
GLEAM - an Evolutionary Algorithm for Planning and Control

Based on Evolution Strategy

Christian Blume1, Wilfried Jakob2

1 University of Applied Sciences, Cologne, Campus Gummersbach,
Am Sandberg 1, 51643 Gummersbach, Germany

blume@gm.fh-koeln.de
2 Forschungszentrum Karlsruhe, Institute for Applied Computer Science,

P.O. Box 3640, 76021 Karlsruhe, Germany
jakob@iai.fzk.de

Abstract. An evolutionary algorithm based on Evolution Strategy (ES) is presented, which
includes time-related command execution and the generation of process control elements. Its
concept is enlarged by problem-oriented type definitions for parameters, this has allowed a
flexible implementation for different applications. The GLEAM algorithm includes new
features which distinguish it from ES and GAs, among them especially a new and flexible
kind of coding allowing a natural problem representation. The different kind of code
interpretation is tailored, but not limited to finding solutions for time -dependent processes like
the control of (industrial) robots or autonomous vehicles.

1 Introduction

The GLEAM (General Learning Evolutionary Algorithm and Method) algorithm was designed to generate
optimized plans, i.e. sequences of commands, to control dynamic processes. First example of such a problem
solved by GLEAM was the control of industrial robot movements. The algorithm should generate a
command sequence consisting of robot control primitives, i.e. a robot language program, and the execution
of these statements should result in an optimized robot move trajectory avoiding collision.

The genetic code of biological beings describes the attributes of the beings, e.g. color of the skin or their
height. But additionally it controls dynamic processes of beings like growing up. This leads to the concept of
action of GLEAM. A GLEAM code element represented by a more or less complex data type describes an
attribute as well as a control command. The evaluation of control commands requires the execution of the
command sequence (by simulation) to calculate the fitness value. Another property of the action concept is
the not fixed number of genes resp. actions of an individual.

From the beginning the GLEAM concept formulated by Blume in [1] includes these new features
compared to already existing concepts of ES [2] and GA [3]. It was implemented by the two authors using a
robot path planning task for testing and enhanced by the well-established concepts of ranking-based
selection and structured populations [4] as described later. Even there are implementations of GLEAM to
different applications, up to now a more detailed theoretical description of the method was missing. The
field of applications was enlarged by production planning [5], resource optimization [6], traverse path
minimization [7], and design optimization [8]. The latter area of application is the area of interest of the
Research Center, while most industrial applications and especially the further developments of collision-free
robot path planning [9] were accomplished at the University of Applied Sciences of Cologne. The references
above should document the many-sidedness and the easy transferability to new optimization problems of
GLEAM.

2 Concept of GLEAM

The first applications of Evolution Strategies were optimization problems. Such a problem is described by a
set of parameters defining how to build up a solution, e.g. for a production plan or the construction of a
nozzle. This is a static point of view, which corresponds to the calculation of the fitness value by a fitness
function, a simulation run or experiments in the real world. In addition to this, GLEAM focuses on dynamic
interpretation and time dependant simulation or execution of a sequence of actions.

An important basis of the GLEAM concept are the changeable code elements, which represent so-called
actions instead of pure parameters. The evolutionary code of a GA is a bit string and the representation of
the ES is a vector of real numbers and strategy parameters. In GLEAM, the code is a sequence of actions
which have to be performed for the calculation of the fitness value. As, in general, it is not known in
advance how many actions are needed to solve a given problem, e.g. a complex robot movement, the length
of the action sequence (also called action chain) is not fixed, but changed by evolution. In the simplest case,
an action consists of the action identifier (an integer) only. In other cases, actions may have a number of
parameters. An action is something like a control command, because all actions have to be performed during
simulation (to calculate the fitness value) and later in real world application, they have to be executed by a
control device, e.g. a robot control unit. The simulation has to model as exactly as possible the behavior of
the control, including the time-dependent process and the environment, if applicable. Therefore, GLEAM
includes a more dynamic point of view of the meaning of the evolutionary code. Some of the actions can be
the reading of sensor values and a conditional reaction to them. This provides a response to environmental
changes of the generated action sequence.

