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Abstract. Most successful applications of Evolutionary Algorithms to real world 
problems employ some sort of hybridization, thus speeding up the optimization 
process but turning the general applicable Evolutionary Algorithm into a prob-
lem-specific tool. This paper proposes to combine Evolutionary Algorithms and 
generally applicable local searchers to get the best of both approaches: A fast, 
but robust tool for global optimization. The approach consists of four different 
kinds of hybridization and combinations thereof, which are tested and compared 
using five commonly used benchmark functions and three real world applica-
tions. The results show the superiority of two hybridization types, with which 
reductions in the number evaluations of up to a factor of 100 could be achieved. 

1   Motivation 

When looking to the papers reporting about real world applications at the major EA 
conferences in the last ten years, it becomes clear that nearly all of them used some 
sort of hybridization with problem-specific local searchers or they applied other 
means of inserting problem-specific knowledge into the evolutionary process like e.g. 
special genetic operators. The commonly paid price for the achieved speed-up is the 
lost in generality of the resulting hybrid. 

Already Holland suggested in 1975 to use GAs as a kind of preprocessor and 
finalize the optimization with local searchers [1]. 24 years later Goldberg and Voess-
ner [2] pointed out that is not easy to find an appropriate procedure for distributing the 
computing time between global and local search and came to the conclusion that this 
is still an open question. They also stressed that nearly all serious EA applications use 
some sort of hybridization but that there is still a lack of investigations on suitable 
types of integration, which are not related to specific applications or limited to certain 
problem fields. 

This paper contributes to this discussion by  

• using only general applicable local searchers, 
• comparing three well-known types of hybridization, a modified form of one type, 

and meaningful combinations of them 
• introducing a new method of controlling the interaction of the basic algorithms, and 

• testing the approach with a wide range of different types of applications to check 
the generality of the approach. 



2 Methods of Hybridization 

For a generally applicable hybridization of an EA, four general alternatives exist: 

1. Pre-optimization of the start population 
This can be applied to the entire population or a fraction of it, and it provides the 
evolution with valid solutions of more or less good quality to start with. 

2. Post-optimization of the EA results 
EAs are known to converge slowly. Thus, an improvement can be expected by 
stopping the evolution after approaching the area of attraction of the global opti-
mum and leaving the rest to the local search. 

3. Direct integration 
Optimizing every or the best offspring of one mating only causes the EA to operate 
over the peaks of the fitness landscape exclusively rather than to treat the valleys 
and slopes, too. The offspring’s genotype can be updated (Lamarckian evolution) 
or left unchanged (Baldwinian evolution). As both methods which are usually 
applied to domain-specific local searchers are controversially discussed in litera-
ture [3, 4], this was also investigated. Orvosh and Davis recommend updating 5% 
of the accepted offsprings only [5].  

4. Delayed direct integration 
Variant of direct integration, where the evolution works on its own until a criterion 
similar to the one used for switching from evolutionary to local search for post-
optimization is fulfilled. 

Pre-optimization can be combined with the other methods, while a fusion of direct 
integration and post-optimization does not appear to be meaningful. 

3 Basic Algorithms Used for Hybridization 

To comply with the goal of general applicability, the EA must allow for combinatorial 
optimization and parameter strings of dynamic length as required by some applica-
tions like design optimization [6] or collision-free robot path planning [7]. Especially 
because of the last requirement, GLEAM (General Learning Evolutionary Algorithm 
and Method) [7,8], an EA comprising elements of real coded GAs and the Evolution 
Strategy (ES) was chosen for testing, see also [9]. Among others, GLEAM uses mu-
tation operators influenced by the ES in so far, as small parameter changes are more 
likely than greater ones. Mutation can also change the gene order and add or delete 
genes in the case of dynamic chromosomes. GLEAM uses ranking-based selection 
and elitist offspring acceptance. It is stressed that the introduced hybridization shall 
work with any other EA, too.  

Suitable local search algorithms must be derivation-free and able to handle restric-
tions in order to preserve the general applicability of the resulting hybrid. Two well-
known procedures from the sixties were chosen, since they meet these requirements 
and are known to be powerful local search procedures: The Rosenbrock algorithm 
[10] using one start point and the Complex method [11], because it can exploit multi-
ple start points as they are delivered by an EA. The Rosenbrock procedure stops when 



the rate of changes of the main search direction decreases below a certain value and 
when the distances covered become too small. This is controlled by an external strat-
egy parameter, here called precision. The Complex procedure stops when no 
improvement is achieved in five consecutive iterations. Schwefel gives a detailed 
description of both algorithms together with experimental results [12].  

