

This paper was first published in: N. Callaos, S. Esquivel, J. Burge (eds.): World Multiconference on Systematics
Cybernetics and Informatics (SCI 2001), IIIS and IEEE, Venezuela, Vol.3, S.187-192, 2001.

HyGLEAM:
Hybrid GeneraL purpose Evolutionary Algorithm and Method

Wilfried Jakob
Institute for Applied Computer Science, Forschungszentrum Karlsruhe

D-76021 Karlsruhe, Germany, P.O.Box 3640
Email: jakob@iai.fzk.de

ABSTRACT

When applied to real world problems, the powerful optimization
tool of Evolutionary Algorithms frequently turns out to be too
time-consuming due to expensive fitness calculations often
based on run-time-intensive simulations. Incorporating domain-
specific knowledge by problem-tailored heuristics is a com-
monly used solution, but results in a problem-specific tool. This
article describes the approach of combining the Evolutionary
Algorithm GLEAM with general local search strategies to
obtain the best of both procedures by avoiding their drawbacks:
HyGLEAM, a robust, but never the less fast “general-purpose”
optimization tool. The methods introduced can be applied to
other Evolutionary Algorithms with minor modifications being
required only. First experiments with test functions and a real
world design optimization problem produced promising results.

Keywords: Optimization, planning, Evolutionary Algorithms,
simulation-based optimization, “general-purpose” optimization.

1. INTRODUCTION

The Evolutionary Algorithm (EA) GLEAM (General Learning
Evolutionary Algorithm and Method, formerly Genetic Learn-
ing Algorithm and Method) introduced by Blume [1] was suc-
cessfully applied to a broad range of real world applications in
the last ten years: Collision-free robot path planning and pro-
gram development [1,2], task planning and learning [3], sched-
uling [4], resource optimization [5], design optimization [6, 7]
or traverse path minimization in a concrete precasting plant [8]
to mention only the most important.

One common experience gained from these applications is that
the time available for identifying a solution is always too short.
Often applications were possible only, because non-optimal
solutions obtained in the given time frame were better than the
state of the art and, thus, an improvement. But it is not satisfy-
ing to win only because common practice is weak enough so
that your half-way finished solutions are performing better.
Even in the area of design optimization, where it is often no
problem to do runs over night, more sophisticated and precise
simulation models require so much computing time that again
there is a demand for fewer fitness calculations [9]. The goal of
a reduced number of evaluations is usually achieved by hybridi-
zation with problem-specific knowledge or heuristics ([10],
most practitioner papers in last PPSN, ICGA, GECCO etc.
conferences). This partly speeds up the performance drastically,
but always results in a more or less problem-specific solution.

HyGLEAM is aimed at overcoming this limitation by improv-
ing the performance of the evolutionary search, while main-
taining the robustness, the global search, and the general appli-
cability of EAs in the resulting hybrid. In Section 2, GLEAM

and the local search strategies selected for hybridization shall be
introduced briefly. The third Section shall describe different
methods of combining the two classes of algorithms and intro-
duce a new method of estimating good points of time for
switching from global to local search or adding local search to
the evolution. Experimental results shall be given in Section 4.
The conclusions shall be drawn in Section 5, where an outlook
shall be given as well.

2. GLEAM AND TWO LOCAL SEARCH ALGORITHMS

GLEAM
GLEAM is an Evolutionary Algorithm of its own. It combines
elements from classic Genetic Algorithms (GA) and Evolution
Strategy (ES) with data structuring concepts from computer
science. The coding is based on chromosomes consisting of
problem-configurable gene types. The definition of a gene type
constitutes its set of real, integer or Boolean parameters together
with their ranges of values. There are different rules for con-
structing chromosomes from genes. If the chromosomes are of
fixed length, exactly one gene of each gene type will go into the
chromosome. Additionally, the order of genes can be defined to
be relevant or not, dependent on the application. This affects
mainly the set of applicable mutation operators. If the problem
requires a dynamic set of parameters, as the already mentioned
robot program development task or some design optimization
problems do, the rule for dynamic chromosomes applies: Any
number of genes, including zero, of every gene type can occur
in a chromosome. Sub-structures of chromosomes within a
chromosome are also possible. This provides the user with a
flexible mechanism of naturally mapping his problem to the
chromosomes and genes, often resulting in genotypes from
which phenotypic properties can be derived easily. No artificial
solutions are necessary contrary to the binary coding of classical
GAs. Another advantage of this approach is that problem-
specific genetic operators can be added easily to the set of
general ones, if desired.

