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ABSTRACT 

When applied to real world problems, the powerful optimization 
tool of Evolutionary Algorithms frequently turns out to be too 
time-consuming due to expensive fitness calculations often 
based on run-time-intensive simulations. Incorporating domain-
specific knowledge by problem-tailored heuristics is a com-
monly used solution, but results in a problem-specific tool. This 
article describes the approach of combining the Evolutionary 
Algorithm GLEAM with general local search strategies to 
obtain the best of both procedures by avoiding their drawbacks: 
HyGLEAM, a robust, but never the less fast “general-purpose” 
optimization tool. The methods introduced can be applied to 
other Evolutionary Algorithms with minor modifications being 
required only. First experiments with test functions and a real 
world design optimization problem produced promising results. 

Keywords: Optimization, planning, Evolutionary Algorithms, 
simulation-based optimization, “general-purpose” optimization. 

1. INTRODUCTION 

The Evolutionary Algorithm (EA) GLEAM (General Learning 
Evolutionary Algorithm and Method, formerly Genetic Learn-
ing Algorithm and Method) introduced by Blume [1] was suc-
cessfully applied to a broad range of real world applications in 
the last ten years: Collision-free robot path planning and pro-
gram development [1,2], task planning and learning [3], sched-
uling [4], resource optimization [5], design optimization [6, 7] 
or traverse path minimization in a concrete precasting plant [8] 
to mention only the most important. 

One common experience gained from these applications is that 
the time available for identifying a solution is always too short. 
Often applications were possible only, because non-optimal 
solutions obtained in the given time frame were better than the 
state of the art and, thus, an improvement. But it is not satisfy-
ing to win only because common practice is weak enough so 
that your half-way finished solutions are performing better. 
Even in the area of design optimization, where it is often no 
problem to do runs over night, more sophisticated and precise 
simulation models require so much computing time that again 
there is a demand for fewer fitness calculations [9]. The goal of 
a reduced number of evaluations is usually achieved by hybridi-
zation with problem-specific knowledge or heuristics ([10], 
most practitioner papers in last PPSN, ICGA, GECCO etc. 
conferences). This partly speeds up the performance drastically, 
but always results in a more or less problem-specific solution.  

HyGLEAM is aimed at overcoming this limitation by improv-
ing the performance of the evolutionary search, while main-
taining the robustness, the global search, and the general appli-
cability of EAs in the resulting hybrid. In Section 2, GLEAM 

and the local search strategies selected for hybridization shall be 
introduced briefly. The third Section shall describe different 
methods of combining the two classes of algorithms and intro-
duce a new method of estimating good points of time for 
switching from global to local search or adding local search to 
the evolution. Experimental results shall be given in Section 4. 
The conclusions shall be drawn in Section 5, where an outlook 
shall be given as well. 

2. GLEAM AND TWO LOCAL SEARCH ALGORITHMS  

GLEAM  
GLEAM is an Evolutionary Algorithm of its own. It combines 
elements from classic Genetic Algorithms (GA) and Evolution 
Strategy (ES) with data structuring concepts from computer 
science. The coding is based on chromosomes consisting of 
problem-configurable gene types. The definition of a gene type 
constitutes its set of real, integer or Boolean parameters together 
with their ranges of values. There are different rules for con-
structing chromosomes from genes. If the chromosomes are of 
fixed length, exactly one gene of each gene type will go into the 
chromosome. Additionally, the order of genes can be defined to 
be relevant or not, dependent on the application. This affects 
mainly the set of applicable mutation operators. If the problem 
requires a dynamic set of parameters, as the already mentioned 
robot program development task or some design optimization 
problems do, the rule for dynamic chromosomes applies: Any 
number of genes, including zero, of every gene type can occur 
in a chromosome. Sub-structures of chromosomes within a 
chromosome are also possible. This provides the user with a 
flexible mechanism of naturally mapping his problem to the 
chromosomes and genes, often resulting in genotypes from 
which phenotypic properties can be derived easily. No artificial 
solutions are necessary contrary to the binary coding of classical 
GAs. Another advantage of this approach is that problem-
specific genetic operators can be added easily to the set of 
general ones, if desired.  

