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Abstract. An evolutionary algorithm based on Evolution Strategy (ES) is presented, which 
includes time-related command execution and the generation of process control elements. Its 
concept is enlarged by problem-oriented type definitions for parameters, this has allowed a 
flexible implementation for different applications. The GLEAM algorithm includes new 
features which distinguish it from ES and GAs, among them especially a new and flexible 
kind of coding allowing a natural problem representation. The different kind of code 
interpretation is tailored, but not limited to finding solutions for time -dependent processes like 
the control of (industrial) robots or autonomous vehicles. 

1   Introduction 

The GLEAM (General Learning Evolutionary Algorithm and Method) algorithm was designed to generate 
optimized plans, i.e. sequences of commands, to control dynamic processes. First example of such a problem 
solved by GLEAM was the control of industrial robot movements. The algorithm should generate a 
command sequence consisting of robot control primitives, i.e. a robot language program, and the execution 
of these statements should result in an optimized robot move trajectory avoiding collision. 

The genetic code of biological beings describes the attributes of the beings, e.g. color of the skin or their 
height. But additionally it controls dynamic processes of beings like growing up. This leads to the concept of 
action of GLEAM. A GLEAM code element represented by a more or less complex data type describes an 
attribute as well as a control command. The evaluation of control commands requires the execution of the 
command sequence (by simulation) to calculate the fitness value. Another property of the action concept is 
the not fixed number of genes resp. actions of an individual. 

From the beginning the GLEAM concept formulated by Blume in [1] includes these new features 
compared to already existing concepts of ES [2] and GA [3]. It was implemented by the two authors using a 
robot path planning task for testing and enhanced by the well-established concepts of ranking-based 
selection and structured populations [4] as described later. Even there are implementations of GLEAM to 
different applications, up to now a more detailed theoretical description of the method was missing. The 
field of applications was enlarged by production planning [5], resource optimization [6], traverse path 
minimization [7], and design optimization [8]. The latter area of application is the area of interest of the 
Research Center, while most industrial applications and especially the further developments of collision-free 
robot path planning [9] were accomplished at the University of Applied Sciences of Cologne. The references 
above should document the many-sidedness and the easy transferability to new optimization problems of 
GLEAM. 



2 Concept of GLEAM 

The first applications of Evolution Strategies were optimization problems. Such a problem is described by a 
set of parameters defining how to build up a solution, e.g. for a production plan or the construction of a 
nozzle. This is a static point of view, which corresponds to the calculation of the fitness value by a fitness 
function, a simulation run or experiments in the real world. In addition to this, GLEAM focuses on dynamic 
interpretation and time dependant simulation or execution of a sequence of actions. 

An important basis of the GLEAM concept are the changeable code elements, which represent so-called 
actions instead of pure parameters. The evolutionary code of a GA is a bit string and the representation of 
the ES is a vector of real numbers and strategy parameters. In GLEAM, the code is a sequence of actions 
which have to be performed for the calculation of the fitness value. As, in general, it is not known in 
advance how many actions are needed to solve a given problem, e.g. a complex robot movement, the length 
of the action sequence (also called action chain) is not fixed, but changed by evolution. In the simplest case, 
an action consists of the action identifier (an integer) only. In other cases, actions may have a number of 
parameters. An action is something like a control command, because all actions have to be performed during 
simulation (to calculate the fitness value) and later in real world application, they have to be executed by a 
control device, e.g. a robot control unit. The simulation has to model as exactly as possible the behavior of 
the control, including the time-dependent process and the environment, if applicable. Therefore, GLEAM 
includes a more dynamic point of view of the meaning of the evolutionary code. Some of the actions can be 
the reading of sensor values and a conditional reaction to them. This provides a response to environmental 
changes of the generated action sequence. 

3 The Coding 

In comparison to the ES and GA, the GLEAM genetic code structure is enlarged by the structure of so-called 
segments. The genetic code for an individual of GLEAM consists of a number of segments (minimum one). 
Each segment consists of a number of actions. An action consists of an action identifier, optionally followed 
by a number of parameters of type integer or real (or character, which are represented as integer, too, that is 
only a matter of interpretation). A population M of µ individuals is defined as follows: 

M = { c1, c2, … ,cµ } 

ci = ( H, S1, S2, …. ,Sr )  with   H = ( l1, l2, … ,lr  )     li Ν∈  
 Si = ( ai1, ai2, … ,ail ) with  i ∈ Ν    and   l ∈ H 
 aik = ( ak )  or 
 aik = ( ak , p1, p2, ... ,pz )  with  ak, z ∈ Ν    and   p i ∈ ∪ℜΝ  

The meaning of the structure elements is: 
 ci: action chain, an individual 
 H: housekeeping information of an individual, e.g. segment length 
 Si: segment consisting of an action sequence 
 aik: action 
 ak: action identifier (integer) 
 pi: parameter of an action (integer or real) 

Fig. 1. Action chain (an individual) consisting of segments of actions 

A data file exists, which includes a description of each action type. There it is defined, how many 
parameters of which type belong to an action. This information is used by the evolution machine, as 
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described later. It allows an adaptation to new applications without new programming the changed gene 
representation. 