The type definition of genes allows mutation operators that take
explicit restrictions into account. The relative mutation operator
is inspired by the ES: At first, it is randomly chosen whether to
increase or decrease the actual value and then, the range of
possible alteration is calculated. This range is divided into ten
equidistant classes, from which one is chosen by chance to
define the actual range of mutation from which the value of
modification is selected randomly. This is faster than calculat-
ing the normal distribution, as done with ES, but has a similar
effect: Greater changes are less likely than smaller ones. In
contrast to ES, however, there are no strategy parameters for
mutation. Mutation is treated in a more general way as common
with GAs or ES: Genes may be substituted by newly generated

ones or deleted, moved or replicated in case of dynamic chro-
mosomes. Additionally, there are evolvable sub-structures
within a gene, the so-called segments. They are subject to some
sort of macro mutation and they form the bases for the cross-
over operators, which are similar to those of traditional GAs:
Single and n-point crossover operators work on these segment
boundaries.

GLEAM uses the model of structured populations and local
selection introduced by Gorges-Schleuter [11]. It can be applied
easily to other types of EAs like ES [12]. Every individual of
the population is placed on a ring and has its neighborhood of a
fixed number of individuals on its right and on its left, called its
deme. Reproduction takes place within these demes only. As the
demes of nearby individuals are overlapping, the information
can spread through the entire population, the velocity of propa-
gation, however being smaller than in case of panmictic popu-
lations. Thus, establishing of niches is much more likely and in
a later stage of evolution, the niches begin to merge and evolve
the best solution. This approach maintains diversity within a
population for a longer time and produces good results in pre-
venting premature convergence.

Local Search Algorithms
Suitable local search algorithms must be derivation-free and
able to handle restrictions in order to preserve the general appli-
cability of the resulting hybrid. Rosenbrock’s algorithm [13]
was chosen, because it meets these requirements and is known
to be a powerful local search procedure using one start point.
Rosenbrock modified the well-known coordinate strategy by
rotating the coordinate system so that it points in the direction
that appears to be most favorable. For this purpose, the experi-
ence of failures and successes is gathered in the course of the
iterations. The remaining directions are fixed to be normal to
the first one and mutually orthogonal. A direct search is done
parallel to the axes of the rotated coordinate system. The proce-
dure stops when the rate of changes of the main search direction
decreases below a certain value and when the distances covered
become too small.

As EAs can deliver several results of more or less good quality,
a local searcher which can exploit multiple start points can be
expected to be useful, too. Thus, the COMPLEX method of Box
[14] represents another candidate for hybridization. This method
is based on the SIMPLEX strategy of Nelder and Mead [15],
which was enhanced by Box such that it can handle constraints
(COnstraind siMPLEX). The idea is to use a polyhedron of n+1
to 2n vertices (n is the number of dimensions), whose worst
vertex is reflected at the midpoint of the remaining vertices. The
resulting line is lengthened by a factor of 1.3 resulting in an
expansion of the polyhedron. If this leads to an improvement,
the worst vertex is replaced by the new one, otherwise the poly-
hedron is contracted. The algorithm stops when no improve-
ment is achieved in five consecutive iterations. Schwefel gives a
detailed description of the Rosenbrock algorithm and the
COMPLEX method together with experimental results [16].