The type definition of genes allows mutation operators that take 
explicit restrictions into account. The relative mutation operator 
is inspired by the ES: At first, it is randomly chosen whether to 
increase or decrease the actual value and then, the range of 
possible alteration is calculated. This range is divided into ten 
equidistant classes, from which one is chosen by chance to 
define the actual range of mutation from which the value of 
modification is selected randomly. This is faster than calculat-
ing the normal distribution, as done with ES, but has a similar 
effect: Greater changes are less likely than smaller ones. In 
contrast to ES, however, there are no strategy parameters for 
mutation. Mutation is treated in a more general way as common 
with GAs or ES: Genes may be substituted by newly generated 



ones or deleted, moved or replicated in case of dynamic chro-
mosomes. Additionally, there are evolvable sub-structures 
within a gene, the so-called segments. They are subject to some 
sort of macro mutation and they form the bases for the cross-
over operators, which are similar to those of traditional GAs: 
Single and n-point crossover operators work on these segment 
boundaries.  

GLEAM uses the model of structured populations and local 
selection introduced by Gorges-Schleuter [11]. It can be applied 
easily to other types of EAs like ES [12]. Every individual of 
the population is placed on a ring and has its neighborhood of a 
fixed number of individuals on its right and on its left, called its 
deme. Reproduction takes place within these demes only. As the 
demes of nearby individuals are overlapping, the information 
can spread through the entire population, the velocity of propa-
gation, however being smaller than in case of panmictic popu-
lations. Thus, establishing of niches is much more likely and in 
a later stage of evolution, the niches begin to merge and evolve 
the best solution. This approach maintains diversity within a 
population for a longer time and produces good results in pre-
venting premature convergence. 

Local Search Algorithms 
Suitable local search algorithms must be derivation-free and 
able to handle restrictions in order to preserve the general appli-
cability of the resulting hybrid. Rosenbrock’s algorithm [13] 
was chosen, because it meets these requirements and is known 
to be a powerful local search procedure using one start point. 
Rosenbrock modified the well-known coordinate strategy by 
rotating the coordinate system so that it points in the direction 
that appears to be most favorable. For this purpose, the experi-
ence of failures and successes is gathered in the course of the 
iterations. The remaining directions are fixed to be normal to 
the first one and mutually orthogonal. A direct search is done 
parallel to the axes of the rotated coordinate system. The proce-
dure stops when the rate of changes of the main search direction 
decreases below a certain value and when the distances covered 
become too small.  

As EAs can deliver several results of more or less good quality, 
a local searcher which can exploit multiple start points can be 
expected to be useful, too. Thus, the COMPLEX method of Box 
[14] represents another candidate for hybridization. This method 
is based on the SIMPLEX strategy of Nelder and Mead [15], 
which was enhanced by Box such that it can handle constraints 
(COnstraind siMPLEX). The idea is to use a polyhedron of n+1 
to 2n vertices (n is the number of dimensions), whose worst 
vertex is reflected at the midpoint of the remaining vertices. The 
resulting line is lengthened by a factor of 1.3 resulting in an 
expansion of the polyhedron. If this leads to an improvement, 
the worst vertex is replaced by the new one, otherwise the poly-
hedron is contracted. The algorithm stops when no improve-
ment is achieved in five consecutive iterations. Schwefel gives a 
detailed description of the Rosenbrock algorithm and the 
COMPLEX method together with experimental results [16]. 

3. HYBRID GLEAM 

Methods of Hybridization 
For a generally applicable hybridization of an EA three general 
alternatives exist: 

1. Initialization of the start population 
This provides the evolution with valid solutions of more 
or less good quality to start with. 