3.1 Genetic Code Structure in Nature and in GLEAM 

The genetic code of all biological beings consists of sequences of an alphabet of four bases only: U (Uracil), 
C (Cytosin), A (Adenin), and G (Guanin). Three of these basic elements form so-called triplets which are 
part of the genes. Without going into further details a hierarchical structure exists in nature for representing 
the genetic information, which has not yet been completely analyzed. But it is known that e.g. there is a start 
triplet AUG of an information string called gene. Other structures correspond to the folding of the string and 
other features. A mutation of a basic element of a gene can change the type of the gene, for example: 

C-C-U-G-A-G-G-A-G   normal gene type, no illness 
C-C-U-G-U-G-G-A-G   genetic defect, illness (haemolytic anaemia) 

The (rough) model of biological coding was transferred to GLEAM. The basic elements of the gene types 
in GLEAM are the actions as described above. The higher structure level is formed by the segments similar 
to the gene structures. 

The genetic operators like translocation or deletion of an element are applied to actions as well as to 
segments. As the crossover is performed by an exchange of segments, good substructures represented by 
segments (i.e. a sequence of actions) of one parent may probably be combined with good substructures of 
the other parent to speed up the evolution. 

3.2 Action Concept for Planning Dynamic Processes and Control 

The result of an action of GLEAM is defined by the implementation of the interpretation and simulation 
procedure performing this action. The simulation of an action chain representing an individual is necessary 
to calculate the fitness value for this  individual. The simulator can be treated as an interpreter of the action 
code. If GLEAM is applied to a task to optimize plans, e.g. the production plan for scheduling or the 
sequence of cities for the TSP, the "action" is performed by changing the sequence of plan elements (i.e. 
actions) or parameter values. 

However, for the planning of dynamic processes like the control of an industrial robot, this is not 
sufficient. Therefore, the action concept includes a relation of the action chain to a time scale. Based on the 
cycle time ∆t of the control unit(s) for the process, the relation defines: If action ai starts at ti, the action ai+1 
starts at t i + ∆t. In a simple case, the mapping of actions to the time scale is  

  action a1  →  t0 
  action a2  →  t0 + ∆t 
  ……    …… 
  action ai  →  t0 + (i-1)*∆t 

There are two enlargements for a differentiated control of this simple time sequence: 

1. There are two special actions called BLOCK_BEGIN and BLOCK_END. All m actions between 
these two actions will start at the same time tn: 

  action ai:  BLOCK_BEGIN →  tn 
  action ai+1   →  tn 
  action ai+2   →  tn 
  ……    …… 
  action ai+m   →  tn 
  action ai+m+1:  BLOCK_END →  tn 
  action ai+m+2:   →  tn + ∆t 

2. There is an action called UNCHANGED with a parameter n of type integer. This action is 
interpreted as follows: The next action in the action chain after this action will start after n time 
slices: 

  action ai    →  ti 
  action ai+1 :  UNCHANGED n →  ti + ∆t 
  action ai+2 :   →  ti + n*∆t 



The effect of the start of an action can last much longer than the associated time slice. For example, the 
action "start the movement of a robot axis" will mo ve the robot axis until an action "stop robot axis" is 
executed or until the move limit of the robot axis is reached. The simulation should be performed by 
modeling the time rela tion as exactly as possible. 

 
Fig. 2. Simulated execution of robot move statements generated by GLEAM in an industrial environment, avoiding 
collisions with obstacles and workpieces [9]. 

The example of Fig. 2 illustrates the effect of time-dependent interpretation of the action chains. GLEAM 
was applied successfully to generate and optimize collision-free robot trajectories. Other solutions have 
already been found for this problem. But instead of optimizing many (statically defined) robot 
configurations (see [10, 11]), GLEAM generates and optimizes the control commands, which can be loaded 
on the robot control unit. This gives a more realistic result and a useful output for industrial applications. 

3.3 Type Concept of Actions and Action Chains 

The concept of action chains was implemented using the concept of abstract data types from computer 
science. The coding is based on problem-configurable typed objects called actions. The content of an action 
is defined by its type definition, which constitutes its set of real, integer or Boolean parameters together with 
their ranges of values. The plainest action type consists of no parameters at all for pure sequencing problems 
or exactly one real parameter, which is one suitable form for parameter optimization. An action chain 
consists of objects of previously defined action types. The rules for constructing such a chain are defined 
according to the application, based on three classes of chains at present: 

1. Fixed-length action chains with irrelevant action order 
A chain consists of exactly one object of every action type. 

2. Fixed-length action chains with relevant action order 
A chain consists of exactly one object of every action type in an arbitrary sequence. 