3. HYBRID GLEAM

Methods of Hybridization
For a generally applicable hybridization of an EA three general
alternatives exist:

1. Initialization of the start population
This provides the evolution with valid solutions of more
or less good quality to start with.

2. Post-optimization of the EA results
EAs are known to converge slowly. Thus, an improve-
ment can be expected by stopping the evolution after ap-
proaching the area of attraction of the global optimum and
leaving the rest to the local search. But as Goldberg has
pointed out, it is not easy to determine the appropriate
switching point [17].

3. Direct integration
It is also possible to locally optimize every or the best off-
spring of one mating only and select the best one for pos-
sible replacement of the parent. The offspring’s genotype
can be updated (Lamarckian evolution) or left unchanged
(Baldwinian evolution). As both methods usually applied
to domain-specific local searchers are controversially dis-
cussed in literature [18, 19], this will also be investigated.
Orvosh and Davis recommend to update 5% of the
accepted offsprings only [20].

Initialization can be combined with the other two methods,
while a fusion of direct integration and post-optimization does
not appear to be meaningful.

Estimation of Stagnation
Concerning real world problems neither the structure of the
fitness landscape nor the optimum or its area of attraction are
known in advance. But as computation of the fitness function
frequently is time-consuming, it is possible to perform more
sophisticated calculations to estimate when to switch from
global to local search.

Fig. 1 shows the typical progress of an EA run. Stagnation
phases of the overall quality can be identified easily, e.g. A, B
or C. But which one shall be selected for terminating the evolu-
tion? This cannot be derived from stagnation only. A better
measure is the genotypic diversity within the population. If the
population consists of a few genotypically different sub-popula-
tions (niches) only, which are of minor difference, then a stag-
nation can be expected, which provides little chance for greater
progress. Hence, stagnation phases like in Fig. 1 may be used to
trigger a check for niche constitution.

GLEAM with its demes allows for a more sophisticated stagna-
tion indicator than counting generations without global pro-
gress. Generations without any local improvements within a
deme (gdi) or, stronger, with no acceptance of an offspring in
any deme (gda) can be counted instead.

To estimate the genotypic diversity, distance measures for chro-
mosomes must be defined. Considering GLEAM with its uni-
versal chromosomes, measures for parameter distance, different
gene ordering, and dynamic chromosomes are required. Dis-

Figure 1: Typical Progress during the Run of an EA
generations

quality

(usually unknown) optimum

A

B C

tance functions reported in literature are often too much spe-
cialized to the problem on hand [21, 22], rather than to serve as
a solution here. Measures should be independent of the applica-
tion in so far as they must not be influenced by actual parameter
ranges or the number of gene types and should be within a fixed
range, e.g. between 0 and 1.

Different measures are defined for the three chromosome types
of GLEAM:

• Fixed-length chromosomes with irrelevant gene order
• Fixed-length chromosomes with relevant gene order
• Variable-length chromosomes with relevant gene order

The value of each measure varies between 0 (identity) and 1
(maximal difference). The proofs of compliance with the four
metric axioms are omitted here due to lack of space, but can be
found on the following web page:
http://www.iai.fzk.de/~jakob/hy_gleam/

Fixed-length Chromosomes with Irrelevant Gene
Order: This is the simplest chromosome type, for which the
calculation of the parameter distance ∆par is sufficient. It is
defined as follows:

() ∑
= −

−
=∆

n

i ii

ii
par lbub

parpar

n
CC

1

2,1,
21

1
, (3.1)

where Cj: chromosome j
n: number of all parameters of all genes
pari,j: i-th parameter of chromosome j
ubi: upper bound of the i-th parameter
lbi: lower bound of the i-th parameter

Fixed-length Chromosomes with Relevant Gene
Order: The positional distance pd1,2(Gi) of one gene Gi of two
fixed-length chromosomes C1 and C2 is defined by their se-
quential numbering and the calculation of the absolute differ-
ence of their indices:

() () ()iii GIdxGIdxGpd 212,1 −= (3.2)

where Idxj(Gi): index of gene Gi within chromosome Cj

This leads to the positional distance ∆pos:

() ()∑
=

=∆
len

i
ipos Gpd

dist
CC

1
2,1

max
21

1
, (3.3)

where len: length of the chromosomes (len > 1)
distmax: distance maximum of all genes within one

chromosome

The distance maximum distmax results when genes are shifted by
a maximal number of positions. Two cases for odd and even
chromosome lengths must be considered, see Eq (3.4). The
calculation of this formula is omitted here due to lack of space
and can be found on the above-mentioned web site.