2. Post-optimization of the EA results 
EAs are known to converge slowly. Thus, an improve-
ment can be expected by stopping the evolution after ap-
proaching the area of attraction of the global optimum and 
leaving the rest to the local search. But as Goldberg has 
pointed out, it is not easy to determine the appropriate 
switching point [17]. 

3. Direct integration 
It is also possible to locally optimize every or the best off-
spring of one mating only and select the best one for pos-
sible replacement of the parent. The offspring’s genotype 
can be updated (Lamarckian evolution) or left unchanged 
(Baldwinian evolution). As both methods usually applied 
to domain-specific local searchers are controversially dis-
cussed in literature [18, 19], this will also be investigated. 
Orvosh and Davis recommend to update 5% of the 
accepted offsprings only [20].  

Initialization can be combined with the other two methods, 
while a fusion of direct integration and post-optimization does 
not appear to be meaningful.  

Estimation of Stagnation 
Concerning real world problems neither the structure of the 
fitness landscape nor the optimum or its area of attraction are 
known in advance. But as computation of the fitness function 
frequently is time-consuming, it is possible to perform more 
sophisticated calculations to estimate when to switch from 
global to local search.  

Fig. 1 shows the typical progress of an EA run. Stagnation 
phases of the overall quality can be identified easily, e.g. A, B 
or C. But which one shall be selected for terminating the evolu-
tion? This cannot be derived from stagnation only. A better 
measure is the genotypic diversity within the population. If the 
population consists of a few genotypically different sub-popula-
tions (niches) only, which are of minor difference, then a stag-
nation can be expected, which provides little chance for greater 
progress. Hence, stagnation phases like in Fig. 1 may be used to 
trigger a check for niche constitution.  

GLEAM with its demes allows for a more sophisticated stagna-
tion indicator than counting generations without global pro-
gress. Generations without any local improvements within a 
deme (gdi) or, stronger, with no acceptance of an offspring in 
any deme (gda) can be counted instead.  

To estimate the genotypic diversity, distance measures for chro-
mosomes must be defined. Considering GLEAM with its uni-
versal chromosomes, measures for parameter distance, different 
gene ordering, and dynamic chromosomes are required. Dis-

 
 
 
 
 
 
 

Figure 1: Typical Progress during the Run of an EA  
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tance functions reported in literature are often too much spe-
cialized to the problem on hand [21, 22], rather than to serve as 
a solution here. Measures should be independent of the applica-
tion in so far as they must not be influenced by actual parameter 
ranges or the number of gene types and should be within a fixed 
range, e.g. between 0 and 1. 

Different measures are defined for the three chromosome types 
of GLEAM: 

• Fixed-length chromosomes with irrelevant gene order 
• Fixed-length chromosomes with relevant gene order 
• Variable-length chromosomes with relevant gene order 

The value of each measure varies between 0 (identity) and 1 
(maximal difference). The proofs of compliance with the four 
metric axioms are omitted here due to lack of space, but can be 
found on the following web page: 
http://www.iai.fzk.de/~jakob/hy_gleam/ 

Fixed-length Chromosomes with Irrelevant Gene 
Order: This is the simplest chromosome type, for which the 
calculation of the parameter distance ∆par is sufficient. It is 
defined as follows: 
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where Cj: chromosome j 
n: number of all parameters of all genes  
pari,j: i-th parameter of chromosome j 
ubi: upper bound of the i-th parameter  
lbi: lower bound of the i-th parameter 

Fixed-length Chromosomes with Relevant Gene 
Order: The positional distance pd1,2(Gi) of one gene Gi of two 
fixed-length chromosomes C1 and C2 is defined by their se-
quential numbering and the calculation of the absolute differ-
ence of their indices: 
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where Idxj(Gi): index of gene Gi within chromosome Cj 

This leads to the positional distance ∆pos: 
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where len: length of the chromosomes (len > 1) 
distmax: distance maximum of all genes within one 

chromosome 

The distance maximum distmax results when genes are shifted by 
a maximal number of positions. Two cases for odd and even 
chromosome lengths must be considered, see Eq (3.4). The 
calculation of this formula is omitted here due to lack of space 
and can be found on the above-mentioned web site. 
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The overall distance ∆ of fixed-length chromosomes with rele-
vant ordering is defined as the mean of ∆par and ∆pos. 