3 The Coding

In comparison to the ES and GA, the GLEAM genetic code structure is enlarged by the structure of so-called
segments. The genetic code for an individual of GLEAM consists of a number of segments (minimum one).
Each segment consists of a number of actions. An action consists of an action identifier, optionally followed
by a number of parameters of type integer or real (or character, which are represented as integer, too, that is
only a matter of interpretation). A population M of µ individuals is defined as follows:

M = { c1, c2, … ,cµ }

ci = (H, S1, S2, …. ,Sr) with H = (l1, l2, … ,lr) li Ν∈
 Si = (ai1, ai2, … ,ail) with i ∈ Ν and l ∈ H
 aik = (ak) or
 aik = (ak , p1, p2, ... ,pz) with ak, z ∈ Ν and p i ∈ ∪ℜΝ

The meaning of the structure elements is:
 ci: action chain, an individual
 H: housekeeping information of an individual, e.g. segment length
 Si: segment consisting of an action sequence
 aik: action
 ak: action identifier (integer)
 pi: parameter of an action (integer or real)

Fig. 1. Action chain (an individual) consisting of segments of actions

A data file exists, which includes a description of each action type. There it is defined, how many
parameters of which type belong to an action. This information is used by the evolution machine, as

Header Action Action Action

Segment 1

Action

Segment 2

Action Action

Segment 3

Action

described later. It allows an adaptation to new applications without new programming the changed gene
representation.

3.1 Genetic Code Structure in Nature and in GLEAM

The genetic code of all biological beings consists of sequences of an alphabet of four bases only: U (Uracil),
C (Cytosin), A (Adenin), and G (Guanin). Three of these basic elements form so-called triplets which are
part of the genes. Without going into further details a hierarchical structure exists in nature for representing
the genetic information, which has not yet been completely analyzed. But it is known that e.g. there is a start
triplet AUG of an information string called gene. Other structures correspond to the folding of the string and
other features. A mutation of a basic element of a gene can change the type of the gene, for example:

C-C-U-G-A-G-G-A-G normal gene type, no illness
C-C-U-G-U-G-G-A-G genetic defect, illness (haemolytic anaemia)

The (rough) model of biological coding was transferred to GLEAM. The basic elements of the gene types
in GLEAM are the actions as described above. The higher structure level is formed by the segments similar
to the gene structures.

The genetic operators like translocation or deletion of an element are applied to actions as well as to
segments. As the crossover is performed by an exchange of segments, good substructures represented by
segments (i.e. a sequence of actions) of one parent may probably be combined with good substructures of
the other parent to speed up the evolution.

3.2 Action Concept for Planning Dynamic Processes and Control

The result of an action of GLEAM is defined by the implementation of the interpretation and simulation
procedure performing this action. The simulation of an action chain representing an individual is necessary
to calculate the fitness value for this individual. The simulator can be treated as an interpreter of the action
code. If GLEAM is applied to a task to optimize plans, e.g. the production plan for scheduling or the
sequence of cities for the TSP, the "action" is performed by changing the sequence of plan elements (i.e.
actions) or parameter values.

However, for the planning of dynamic processes like the control of an industrial robot, this is not
sufficient. Therefore, the action concept includes a relation of the action chain to a time scale. Based on the
cycle time ∆t of the control unit(s) for the process, the relation defines: If action ai starts at ti, the action ai+1
starts at t i + ∆t. In a simple case, the mapping of actions to the time scale is

 action a1 → t0
 action a2 → t0 + ∆t
 …… ……
 action ai → t0 + (i-1)*∆t

There are two enlargements for a differentiated control of this simple time sequence:

1. There are two special actions called BLOCK_BEGIN and BLOCK_END. All m actions between
these two actions will start at the same time tn:

 action ai: BLOCK_BEGIN → tn
 action ai+1 → tn
 action ai+2 → tn
 …… ……
 action ai+m → tn
 action ai+m+1: BLOCK_END → tn
 action ai+m+2: → tn + ∆t

2. There is an action called UNCHANGED with a parameter n of type integer. This action is
interpreted as follows: The next action in the action chain after this action will start after n time
slices:

 action ai → ti
 action ai+1 : UNCHANGED n → ti + ∆t
 action ai+2 : → ti + n*∆t

The effect of the start of an action can last much longer than the associated time slice. For example, the
action "start the movement of a robot axis" will mo ve the robot axis until an action "stop robot axis" is
executed or until the move limit of the robot axis is reached. The simulation should be performed by
modeling the time rela tion as exactly as possible.