2

2

max,
len

dist even =
2

12

max,
−

=
len

dist odd (3.4)

The overall distance ∆ of fixed-length chromosomes with rele-
vant ordering is defined as the mean of ∆par and ∆pos.

Variable-length Chromosomes: The goal is to
determine the precise difference of similar chromosomes, while
the exact value of discrepancy of dissimilar ones is of less
interest. So the resulting measure may be inexact for more

different chromosomes, thus resulting in a less complex formula
which reduces the computational effort for the fairly frequent
distance calculations.

Let C1 be the longer chromosome and Gcom the set of genes
common to C1 and C2. As genes in chromosomes of variable
length may occur several times, they are treated in the sequence
of their indexing. If Gcom is empty, the overall distance is set to
the maximum value of 1. Otherwise, ∆par and ∆pos are defined
over the set of common genes Gcom. distmax is taken from C2.
This may lead to a to large value of ∆pos, which may increase
above 1 especially for chromosomes with large differences.
Thus, ∆pos is limited to 1 and the error is accepted, as it in-
creases with the chromosome difference.

The difference of the presence of genes ∆gp in two non-empty
chromosomes is calculated by dividing the number of genes not
common to both chromosomes by twice the length of C1:

() ()() ()
()1

,21

2 Cl

GcardGcardCl diffcom
gp ⋅

+−
=∆

()
() ∅≠−= com

com G
Cl
Gcard

1
1 (3.9)

because of card (G2,diff) = l(Ci) − card (Gcom)
where l(Ci): length of chromosome i

G2,diff: set of genes of C2 not belonging to C1

The overall distance ∆ of variable-length chromosomes is de-
fined as the mean of the three distances, with ∆gp being
weighted three times, because ∆par and ∆pos are defined over the
common set of genes only.

Stop Criterion for the EA
To reduce computational effort, the population is checked for
niches only after the end of a generation when threshold values
for gdi and gda are reached. For traditional EAs, these threshold
values can be replaced by a threshold for generations without
improvement. A niche is formed by adjacent individuals with a
fitness greater than half of the global best and with ∆ smaller
than the strategy parameter ε. The center individual of a niche is
called its representative. Niches, whose representatives differ by
less than ε, are merged. The stop criterion for evolution is the
existence of a maximum of N niches, whose representatives do
not differ by more than εpop. This stop criterion is controlled by
the five exogenous strategy parameters, gdi, gda, ε, εpop, and N.

4. FIRST EXPERIMENTS

First experiments were carried out with four test functions and
one real world application using GLEAM and the Rosenbrock
algorithm. The following configurations are compared:
GLEAM (GL) and Rosenbrock (RB) alone, Rosenbrock-ini-
tialized start population (RI), directly integrated Rosenbrock
from the beginning (GR) or after a certain niching (GRN), and
post-optimization with Rosenbrock (PO). For GLEAM the
population size is varied. For Rosenbrock the termination crite-
rion controlling the precision, with which the (local) optimum is
reached, is varied. Five threshold values for the overall normal-
ized change of 10-2, 10-4, 10-6, 10-8, and 10-9 are compared and
labeled from s to xxl according to t-shirt sizes. A too great
precision (i.e. a too small threshold value) implies the risk of no
convergence and l is what practitioners start with.