Variable-length Chromosomes: The goal is to 
determine the precise difference of similar chromosomes, while 
the exact value of discrepancy of dissimilar ones is of less 
interest. So the resulting measure may be inexact for more 

different chromosomes, thus resulting in a less complex formula 
which reduces the computational effort for the fairly frequent 
distance calculations. 

Let C1 be the longer chromosome and Gcom the set of genes 
common to C1 and C2. As genes in chromosomes of variable 
length may occur several times, they are treated in the sequence 
of their indexing. If Gcom is empty, the overall distance is set to 
the maximum value of 1. Otherwise, ∆par and ∆pos are defined 
over the set of common genes Gcom. distmax is taken from C2. 
This may lead to a to large value of ∆pos, which may increase 
above 1 especially for chromosomes with large differences. 
Thus, ∆pos is limited to 1 and the error is accepted, as it in-
creases with the chromosome difference.  

The difference of the presence of genes ∆gp in two non-empty 
chromosomes is calculated by dividing the number of genes not 
common to both chromosomes by twice the length of C1: 
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because of card (G2,diff) = l(Ci) − card (Gcom) 
where l(Ci): length of chromosome i 

G2,diff: set of genes of C2 not belonging to C1 

The overall distance ∆ of variable-length chromosomes is de-
fined as the mean of the three distances, with ∆gp being 
weighted three times, because ∆par and ∆pos are defined over the 
common set of genes only.  

Stop Criterion for the EA 
To reduce computational effort, the population is checked for 
niches only after the end of a generation when threshold values 
for gdi and gda are reached. For traditional EAs, these threshold 
values can be replaced by a threshold for generations without 
improvement. A niche is formed by adjacent individuals with a 
fitness greater than half of the global best and with ∆ smaller 
than the strategy parameter ε. The center individual of a niche is 
called its representative. Niches, whose representatives differ by 
less than ε, are merged. The stop criterion for evolution is the 
existence of a maximum of N niches, whose representatives do 
not differ by more than εpop. This stop criterion is controlled by 
the five exogenous strategy parameters, gdi, gda, ε, εpop, and N. 

4. FIRST EXPERIMENTS 

First experiments were carried out with four test functions and 
one real world application using GLEAM and the Rosenbrock 
algorithm. The following configurations are compared: 
GLEAM (GL) and Rosenbrock (RB) alone, Rosenbrock-ini-
tialized start population (RI), directly integrated Rosenbrock 
from the beginning (GR) or after a certain niching (GRN), and 
post-optimization with Rosenbrock (PO). For GLEAM the 
population size is varied. For Rosenbrock the termination crite-
rion controlling the precision, with which the (local) optimum is 
reached, is varied. Five threshold values for the overall normal-
ized change of 10-2, 10-4, 10-6, 10-8, and 10-9 are compared and 
labeled from s to xxl according to t-shirt sizes. A too great 
precision (i.e. a too small threshold value) implies the risk of no 
convergence and l is what practitioners start with.  



Strategy parameters for GR and GRN runs are the precision, the 
rule for local offspring optimization (b =  the best only, a = all), 
the rate of Lamarckian evolution in percent, and ri for Rosen-
brock pre-optimized start populations. For PO runs gda and gdi 
are set to 3, if not stated otherwise and there are three settings 
for ε and εpop:  e1 =  (ε=0.005, εpop=0.01), e2= (ε=0.002, εpop= 
0.005), and e3=(ε=0.001, εpop=0.003). The number of maximum 
niches N is varied with the population size: N=2 for 5 and 10, 
N=3 for 20 and 30, N=4 for 50 to 90, and N=5 for greater 
population sizes. For GRN runs gda and gdi are always set to 1. 