Fig. 2. Simulated execution of robot move statements generated by GLEAM in an industrial environment, avoiding
collisions with obstacles and workpieces [9].

The example of Fig. 2 illustrates the effect of time-dependent interpretation of the action chains. GLEAM
was applied successfully to generate and optimize collision-free robot trajectories. Other solutions have
already been found for this problem. But instead of optimizing many (statically defined) robot
configurations (see [10, 11]), GLEAM generates and optimizes the control commands, which can be loaded
on the robot control unit. This gives a more realistic result and a useful output for industrial applications.

3.3 Type Concept of Actions and Action Chains

The concept of action chains was implemented using the concept of abstract data types from computer
science. The coding is based on problem-configurable typed objects called actions. The content of an action
is defined by its type definition, which constitutes its set of real, integer or Boolean parameters together with
their ranges of values. The plainest action type consists of no parameters at all for pure sequencing problems
or exactly one real parameter, which is one suitable form for parameter optimization. An action chain
consists of objects of previously defined action types. The rules for constructing such a chain are defined
according to the application, based on three classes of chains at present:

1. Fixed-length action chains with irrelevant action order
A chain consists of exactly one object of every action type.

2. Fixed-length action chains with relevant action order
A chain consists of exactly one object of every action type in an arbitrary sequence.

3. Variable-length action chains with relevant action order
A chain consists of none, one, or more objects of every action type in an arbitrary sequence. Therefore,
probabilities of appearance are assigned to every action type.

The segmentation of a newly generated chain is done by arbitrary insertion of segment boundaries
according to given limitations of the segment length. The type definitions, the rule descriptions for chain
construction, and the segment limits form the so called model of activities, i.e. a model of what the evolution
can affect. This concept provides the user with a flexible mechanism of naturally mapping his problem to the
gene structure (action chains, actions and parameters), often resulting in genotypes from which phenotypic
properties can be derived easily. For setting up an activity model no programming is required. All the user
has to do is writing his definitions of activities and the chain construction parameters into a file. Action

chains are imple mented as linear lists as shown in Fig.1, because this is very useful for many of the genetic
operators described in the next chapter.

4 The Genetic Operators

The genetic operators are controlled by the model of activities in terms of what can be evolved with respect
to limitations and by the configuration of the evolutionary operations. An evolutionary operation consists of
one or more genetic operators like mutation or crossover and produces one or two offsprings. Both, the
evolutionary operations and the genetic operators are assigned a probability of execution. Thus, the exact
number of offsprings of one mating and the operators involved in their production are a matter of chance.

The concept of the type definitions of genes allows for mutation operators that take explicit restrictions
into account. Thus, a set of general genetic operators can be implemented, which obtain their application-
specific information from the definitions of the activity model used for the initialization of GLEAM.
Another advantage of this approach is that problem-specific genetic operators can be added easily to the set
of general ones, if desired.

4.1 Mutation of Actions

The set of applicable mu tations of actions
depends on the chain class they are applied to.
In general, there are parameter mutations,
positional mutations, and mutations to delete,
double or generate actions.

The relative parameter mutation is inspired
by the ES: At first, it is randomly chosen
whether to increase or decrease the actual value
and then, the range of possible alteration is
calculated. This range is divided into ten
equidistant classes, of which one is chosen by
chance to define the actual range of mutation,
from which the value of modification is selected
randomly. The resulting probability distribution
is shown in Fig. 3. This is faster than calculating
the normal distribution, as done with ES, but has
a similar effect: Greater changes are less likely than smaller ones. In contrast to ES, however, there are no
evolved strategy parameters for mutation. The absolute mutation just generates a new random value for a
parameter within its limitations. Table 1 summarizes the standard mutation operators for actions.

Table 1. Mutations for actions and their applicability to the different chain classes.