Strategy parameters for GR and GRN runs are the precision, the
rule for local offspring optimization (b = the best only, a = all),
the rate of Lamarckian evolution in percent, and ri for Rosen-
brock pre-optimized start populations. For PO runs gda and gdi
are set to 3, if not stated otherwise and there are three settings
for ε and εpop: e1 = (ε=0.005, εpop=0.01), e2= (ε=0.002, εpop=
0.005), and e3=(ε=0.001, εpop=0.003). The number of maximum
niches N is varied with the population size: N=2 for 5 and 10,
N=3 for 20 and 30, N=4 for 50 to 90, and N=5 for greater
population sizes. For GRN runs gda and gdi are always set to 1.

Test Cases
Test functions have the advantage of fast calculation and, in
most cases, scalable complexity due to a variable amount of
parameters and the disadvantage of being somewhat artificial.
So every new approach that passes test functions should be
checked with some suited real world problems. The test func-
tions taken from GENEsYs [23] are:

• Schwefel’s sphere
Unimodal problem with 30 parameters in the range of [-1010,
1010] and a target value of 0.01 known to be easy for ES, but
hard for GA.

• Generalized Rastrigin function
Multimodal problem with 20 parameters in the range of
[-5.12, 5.12] and a target value of 0.0001 known to be hard
for ES.

• Fletcher’s function
Multimodal problem with 5 parameters in the range of [-3.14,
3.14] and a target value of 0.00001.

• Fractal function
Multimodal problem according to Weierstrass and Mandel-
brot with 20 parameters in the range of [-5, 5] and an un-
known minimum. The target value of –0.5 is taken from [23].

The real world problem is the design optimization of a micro
optical communication device considering fabrication toleran-
ces as described in detail in [24]. Despite of its only 3 parame-
ters, it involves some difficulty, because it is of extreme multi-
modal nature.

Experimental Results
The comparison is done on the basis of the success rate and the
required evaluations averaged over 100 runs for each setting of
the test functions and over 50 runs for the design problem.

Schwefels’s Sphere: GLEAM yields a value of some
thousand after 330000 generations and 220 million evaluations.
Rosenbrock is successful only for xl (54%) or xxl precision
100%), which is a non-converging setting for all other problems
requiring 5404 and 6440 evaluations, respectively. Thus, both
alone do not work properly for this problem. Pre-initialized start
populations do not help much, but direct integration yields good
results, as shown in Fig. 2.

Lowering of the Lamarckian factor always produces worse
results. Using higher precisions with the GR runs results in an
optimum setting of l and a randomly initialized population of
size 5 requiring 29600 evaluations only. Post-optimization is
successful in about 80% of the runs and the rest is very close to
the target value for different strategy parameter settings. The
best run needs 14320 evaluations with the setting e2, N=2, and a
population size of 10.

Figure 2: GR Runs with Sphere

Generalized Rastrigin Function: Rosenbrock cannot
solve this problem with any precision, and for the precision of xl
or higher convergence failures occur. GLEAM has no problems,
but it even succeeds with extremely small population sizes and
evaluation rates dropping simultaneously, as shown in Fig. 3.
The author has not yet observed such a behavior with real world
applications. Success rates should drop and evaluations should
increase, if the population size is lowered below a certain
amount. The best result is obtained with a GR run of medium
precision and random initialization of the start population.

Figure 3: GL, RI, and GR Runs with the Rastrigin Function

It is surprising that both runs with Rosenbrock-initialized start
populations do not perform better than randomly initialized
runs. Both, lowering of the Lamarckian factor or local optimi-
zation all offsprings results in a drastic increase of evaluations
(some millions) for all population sizes between 5 and 30. The
GRN runs are remarkable, as their computational effort grows
more slowly with increasing population sizes than in the other
runs. The best GRN run is shown in Fig. 3.