As this paper focuses on hybridization and due to the lack of space the basic algo-
rithms have been described here very briefly only and the interested reader is referred 
to given literature. 

4 Controlling the Basic Algorithms 

Concerning real world problems neither the structure of the fitness landscape nor the 
optimum or its area of attraction are known in advance. But as computation of the 
fitness function frequently is time-consuming, it is possible to perform more sophisti-
cated calculations to estimate when to switch from global to local search. 

Fig. 1 shows the typical pro-
gress of an EA run. Stagnation 
phases of the overall quality can 
be identified easily, e.g. A, B or 
C. But which one shall be se-
lected for terminating the evolu-
tion? This cannot be derived 
from stagnation only. A better 
measure is the genotypic diver-
sity within the population. If the 
population consists of a few ge-
notypically different sub-popu-
lations (niches) only, which are 
of minor difference, then stagna-
tion can be expected, which provides little chance for greater progress. Hence, stag-
nation phases like in Fig. 1 may be used to trigger a check for niche constitution. 
Another trigger may be the number of generations without offspring acceptance. 

4.1 Distance Measures for Chromosomes 

To estimate the genotypic diversity, distance measures for chromosomes must be 
defined, which quantify the parameter distance, the different gene ordering, and the 
common genes in the case of dynamic chromosomes. Distance functions reported in 
literature are often too specialized for the problem on hand, rather than to serve as a 
solution here [9]. Measures should be independent of the application in so far as they 
must not be influenced by actual parameter ranges or the number of genes and should 
be within a fixed range. The measures defined here vary between 0 (identity) and 1 
(maximum difference). They comply with the four metric axioms, but the proofs and 
the calculation of distmax are omitted here due to the lack of space. They can be found 
on the following web page: http://www.iai.fzk.de/~jakob/hy_gleam/ 
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Fig. 1. Typical progress during the run of an EA 



Fixed-length Chromosomes with Irrelevant Gene Order. For this chromosome 
type, the calculation of the parameter distance ∆par of two chromosomes C1 and C2 is 
sufficient. It is defined as follows: 
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where n: number of all parameters of all genes 
pari,j: i-th parameter of chromosome j 
lbi, ubi: lower and upper limits of the i-th parameter  

Fixed-length Chromosomes with Relevant Gene Order. The positional difference 
pd1,2(Gi) of one gene Gi of two fixed-length chromosomes C1 and C2 is defined by 
their sequential numbering and the calculation of the absolute difference of their 
indices. This leads to the positional distance of two chromosomes ∆pos:  
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where len: length of the chromosomes (len > 1) 
distmax: distance maximum of all genes within one chromosome 

For distmax two cases for odd and even chromosome lengths must be considered: 
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The overall distance ∆ of fixed-length chromosomes with relevant ordering is de-
fined as the mean of ∆par and ∆pos. 

Variable-length Chromosomes. The goal is to determine the precise difference of 
similar chromosomes, while the exact value of discrepancy of dissimilar ones is of 
less interest. So the resulting measure may be inexact for more different chromo-
somes, thus yielding a less complex formula which reduces the computational effort 
for the fairly frequent distance calculations. 

For two chromosomes C1 and C2 the set of common genes Gcom may not be empty. 
Otherwise, the overall distance is set to 1. As genes in chromosomes of variable 
length may occur several times, they are treated in the sequence of their indexing and 
∆par and ∆pos are defined over Gcom, where distmax is taken from the shorter chromo-
some. This may lead to an oversized value of ∆pos, which may exceed 1 especially for 
chromosomes with large differences. Thus, ∆pos is limited to 1 and the error is 
accepted, as it increases with the chromosome difference. 

The difference of the presence of genes ∆gp in two non-empty chromosomes is cal-
culated as follows:  
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The overall distance ∆ of variable-length chromosomes is defined as the mean of 
the three distances, with ∆gp being weighted three times, because ∆par and ∆pos are 
defined over the common set of genes only. 

4.2 Control Criteria for the Basic Algorithms 

For estimating the genotypic diversity the individuals are assumed to be in linear 
order. A niche is formed by adjacent individuals with a fitness greater than half of the 
global best and with ∆ being smaller than the strategy parameter ε. The fitness thresh-
old is introduced to ignore chromosomes of less quality, as they do not contribute to 
niching of individuals of high fitness. The center individual of a niche is called its 
representative. Niches, whose representatives differ by less than ε, are merged 
regardless of their position. The resulting amount of niches N and the maximum dif-
ference of their representatives ∆N,max are compared to the strategy parameters εPop 
and Nmax and the population is considered to be converged, if:  

PopN ε≤∆ max,    and   maxNN ≤  (5) 

If this criterion is fulfilled the evolutionary search is stopped and the results are 
handed over to the local searchers for post-optimization or the local procedures are 
added to the process of offspring generation in case of delayed direct integration. 