Action Chain Type
(length, relevance of action order)

Mutation
fixed,

irrelevant
fixed,

relevant
dynamic,
relevant

Alteration of the value of a parameter yes yes yes
Small parameter alteration (10% of the range) yes yes yes
New value for one parameter of an action yes yes yes
New value for all parameters of an action yes yes yes
Translocation of an action yes yes
Substitution of an action by a new one yes
Insertion of a new action yes
Deletion of an action yes
Doubling of an action yes

0

5

10

15

20

25

30

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-
100Range of alteration [%]

P
ro

ba
bi

lit
y

 [%
]

Fig. 3. Probability distribution for parameter changes

4.2 Mutation of Segments

The set of segment mutations at first consists of the action mutations applied to the actions of a segment.
E.g., the parameter mutation of a segment means to execute the basic operator with a randomly chosen
number of actions of the particular segment. In the same manner, the position of a whole segment can be
changed or a complete new segment inserted.

Additionally, there is an operation called inversion, which reverses the order of the actions within a
segment.

Mutation of the segment boundaries may also occur as well as the merging and separation of segments.
As these operations do not affect the phenotype of the action chain, they are only applied as background
operators in conjunction with the other mutation operators. Table 2 gives an overview of the segment
mutations.

4.3 Crossover

Three crossover operators are available: The standard 1-point and n-point crossover operators and a
special operator, which exchanges just one segment between the two chains. Crossover is always performed
on segment boundaries and yields two offsprings.

Table 2. Mutations for segments and their applicability to the different chain classes.

Action Chain Type
(length, relevance of action order)

Mutation fixed,
irrelevant

fixed,
relevant

dynamic,
relevant

Parameter alteration of the actions of a segment yes yes yes
Small parameter alteration of the actions of a segment
(10% of the range) yes yes yes

New value for one parameter of the actions of a segment yes yes yes
Integration of adjacent segments yes yes yes
Splitting of a segment yes yes yes
Shifting of segment limits yes yes yes
Inversion of a segment yes yes
Translocation of a segment yes yes
Integration of two non-adjacent segments yes yes
Substitution of a segment by a new one yes
Insertion of a new segment yes
Deletion of a segment yes
Doubling of a segment yes

5 The Evolutionary Engine

GLEAM uses a structured population based on the neighborhood model introduced by Gorges–Schleuter
[4]. The idea is that mates are not selected from the entire population, as it is the case with panmictic
populations, but from a neighborhood of the individual, the so-called deme. For this purpose, the individuals
are placed on a geographical structure like e.g. a ring. As the acceptance of an individual is done within the
deme of its parent too, only local interaction of the individuals takes place. Now, information can spread
only via the areas of deme overlapping and, as a consequence, niches of comparable good content establish.
This process is much more likely as with panmictic populations. After a certain amo unt of generations, the
niches begin to merge, and the competition between the best approaches to the solution begins. The
advantages of this concept do not only comprise favorable properties for paralleliza tion, but also a better
promotion of global diversity preventing premature convergence, and an adaptive balance between depth
and width search. For multimodal problems, and most practical problems are of that type, this is the
procedure of choice, because more different areas of the search space are investigated. [12].

GLEAM is a steady-state EA: It uses ranking-based mate selection and different acceptance rules for the
best offspring of every mating. The child must either be better than the parent to be substituted or, with less
selective pressure, better than the weakest individual of the deme. An elitist modification of the latter
acceptance rule is available, and it was used for most applications of GLEAM. In ES terms, GLEAM can be
characterized as follows:

µ/ρ+λ where µ is the population size
 ρ is the number of parents, at present two
 λ is the number of offsprings (typically between 3 and 10 times of µ)

Start populations can be generated by random initialization or by using already existing solutions (which
may be from variants of the task as long as they are based on the same activity model) or a mixture of both.
For reusing action chains, they can be stored into a file and loaded back again.

6 Conclusion: Positioning of GLEAM within the Range of Evolutionary
Algorithms

Exact positioning of an evolutionary algorithm seems to be impossible, because there are too many new
developments in the different communities, which are oriented to ES or GA concepts, but enlarge their
algorithms by features coming from outside. The "nearest" connection is between GLEAM and ES, but there
are also similarities between GLEAM and GA. In some way, there even is a likeness of GLEAM to GP, in
so far as GLEAM may generate a control program. Table 3 tries to summarize the similarities and
differences of GA, ES, and GLEA M.