Figure 4: PO Runs with the Rastrigin Function

40

60

80

100

120

140

160

180

200

5 10 20 30 40 population size

ev
al

ua
tio

ns
 (t

ho
us

an
d) GL

RI,l

GR,s,b,
100

GR,m,b,
100

GR,m,b,
100,ri

GRN,m,b,
100,e3

0

20

40

60

80

100

120

10 20 30 50 70 population size

ev
al

ua
tio

ns
 (t

ho
us

an
d)

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s

[%
]

e1

e2

e3

e1

e2

e3

0

50

100

150

200

250

300

350

400

5 10 20 30 population size

ev
al

ua
tio

ns
 (t

ho
us

an
d)

GR,s,b,100

GR,s,a,100

GR,m,b,100,ri

GR,l,b,100,ri

Post-optimization provides for sufficient success rates from a
population size of 50 onwards, as shown in Fig. 4. But the
required number of evaluations (columns) is larger than that of
the best GR run.

Fletcher’s Function: At the precision of m Rosen-
brock succeeds in solving Fletcher’s function in 10 out of 100
runs only, needing 1090 evaluations. Lower precisions do not
find any solution at all and higher ones do not converge.
GLEAM shows a realistic behavior, see Fig. 5.

Figure 5: GLEAM with Fletcher’s Function

Both algorithms combined in GR, GRN, and RI settings provide
for a significant improvement, as shown by their best runs
presented in Fig 6. Again, very small population sizes yield best
results when the Rosenbrock procedure at precision m is
directly integrated in GLEAM. As with the Rastrigin function,
both, lowering of the Lamarckian factor or local optimization of
all offsprings leads to a clear impairment. Post-optimization
yields success only with a rate of about 50% and therefore is not
suited for this test case.

Figure 6: RI, GR, and GRN Runs with Fletcher’s Function

Figure 7: Best GL, RI, GR, and GRN Runs with the Fractal
Function

Fractal Function: With the fractal function GLEAM
shows a similar realistic behavior as with Fletcher’s function.
Rosenbrock provides for no success at all. Fig. 7 compares the
best settings for GL, RI, GR, and GRN. The advantages of
adding the local search are not as big as with Fletcher’s func-
tion, which can be attributed to the fact that there is no well-
suited smooth surface for the local search. Post-optimization
does not work well with this test function.

Micro Optical Design Problem: Rosenbrock has a
success rate of 15% with high precision, but fails to converge
with higher ones. As shown in Fig. 8, GLEAM yields good
success rates starting from a population size of 150 and works
reliably from 240 onwards. As the average number of required
generations varies between 56 and 7, there is not as much room
for drastic improvements as with the test functions. The typical
behavior of GLEAM with too low populations sizes can also be
observed in this case.

Pre-initialization works well for population sizes of 20 or
higher, but more than twice as many evaluations are needed
than without. Post-optimization works best (4633 evaluations)
with the e2 setting, precision l, and a population size of 50, but
success can be achieved in 84% of the runs only.

Figure 8: GLEAM vs. Rosenbrock (Design Optimization)

Better results than with GLEAM alone can be obtained from
GR and GRN runs, as shown in Fig. 9. It is remarkable that this
is the only case where Baldwinian evolution works comparably
well or even a little better than the Lamarckian one (Lamarckian
rates 5% and 0%).

Figure 9: GR and GRN Runs (Design Optimization)

5. CONCLUSIONS AND OUTLOOK

The five test cases show that significant improvements can be
achieved when local search is added to the evolutionary one.
Direct integration of the local searcher in the reproduction phase
of GLEAM always works well, but post-optimization turns out
to be not reliable enough to yield a robust solution. The niche
detection procedure introduced was used successfully for de-

0

500

1000

1500

2000

2500

3000

3500

4000

100 200 300 400 500 600 700 population size

ev
al

ua
tio

ns

(t
ho

us
an

d)

88

90

92

94

96

98

100

su
cc

es
s

[%
]

eval

succ

0

10

20

30

40

50

60

70

5 10 20 30 50 population size

ev
al

ua
tio

ns
 (t

ho
us

an
d)