5 Experimental Results 

In the experiments, five test functions taken from GENEsYs [13] and three real world 
problems were used. Here, they shall be described very briefly only and the interested 
reader is referred to the literature. 

• Schwefel’s sphere in the range of [-1010,1010] and with a target value of 0.01, a 
unimodal problem known to be easy for ES, but hard for GA. 

• Shekel’s foxholes, a simple multimodal function, easy for EA, but hard for local 
searchers (target value: exact minimum) 

• Generalized Rastrigin function (target value: 0.0001) and 

• Fletcher’s function (target value: 0.00001), both of considerable complexity 

• Fractal function with an unknown minimum. Target value here: -0.5 (from [13]). 

• Design optimization of a micro optical communication device considering fabrica-
tion tolerances as described in detail in [14]. Despite its only 3 parameters, the task 
involves some difficulty, because it is of extreme multimodal nature. 

• The resource optimization is based on the scheduling task of 87 batches in chemi-
cal industry, where varying numbers of workers are required during the different 
batch phases [15]. The maximum number of workers per shift (human resource) and 
the production time shall be reduced to the largest possible extent. Restrictions like 
due dates of batches, necessary pre-products from other batches, and the availability 
of shared equipment must also be adhered to. Allocation conflicts are solved by the 



sequence of the batches within a chromosome. But as this can be overwritten by 
suitable changes of the starting times, the combinatorial aspect is limited. 

• The objective of the robot path planning task is to move a robot along a line as 
straightly as possible from a starting to a destination point and avoid collisions with 
itself and some obstacles by controlling the robot axis motors [7]. As the number of 
necessary motor commands is not known in advance, the chromosomes must be of 
dynamic length and the order of the commands is essential. Due to a command 
which tells the robot control to keep the actual motor settings for a specified amount 
of control cycles, this task has both integer and real parameters.  

Table 1. Properties of the eight test cases and the results for the algorithms applied separately. 

Success rate for best run Experiment Combi-
natorial 
optim. 

Parame-
ters 

Modality Implicit 
restric-
tions 

GLEAM Rosen-
brock 

Com-
plex 

Sphere no 30  real unimodal no 0 100 0 
Foxholes no   2  real multimod. no 100 3 1 
Rastrigin no 20  real multimod. no 100 0 0 
Fletcher no   5  real multimod. no 100 10 10 
Fractal no 20  real multimod. no 100 0 0 
Design no   3  real multimod. no 100 15 12 
Resource (yes) 87  int multimod. yes 94 0 0 
Robot Path  yes dynamic 

mixed 
multimod. yes 100 0 0 

These test cases cover a wide range of different application types, as shown in 
Table 1. The shortcuts and strategy parameters of the algorithms and hybrids, used in 
the figures below, are as follows:  
• G: GLEAM: the population size (p) 
• R: Rosenbrock: precision: 10-2 (s), 10-4 (m), 10-6 (l), 10-8 (xl), 10-9 (xxl) 
• C: Complex: none 
• Ri: Rosenbrock-initialized start population. Percentage of pre- 
• Ci: Complex-initialized start population. optimized individuals 
• PR: Rosenbrock post-optimization: see below 
• PC1S: Complex post-optimization: each solution is 1 start point (1S) 
• PC1C: Complex post-optimization: all solutions form 1 start complex (1C) 
• GR, GC: Direct Integration of Rosenbrock or Complex: Lamarck-rate (l), local 

optimization of all or only the best offspring of one mating (all, best) 
• GdR, GdC: Delayed direct integration with Rosenbrock and Complex respectively 

The niching is controlled by three parameter settings for ε and εPop, P1=(0.005, 
0.01), P2=(0.002, 0.005), P3=(0.001, 0.002), and by Nmax which varies between 2 
(p<20) and 5 (p>90) with the population size. The success rate and the average 
amount of evaluations based on 100 runs (resource and the design task: 50 runs) for 
each parameterization (job) are taken for comparison. For the resource and the robot 
problem the local searchers work on the parameters only and leave the combinatorial 
aspects to the EA. A total of 182,000 jobs consuming 7 cpu-years on 22 sun work-
stations (ultra sparc) were needed for the experiments. 