Test Cases 
Test functions have the advantage of fast calculation and, in 
most cases, scalable complexity due to a variable amount of 
parameters and the disadvantage of being somewhat artificial. 
So every new approach that passes test functions should be 
checked with some suited real world problems. The test func-
tions taken from GENEsYs [23] are: 

• Schwefel’s sphere  
Unimodal problem with 30 parameters in the range of [-1010, 
1010] and a target value of 0.01 known to be easy for ES, but 
hard for GA. 

• Generalized Rastrigin function  
Multimodal problem with 20 parameters in the range of  
[-5.12, 5.12] and a target value of 0.0001 known to be hard 
for ES. 

• Fletcher’s function  
Multimodal problem with 5 parameters in the range of [-3.14, 
3.14] and a target value of 0.00001. 

• Fractal function 
Multimodal problem according to Weierstrass and Mandel-
brot with 20 parameters in the range of [-5, 5] and an un-
known minimum. The target value of –0.5 is taken from [23]. 

The real world problem is the design optimization of a micro 
optical communication device considering fabrication toleran-
ces as described in detail in [24]. Despite of its only 3 parame-
ters, it involves some difficulty, because it is of extreme multi-
modal nature. 

Experimental Results 
The comparison is done on the basis of the success rate and the 
required evaluations averaged over 100 runs for each setting of 
the test functions and over 50 runs for the design problem. 

Schwefels’s Sphere: GLEAM yields a value of some 
thousand after 330000 generations and 220 million evaluations. 
Rosenbrock is successful only for xl (54%) or xxl precision  
100%), which is a non-converging setting for all other problems 
requiring 5404 and 6440 evaluations, respectively. Thus, both 
alone do not work properly for this problem. Pre-initialized start 
populations do not help much, but direct integration yields good 
results, as shown in Fig. 2. 

Lowering of the Lamarckian factor always produces worse 
results. Using higher precisions with the GR runs results in an 
optimum setting of l and a randomly initialized population of 
size 5 requiring 29600 evaluations only. Post-optimization is 
successful in about 80% of the runs and the rest is very close to 
the target value for different strategy parameter settings. The 
best run needs 14320 evaluations with the setting e2, N=2, and a 
population size of 10. 

Figure 2: GR Runs with Sphere 

Generalized Rastrigin Function: Rosenbrock cannot 
solve this problem with any precision, and for the precision of xl 
or higher convergence failures occur. GLEAM has no problems, 
but it even succeeds with extremely small population sizes and 
evaluation rates dropping simultaneously, as shown in Fig. 3. 
The author has not yet observed such a behavior with real world 
applications. Success rates should drop and evaluations should 
increase, if the population size is lowered below a certain 
amount. The best result is obtained with a GR run of medium 
precision and random initialization of the start population. 

Figure 3: GL, RI, and GR Runs with the Rastrigin Function 

It is surprising that both runs with Rosenbrock-initialized start 
populations do not perform better than randomly initialized 
runs. Both, lowering of the Lamarckian factor or local optimi-
zation all offsprings results in a drastic increase of evaluations 
(some millions) for all population sizes between 5 and 30. The 
GRN runs are remarkable, as their computational effort grows 
more slowly with increasing population sizes than in the other 
runs. The best GRN run is shown in Fig. 3. 

Figure 4: PO Runs with the Rastrigin Function 
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Post-optimization provides for sufficient success rates from a 
population size of 50 onwards, as shown in Fig. 4. But the 
required number of evaluations (columns) is larger than that of 
the best GR run. 

Fletcher’s Function: At the precision of m Rosen-
brock succeeds in solving Fletcher’s function in 10 out of 100 
runs only, needing 1090 evaluations. Lower precisions do not 
find any solution at all and higher ones do not converge. 
GLEAM shows a realistic behavior, see Fig. 5. 