RI,m

GR,s,b,100

GR,m,b,100

GR,m,b,
100,ri

GRN,m,b,
100,e2

0

20

40

60

80

100

120

140

160

180

5 10 20 30 40 population size

ev
al

ua
tio

ns
 (t

ho
us

an
d)

GL

RI,l

GR,s,b,
100

GRN,m,b,
100,e2

0

2000

4000

6000

8000

10000

12000

14000

16000

90
s

120
m

150
l

180 210 240 270 300
pop. size / precision

ev
al

ua
tio

ns

0
10
20
30
40
50
60
70
80
90
100

su
cc

es
s

[%
]

RB

GL

RB
succ

GL
succ

2000

4000

6000

8000

10000

12000

5 10 20 30 populations size

ev
al

ua
tio

ns

GR,s,b,
100

GR,m,b,
100

GR,m,b,5

GR,m,b,0

GRN,l,b,
100,e2

layed adding of the local search within the direct integration
approach. The following improvements can be stated:
• Schwefel’s sphere

This unimodal test function cannot be solved reliably by
either procedure alone, but very well with direct integration.

• Generalized Rastrigin function
Direct integration works about as well as GLEAM alone. But
GLEAM still works well with untypically small population
sizes, which does not only explain this observation, but re-
duces the value of this test function working as a proper
benchmark.

• Fletcher’s function
A drastic improvement could be achieved: Delayed direct in-
tegration works about 47 times faster than the evolution alone.

• Fractal function
Good improvements could be observed again with direct
integration: A speed-up factor of 4.5 is reached.

• Design optimization example
Delayed direct integration is 2.4 faster than evolution alone.

The above figures are the result of a comparison of the best runs
with 100% success rates between GLEAM and the hybridiza-
tion by (delayed) direct integration. However, it is never known
in advance which is the best hybridization and its parameteriza-
tion for a problem on hand. From the complete data material, it
can be concluded that delayed direct integration with a popula-
tion size of 5, or safer 10, and a setting of e2 may be a good
choice. In Fig. 10, the improvements of the best settings are
compared with this conclusion.

Further work is presently being performed in order to include
the COMPLEX algorithm in HyGLEAM and to investigate the
effect of hybridization on other suited real world problems.

Figure 10: Comparison of the Speed-up of the Best Runs and
2 Recommended Settings

6. REFERENCES
[1] C. Blume: GLEAM - A System for Intuitive Learning. In:

H.P. Schwefel, R. Männer (eds.): Proc. of PPSN I, pp.48-
54, LNCS 496, Berlin: Springer, 1990.

[2] C. Blume: Optimized Collision Free Robot Move State-
ment Generation by the Evolutionary Software GLEAM.
In: S. Cagnoni et al. (eds.): Real-World Applications of
Evolutionary Computing, pp.327-338, Proc. of EvoWork-
shops 2000, Springer, 2000.

[3] W. Jakob, M. Gorges-Schleuter, C. Blume: Application of
Genetic Algorithms to Task Planning and Learning. In: R.
Männer, B. Manderick (eds.): Proc. PPSN II, pp.291-300,
Amsterdam: North-Holland, 1992.

[4] C. Blume, W. Jakob: Cutting Down Production Costs by a
New Optimization Method. Proc. of the Japan - U.S.A.

Symposium on Flexible Automation, ASME, 1994.
[5] C. Blume, M. Gerbe: Deutliche Senkung der Produktions-

kosten durch Optimierung des Ressourceneinsatzes. atp 36,
5/94, pp.25-29, München: Oldenbourg (in German), 1994.

[6] W. Jakob, S. Meinzer, A. Quinte, W. Süß, M. Gorges-
Schleuter, H. Eggert: Partial Automated Design Optimiza-
tion Based on Adaptive Search Techniques. In: I. C. Par-
mee (ed.): Adaptive Computing in Engineering Design and
Control ’96, pp.236-241, PEDC, Univ. of Plymouth, 1996.