5.1 Results of the Test Cases 

In Fig. 2 the results of the best jobs with 100% success rates are shown for each test 
case and hybridization method, and they are compared with the best run of GLEAM. 
Schwefel’s sphere is somewhat exceptional, as GLEAM has no success despite the 
unimodality of the problem. The success of the Rosenbrock procedure is more or less 
unrealistic, because no one would start with such an extreme precision, and with less 
there is no success at all up to high precision. The post-optimization is mentioned in 
brackets, because even the unsuccessful runs deliver very-high-quality solutions. The 
results of Shekel’s Foxholes show that a fairly easy task for an EA, but hard for local 
searchers, cannot be improved largely by hybridization. The EA solves the problem 
so well that the overhead imposed by hybridization is too costly. The Rastrigin func-
tion shows an unusual behavior in so far, as GLEAM still works with extremely small 
population sizes leaving little or no room for improvements by hybridization. In Fig. 3 
this case is compared with the typical behavior of an EA using the robot path planning 
task. With population sizes below a certain value, success rates are expected to drop 
and the number of evaluations to increase. For the resource and the robot tasks, spe-
cial precisions of the Rosenbrock algorithm of 0.6 and 0.5 respectively were neces-
sary, as there was no convergence with any standard setting. Due to the extended 
chromosome types of the last two tasks, further niching control parameterizations 
were tested, and P0 (0.04, 0.08) led to a remarkable success for resource optimization. 
Together with Fletcher’s function, this task yields the most impressive improvements, 
while the very difficult fractal function and the design problem show significant suc-
cess, too.  
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Fig. 2. Results for each test case and hybridization method reaching a 100% success rate. The 
best jobs per parameterization are shown and compared. Acronyms see above list 
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Fig. 2 (cont.). Results for each test case and hybridization method reaching a 100% success 
rate. The best jobs per parameterization are shown and compared. Acronyms see above list. 

The examined hybridization approaches reach their limits, when the ordering of a 
dynamic amount of genes is of vital importance to success, as it is the case with the 
robot example. No relevant improvement can be stated in this case. 
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Fig. 3. GLEAM jobs: Untypical success of the Rastrigin function at very small population sizes 
and usually observed behavior in case of the robot path planning task (100 runs per setting).  

5.2 Comparison of the Different Kinds of Hybridization 

The different kinds of hybridization are compared on the basis of the achieved 
improvement of the best job compared to the best GLEAM job. This cannot be done 
for Schwefel’s sphere, because GLEAM was not successful. But it can be stated that 



post-optimization and (delayed) direct integration yield very good results, see Fig. 2. 
Furthermore, the robot task will not contribute to the comparison, as there was no 
improvement worth mentioning. In Fig. 4 the results of the remaining test cases are 
summarized.  
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Fig. 4. Comparison of the different kinds of hybridization. Empty fields indicate no sufficient 
success rate (below 100%), while flat fields stand for fulfilling the optimization task, but with 
greater effort than GELAM. For PC1S no 100% success rate was reached in any test case.  

Conclusions 

From the extensive investigation of 13 different kinds of hybridization, based on eight 
test cases comprising one challenging unimodal problem, simple and complex multi-
modal tasks, and real world problems involving combinatorial optimization as well as 
dynamic parameter strings, the following conclusions can be drawn, see also Fig. 4: 

1. Though post-optimization improves the results obtained by the EA in most cases, it 
does not lead to sufficient success, as the introduced control mechanism based on 
niche detection does not guarantee a stop of evolution only, when the area of the 
attraction of the global optimum is reached. 

2. Direct or delayed direct integration of the Rosenbrock procedure works in all cases 
and yields very good results as long as the problem is not too simple like in the 
case of Shekel’s foxholes. Pure Lamarckian evolution and local optimization of the 
best offspring in nearly all cases is superior to Baldwinian evolution or optimiza-
tion of all offsprings of one mating. The delayed integration based on the niching 



control algorithm improves the undelayed version by up to 20% less evaluations. 
Small population sizes between 5 and 20 are sufficient. 

3. Pre-optimization helps in most cases but direct integration is better. 

4. Hybridization with the Complex algorithm does not always work, but if it does, 
superior results can be produced. Hybridization with the Rosenbrock procedure is 
more reliable, but not always as successful as using the Complex. 

Although these conclusions are based on the test cases investigated, it can be as-
sumed that they are not limited to them. Thus, it can be recommended to use delayed 
or undelayed direct integration of the Rosenbrock algorithm to speed up the EA while 
maintaining the properties of reliable global search and general applicability. With the 
Rosenbrock procedure, evaluations were found to be reduced by the magnitude of 60 
and by using the Complex algorithm instead, a factor of up to 100 can be achieved.  

This paper was written using the terms and definitions of VDI/VDE 3550 [16]. 
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