different preliminary normal vectors are determined

m =tpw X tyg, mng=tysXtpp, n3=tpp Xtpy, (6)

by computing the vector product of each possible pair. If necessary, a normal vector is re-
orientated so as to point inside the fluid. Eventually, the cell-centered unit normal vector is
computed by averaging of ny, ny, ng, where again ’exact’ vectors are preferred, and is finally
normalized. For the situation of Figure 4 e.g., tys is zero. Therefore, only the normal vector
n3 is non-zero and no averaging with n; and ny is performed. From the unit normal vector

n = (ng,n9,n3)" the slopes a = —ny /nz and f = —ny /ng may easily be computed.
ty
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Figure 4: Interface cell with four tangential vectors ty, ty, t; and ts.



2.2.3 Determination of point b

The axis element b; j  for each interface cell is determined by an iterative procedure. Because
h = h(n;;, b; i) we can write

) 1
.fv:,j,k — ‘— / h(ni,j,kabi,j,k) dv (7)

Both, fi;r and n;;, are known. So b; ;. is iteratively determined until Eq. (7) is fulfilled.
In practise, in most of the interface cells convergence is reached within only 2 to 4 iteration
steps. To compute the integral in equation (7) the same procedure is used as for the advection
step, which will be explained next.

2.3 Advection

In the advection step the fluxes of the liquid phase across the faces of the cells are computed.
The algorithm used within EPIRA is based on an operator-splitting, i.e. for each direction
a separate sweep is performed. In the following, we illustrate the procedure for the sweep in
x-direction; an interface configuration as displayed in Figure 5. With wu, > 0 as the velocity
component normal to face E(ast), defined at (;41/2, Y5, 2,), within a time step At the shaded
volume is fluxed across face E into the neighbouring cell. To calculate the flux § f, e.g. in the
2D FLAIR algorithm a large number of different cases are considered. For three dimensions
even more complicated cases would occur. To avoid complicated case distinctions as far as
possible, within EPIRA a quite general algorithm for calculating ¢ f is developed.

Figure 5: Within A? the light shaded vol-
ume is advected across face E(ast).

ny Ny
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representing the interface in the cell without loss of generality we can assume n; > 0, ny > 0
and ng > 0. If not all components of the unit normal vector are positive, the co-ordinate
system is rotated such that in the new system n = (ny, ny,n3)" has only positive components.
We define a volume integration operator V'

T ym(m)
Vil s T 1, 5] = / / ho(2' ') dy' da’ (9)

with

Ym () := min{max{y, y(x)}, M};  hp(e,y) = min{max{0, h(x,y) — 2}, M} (10)
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and

n; n;
y(x) = [(by — :zr)i +b3 — 2 i + by. (11)

The integrals for calculating V' can be evaluated analytically. The volume integral operator
V' gives the volume under the function h(x,y) in the domain [, %] X [y, ym] X [z, hn]. In
Eq. (10) M is a positive limit which is only needed in cases where 7, = 0 or ny = 0. In our
calculations we use M = 1000. By combining computed values of V in appropriate different
domains, it is possible to calculate the volume flux 6V in a specific volume [2, 2] X [y, y»] X
[21, 2] via the relation

OV = V(zi, 2r, y1, 21) — V(21 %oy Yy 21) — V (@1, Ty Yty 20) + V(@05 Ty Y, 20), (12)

sce Figure 6. The flux of the liquid volumetric fraction is then simply determined from
Of = 6V/(Ax;AyAz).

] ,

+V(xl, xl_,yl,zr)

Figure 6: Calculation of the volume flux 6. The integration domain is marked by the
shaded surface.

To calculate the fluxes of the volume fraction in a general co-ordinate direction for a positive
velocity the integration limits given in Table 1 have to be used.