Table 3. Similarities and differences of GA, ES, and GLEAM

Features GA ES GLEAM

representation bit string real vector vector of data structures of
integer /real

basic elements of the
solution

parameters parameters actions with parameters

assignment of genotype to
phenotype

mapping of bits to the
entities of the solution

reals are parameters of
the solution

problem-specific action types

natural problem
representation

no yes yes

genetic operators mutation and
recombination

mutation and
recombination

mutation and recombination
on different levels

adaptive behavior coding of control
parameters

adaptive deviations segments for sub-solutions

kind of problem solutions static description static description static description and
dynamic control

The GLEAM concept includes the following new features:
• Action concept: Problem-oriented type definitions, parameters of different data types
• Meta elements: Segments which represent sub-solutions to speed up evolution
• Genetic operators for basic and meta elements
• Code interpretation: Action execution instead of parameter interpretation
• Description of dynamic processes: Time-related action execution and generation of process control

elements

With these features, GLEAM can be regarded as an EA positioned between ES and GA, which is tailored,
but not limited to evolving dynamic control processes.

This paper was written using the terms and definitions of VDI/VDE 3550 [13].

References
1. Blume, C.: GLEAM - A System for Intuitive Learning. In: Schwefel, H.P., Männer, R. (eds.): Proc. of

PPSN I, LNCS 496, Springer, Berlin (1990) 48-54
2. Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen

Evolution. Frommann-Holzboog, Stuttgart-Bad Cannstatt (1973)
3. Holland, H.J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann

Arbor (1975)
4. Gorges-Schleuter, M.: Genetic Algorithms and Population Structures - A Massively Parallel Algorithm.

Doctoral thesis, University of Dortmund, Germany (1990)
5. Blume, C.: Planning and Optimization of Scheduling in Industrial Production by Genetic Algorithms and

Evolution Strategy. In: Proc. of 2nd Biennial European Joint Conf. on Engineering, Systems, Design, and
Analysis (ESDA). (1994) 285-292

6. Blume, C., Jakob, W.: Cutting Down Production Costs by a New Optimization Method. In: Proc. of
Japan-USA Symposium on Flexible Automation. ASME (1994)

7. Blume, C.: Optimization in Concrete Precasting Plants by Evolutionary Computation. In: Whitley, D. et
al. (eds.): Proc. GECCO 2000, Vol. Late Papers, M. Kaufmann, (2000) 43-50

8. Jakob, W., Quinte, A., Scherer, K.-P., Eggert, H.: Optimization of a Micro Fluidic Component Using a
Parallel Evolutionary Algorithm and Simulation Based on Discrete Element Methods. In: Hernandez, S.,
et al.: Computer Aided Design of Structures VII, Proc. of OPTI’01, WIT Press, Southampton (2001) 337-
346

9. Blume, C.: Programming of Industrial Robots by the GLEAM Evolutionary Algorithm. In: Callaos, N. et
al. (eds.): Proc. SCI’2001, Vol. III, IIIS, Orlando, (2001) 151-156

10.Ortmann, Matthias, Weber, Wolfgang: Multi-Criterion Optimization of Robot Trajectories with
Evolutionary Strategies, Proc. GECCO 2001, Spector, Lee et. al., San Francisco (2001) 310 (Late
breaking papers)

11.Solteiro Pires, E.J., Tenreiro Machado, J.A.: Trajectory Optimization for Redundant Robots Using
Genetic Algorithms , Proc. GECCO 2000, M. Kaufmann, San Francisco (2000) 967

12.Gorges-Schleuter, M.: A Comparative Study of Global and Local Selection in Evolution Strategies. In:
A. Eiben et al. (eds.): Proc. PPSN V, LNCS 1498, Springer, (1998) 367-377

13.Beyer, H.-G., et al.: Evolutionary Algorithms – Terms and Definitions. VDI/VDE-Richtlinie-3550, Blatt
3, Gründruck (in German with English glossary; English version to be published in 2002). VDI,
Düsseldorf (2001)