[7] W. Jakob, M. Gorges-Schleuter, I. Sieber: Comparison of
Evolutionary Algorithms for Design Optimization. In:
A.Eiben, et al. (eds.): Proc. PPSN V, LNCS 1498, pp.917-
926, Springer, 1998.

[8] C. Blume: Optimization in Concrete Precasting Plants by
Evolutionary Computation. In: D. Whitley et al. (eds.):
Proc. GECCO 2000, Vol. Late Papers, pp.43-50, Morgan
Kaufmann, 2000.

9] W. Jakob, A. Quinte, K.-P. Scherer, H. Eggert: Optimiza-
tion of a Micro Fluidic Component Using a Parallel Evo-
lutionary Algorithm and Simulation Based on Discrete
Element Methods. Submitted to OPTI’2001, 2001.

[10] L. Davis (ed.): Handbook of Genetic Algorithms. New
York: Van Nostrand Reinhold, 1991.

[11] M. Gorges-Schleuter: Genetic Algorithms and Population
Structures - A Massively Parallel Algorithm. Doctoral the-
sis, University of Dortmund, Germany, 1990.

[12] M. Gorges-Schleuter: A Comparative Study of Global and
Local Selection in Evolution Strategies. In: A. Eiben et al.
(eds.): Proc. PPSN V, LNCS 1498, pp.367-377, Berlin:
Springer, 1998.

[13] H. H. Rosenbrock: An Automatic Method for Finding the
Greatest or Least Value of a Function. Comp. Journ. 3,
pp.175-184, 1960.

[14] M. J. Box: A New Method of Constrained Optimization
and a Comparison with Other Methods. Comp. Journal 8,
pp.42-52, 1965.

[15] J. A. Nelder, R. Mead: A Simplex Method for Function
Minimization. Comp. Journal 7, pp.308-313, 1965.

[16] H.-P. Schwefel: Evolution and Optimum Seeking. John
Wiley & Sons, Chichester, 1995.

[17] D. E. Goldberg, S. Voessner: Optimizing Global-Local
Search Hybrids. In: W. Banzhaf et al.: Proc. GECCO’99,
pp.220-228, San Mateo, CA: Morgan Kaufmann, 1999.

[18] D. Whitley, V. Gordon, K. Mathias: Lamarckian Evolu-
tion, The Baldwin Effect and Function Optimization. In: Y.
Davidor et al.: Proc. PPSN III, LNCS 866, pp.6-14, Berlin:
Springer, 1994.

[19] F. Gruau, D. Whitley: Adding Learning to the Cellular
Development of Neural Networks: Evolution and the
Baldwin Effect. Evol. Comp. 1, vol.3, pp.213-233, 1993.

[20] D. Orvosh, L. Davis: Shall We Repair? Genetic Algo-
rithms, Comb. Opt., and Feasibility Constraints . In:
S.Forrest (ed): 5th ICGA, pp.650, M. Kaufmann, 1993.

[21] S. Ronald: Distance Functions for Order Based Encodings.
In: ICEC’97, IEEE, pp.46-54, 1997.

[22] K. Tagawa, Y. Kanzaki, D. Okada, K. Inoue, H. Haneda: A
New Metric Function and Harmonic Crossover for Sym-
metric and Asymmetric Traveling Salesman Problems. In:
ICEC’98, IEEE, pp.822-827, 1998.

[23] T. Bäck: GENEsYs 1.0,
ftp://lumpi.informatik.uni-dortmund.de/pub/GA

[24] I. Sieber, H. Eggert, H. Guth, W. Jakob: Design Simulation
and Optimization of Microoptical Components . In: Novel
Optical Systems and Large-Aperture Imaging, SPIE´s 43rd
Annual Meeting, SPIE Vol.3430, pp.138-149, 1998.

0

5

10

15

20

25

30

35

40

45

50

Rastrigin Fletcher fractal design

sp
ee

d-
up

GL best / best

GL best /
GRN,e2,pop=5

GL best /
GRN,e2,pop=10