U ry Ty Y Yr 2] Zp
Uy > 0| Tigryn — Uy AL Tigy/o Yj-1/2 Yj+1/2 Zk—1/2 Zk+1/2
ty >0 Tit1/2 Tivj2  Yjriz — Uy AL Yip/a Zh—1/2 Zk41/2
u, >0 Tit1/2 Tit1/2 Yi-1/2 Yjr1/2  Zreije — Uz AL Zpyi)o

Table 1: Integration limits in the EPIRA advection step to compute the flux 6V in the
different co-ordinate directions.

3 Test Cases

To test the performance of the EPIRA algorithm several three-dimensional test cases have
been performed. Some results of special interest are presented in this chapter.

3.1 Test of reconstruction algorithm

For testing of the reconstruction algorithm for a certain 'frozen’ interface topology first the
discrete field of liquid volumetric fractions f; ;5 in the computational domain is generated
I . ’)]:h
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by a separate initialisation job. The field f; ;4 is given as input to the EPIRA reconstruction
step and the interface position (n, b) is reconstructed by the algorithm described in section
B B

Results for the test cases performed for plane interfaces of different orientation will not he
presented here. We just note, that these are always reconstructed correctly. This was tested
for an equidistant grid with isotropic mesh width and for a grid which is non-equidistant
in one direction. The exact reconstruction of the normal vector of a plane interface can
be attributed to the extension of the cells considered in determining the interface slope
at cell faces. Due to this procedure, for a plane interface one obtains always at least two
independent exact face-centered tangential vectors, from which the correct normal vector is
obtained by the vector product.

In the following we present test cases performed for a spherical drop. We take a drop instead
of a bubble simply because of the easier and more instructive visualisation when f is defined
as liquid volumetric fraction. For discretisation, an equidistant grid with isotropic mesh
width is used. Results are given for three different simulations where the drop diameter is
resolved by 8, 16, and 32 mesh cells, respectively. In Table 2 the L; error of the EPIRA
reconstruction is given for the different resolutions. This is computed by comparing the
reconstructed unit normal vector within each interface mesh cell with the exact one. In Table
2 the number of interface mesh cells N;,,; is given, as well as the order of the reconstruction
scheme, which is computed from the L; errors. As can be expected, for this full three-
dimensional problem the reconstruction step is first order accurate.

| drop resolution | Ax = Ay = Az | Ny | Ly (t=0) order | Ngme E|Af]
8x8x8 0.1 272 0.0417 160 0.048
1.17
16 x 16 x 16 0.05 1160 | 0.0185 320 0.017
1.06
32 x 32 x 32 0.025 4760 | 0.0089 640 | 0.00032

Table 2: Three test cases of spherical drops

3.2 Test of advection algorithm

A test of the pure EPIRA advection algorithm is not meaningful because in practise always
the interface first must be reconstructed before it can be advected. Therefore, we now test
the complete EPIRA algorithm. The test computations are performed in a cubical domain
with periodic boundary conditions in z— and y—direction. In z—direction the computational
domain is confined by rigid walls. In all the calculations a uniform velocity field with the
walls moving according to this velocity is used. Thus, any deformation of the initial interface
geometry during the computation can be directly attributed to inaccuracies of the EPIRA
algorithm.

In all computations, the conservation of the liquid volumetric fraction is fulfilled exactly
within a certain user defined limit e. After cach time step, in cells where 0 < f < € the
liquid volumetric fraction is set to zero, while in cells with 1 — e < f < 1 it is set to unity.
In our test computations we used ¢ = 1079,

Again we show no results for plane interfaces. We note, however, that in the test computa-
tions a layer of fluid lying between two parallel planar interfaces of arbitrary orientation is
always advected exactly.