Figure 5: GLEAM with Fletcher’s Function 

Both algorithms combined in GR, GRN, and RI settings provide 
for a significant improvement, as shown by their best runs 
presented in Fig 6. Again, very small population sizes yield best 
results when the Rosenbrock procedure at precision m is 
directly integrated in GLEAM. As with the Rastrigin function, 
both, lowering of the Lamarckian factor or local optimization of 
all offsprings leads to a clear impairment. Post-optimization 
yields success only with a rate of about 50% and therefore is not 
suited for this test case. 

Figure 6: RI, GR, and GRN Runs with Fletcher’s Function 

Figure 7: Best GL, RI, GR, and GRN Runs with the Fractal 
Function 

Fractal Function: With the fractal function GLEAM 
shows a similar realistic behavior as with Fletcher’s function. 
Rosenbrock provides for no success at all. Fig. 7 compares the 
best settings for GL, RI, GR, and GRN. The advantages of 
adding the local search are not as big as with Fletcher’s func-
tion, which can be attributed to the fact that there is no well-
suited smooth surface for the local search. Post-optimization 
does not work well with this test function. 

Micro Optical Design Problem: Rosenbrock has a 
success rate of 15% with high precision, but fails to converge 
with higher ones. As shown in Fig. 8, GLEAM yields good 
success rates starting from a population size of 150 and works 
reliably from 240 onwards. As the average number of required 
generations varies between 56 and 7, there is not as much room 
for drastic improvements as with the test functions. The typical 
behavior of GLEAM with too low populations sizes can also be 
observed in this case. 

Pre-initialization works well for population sizes of 20 or 
higher, but more than twice as many evaluations are needed 
than without. Post-optimization works best (4633 evaluations) 
with the e2 setting, precision l, and a population size of 50, but 
success can be achieved in 84% of the runs only. 

Figure 8: GLEAM vs. Rosenbrock (Design Optimization) 

Better results than with GLEAM alone can be obtained from 
GR and GRN runs, as shown in Fig. 9. It is remarkable that this 
is the only case where Baldwinian evolution works comparably 
well or even a little better than the Lamarckian one (Lamarckian 
rates 5% and 0%). 

Figure 9: GR and GRN Runs (Design Optimization) 

5. CONCLUSIONS AND OUTLOOK 

The five test cases show that significant improvements can be 
achieved when local search is added to the evolutionary one. 
Direct integration of the local searcher in the reproduction phase 
of GLEAM always works well, but post-optimization turns out 
to be not reliable enough to yield a robust solution. The niche 
detection procedure introduced was used successfully for de-
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layed adding of the local search within the direct integration 
approach. The following improvements can be stated: 
• Schwefel’s sphere 

This unimodal test function cannot be solved reliably by 
either procedure alone, but very well with direct integration. 

• Generalized Rastrigin function 
Direct integration works about as well as GLEAM alone. But 
GLEAM still works well with untypically small population 
sizes, which does not only explain this observation, but re-
duces the value of this test function working as a proper 
benchmark. 

• Fletcher’s function 
A drastic improvement could be achieved: Delayed direct in-
tegration works about 47 times faster than the evolution alone. 

• Fractal function 
Good improvements could be observed again with direct 
integration: A speed-up factor of 4.5 is reached. 

• Design optimization example 
Delayed direct integration is 2.4 faster than evolution alone.  

The above figures are the result of a comparison of the best runs 
with 100% success rates between GLEAM and the hybridiza-
tion by (delayed) direct integration. However, it is never known 
in advance which is the best hybridization and its parameteriza-
tion for a problem on hand. From the complete data material, it 
can be concluded that delayed direct integration with a popula-
tion size of 5, or safer 10, and a setting of e2 may be a good 
choice. In Fig. 10, the improvements of the best settings are 
compared with this conclusion. 

Further work is presently being performed in order to include 
the COMPLEX algorithm in HyGLEAM and to investigate the 
effect of hybridization on other suited real world problems. 

Figure 10: Comparison of the Speed-up of the Best Runs and 
2 Recommended Settings 
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