In the following we present results for a single spherical drop in a uniform velocity field
u = (ug, ug, u3)’ = (5,0,0)T. In all computations, the time step width At corresponds to a
Courant number C = (u;At)/Az = 0.5. For each case a downstream transport of 10 drop
diameters is simulated. This corresponds to a problem time of ¢ = 1.6, which is computed
within Ny, time steps, see Table 2. Due to the periodic boundary conditions the position
of the transported drop within the computational domain should then exactly agree with its
initial position. To quantify the error of the advection the quantity

::‘j | fijn(t = 1.6) — fijx(t = 0)|
z,X;ffz',j,ﬂs(t =0)

Elaf] = (13)

is computed for the horizontal mid-plane of the drop and given in Table 2. For an absolutely
exact advection algorithm €|ay is zero, while in the worst case where the final and initial
bubble positions do not overlap at all, gay| is unity. For the EPIRA algorithm even for the
coarse grid €|ay| is below 5% and below 0.04% for the fine grid.

In Figure 7 and 8 the horizontal mid-planes of the drops for the coarse and medium drop
resolution are shown.
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Figure 7: Plot of initial and final f distri-
bution in mid-plane for drop, resolved by
8 mesh cells per diameter, and computa-
tional error.

2 4 6 8 10 12 14 16 18 20
X

Figure 8: Plot of initial and final f distri-
bution in mid-plane for drop, resolved by
16 mesh cells per diameter, and computa-
tional error.

In the upper left corner of Figs. 7 and 8 the initial liquid volumetric fraction is displayed,
while in the lower left corner it is given for ¢ = 1.6 (left color legend applies). In the upper
right corner the differences between ¢ = 1.6 and ¢ = 0 are visualised (right color legend).
Due to lack of space, the results for the fine mesh are not shown here.

As can be seen in Figure 7, for the coarse grid we get a deformation of the bubble after Ny,
time steps, although the sum of all f; ; » in each horizontal plane is conserved. The error is
accumulated at that sides of the drop where the unit normal vectors are perpendicular to
the main flow direction. For the medium and fine resolutions no such deformation is visible
after t = 1.6 and the small error is almost uniformly distributed.
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4 Conclusions and outlook

A new algorithm is presented for the three-dimensional volume of fluid interface reconstruc-
tion and advection on an orthogonal fixed Eulerian grid. This algorithm, called EPIRA,
reconstructs and advects a plane interface in an exact manner, regardless of its orientation.
Thus, it is accurate to first order. In both, the reconstruction and the advection step, it is
intended to avoid complicated case distinctions as far as possible. Instead a formal deduction
of the unit normal vector of the reconstructed interface is used.

Test computations for planes and single drops in a uniform velocity field confirm the excellent
volume conservation, which was expected from a volume of fluid method. The advection step
of EPIRA imposes no new restrictions for the time step width Az, In the test computations a
At corresponding to a Courant number of 0.5 was used and a problem time which corresponds
to the downstream transport of the drop by ten diameters was simulated.

For the coarse resolution, where the drop diameter is resolved by only 8 mesh cells, a distinct
deformation of the drop is observed after 160 time steps. Nevertheless, the EPIRA algorithm
yields surprisingly accurate results. With the medium resolution of 16 cells per diameter no
such deformation is observed and the algorithm performs excellently. The same holds for
the fine resolution of 32 mesh cells per diameter. It appears that for practical simulations a
resolution of 10 —12 mesh cells per diameter may be sufficient. As the use of a grid consisting
of about 100 x 100 x 100 mesh cells seems possible with todays computer power, the EPIRA
algorithm will certainly allow for accurate simulations of a cluster of bubbles.

As the next step of code development, the coupling of the EPIRA algorithm with a Navier-
Stokes solver will be completed. Within the latter, the continuity and momentum equations
formulated for the mixture density and center of mass velocity of the two-phase system are
solved by a projection method. The convective term in the mixture momentum equation is
discretised by an Essentially-Non-Oscillatory scheme, in order to avoid numerical smearing
of the interface within the three-step TVD Runge-Kutta time integration. The surface
tension force is represented as a volume force according to the Continuum Surface Force
(CSF) concept of Brackbill et al. (1992). While in the standard CSF model the interface
unit normal vector is approximated within the surface tension term by the gradient of the
discrete f values, in the present work the exact normal vectors obtained from the EPIRA
reconstruction will be utilised.
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