3. Variable-length action chains with relevant action order 
A chain consists of none, one, or more objects of every action type in an arbitrary sequence. Therefore, 
probabilities of appearance are assigned to every action type. 

The segmentation  of a newly generated chain is done by arbitrary insertion of segment boundaries 
according to given limitations of the segment length. The type definitions, the rule descriptions for chain 
construction, and the segment limits form the so called model of activities, i.e. a model of what the evolution 
can affect. This concept provides the user with a flexible mechanism of naturally mapping his problem to the 
gene structure (action chains, actions and parameters), often resulting in genotypes from which phenotypic 
properties can be derived easily. For setting up an activity model no programming is required. All the user 
has to do is writing his definitions of activities and the chain construction parameters into a file. Action 



chains are imple mented as linear lists as shown in Fig.1, because this is very useful for many of the genetic 
operators described in the next chapter. 

4 The Genetic Operators  

The genetic operators are controlled by the model of activities in terms of what can be evolved with respect 
to limitations and by the configuration of the evolutionary operations. An evolutionary operation consists of 
one or more genetic operators like mutation or crossover and produces one or two offsprings. Both, the 
evolutionary operations and the genetic operators are assigned a probability of execution. Thus, the exact 
number of offsprings of one mating and the operators involved in their production are a matter of chance. 

The concept of the type definitions of genes allows for mutation operators that take explicit restrictions 
into account. Thus, a set of general genetic operators can be implemented, which obtain their application-
specific information from the definitions of the activity model used for the initialization of GLEAM. 
Another advantage of this approach is that problem-specific genetic operators can be added easily to the set 
of general ones, if desired. 

4.1 Mutation of Actions 

The set of applicable mu tations of actions 
depends on the chain class they are applied to. 
In general, there are parameter mutations, 
positional mutations, and mutations to delete, 
double or generate actions. 

The relative parameter mutation is inspired 
by the ES: At first, it is randomly chosen 
whether to increase or decrease the actual value 
and then, the range of possible alteration is 
calculated. This range is divided into ten 
equidistant classes, of which one is chosen by 
chance to define the actual range of mutation, 
from which the value of modification is selected 
randomly. The resulting probability distribution 
is shown in Fig. 3. This is faster than calculating 
the normal distribution, as done with ES, but has 
a similar effect: Greater changes are less likely than smaller ones. In contrast to ES, however, there are no 
evolved strategy parameters for mutation. The absolute mutation just generates a new random value for a 
parameter within its limitations. Table 1 summarizes the standard mutation operators for actions.  

Table 1. Mutations for actions and their applicability to the different chain classes. 

Action Chain Type 
(length, relevance of action order) 

Mutation 
fixed, 

irrelevant 
fixed, 

relevant 
dynamic, 
relevant 

Alteration of the value of a parameter  yes yes yes 
Small parameter alteration (10% of the range) yes yes yes 
New value for one parameter of an action yes yes yes 
New value for all parameters of an action yes yes yes 
Translocation of an action  yes yes 
Substitution of an action by a new one   yes 
Insertion of a new action   yes 
Deletion of an action   yes 
Doubling of an action   yes 
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Fig. 3. Probability distribution for parameter changes 



4.2 Mutation of Segments 

The set of segment mutations at first consists of the action mutations applied to the actions of a segment. 
E.g., the parameter mutation of a segment means to execute the basic operator with a randomly chosen 
number of actions of the particular segment. In the same manner, the position of a whole segment can be 
changed or a complete new segment inserted. 

Additionally, there is an operation called inversion, which reverses the order of the actions within a 
segment.  

Mutation of the segment boundaries may also occur as well as the merging and separation of segments. 
As these operations do not affect the phenotype of the action chain, they are only applied as background 
operators in conjunction with the other mutation operators. Table 2 gives an overview of the segment 
mutations. 

4.3 Crossover  

Three crossover operators are available: The standard 1-point and n-point crossover operators and a 
special operator, which exchanges just one segment between the two chains. Crossover is always performed 
on segment boundaries and yields two offsprings.  

Table 2. Mutations for segments and their applicability to the different chain classes. 

Action Chain Type 
(length, relevance of action order) 

Mutation fixed, 
irrelevant 

fixed, 
relevant 

dynamic, 
relevant 

Parameter alteration of the actions of a segment yes yes yes 
Small parameter alteration of the actions of a segment 
(10% of the range) yes yes yes 

New value for one parameter of the actions of a segment yes yes yes 
Integration of adjacent segments yes yes yes 
Splitting of a segment yes yes yes 
Shifting of segment limits yes yes yes 
Inversion of a segment  yes yes 
Translocation of a segment  yes yes 
Integration of two non-adjacent segments  yes yes 
Substitution of a segment by a new one   yes 
Insertion of a new segment   yes 
Deletion of a segment   yes 
Doubling of a segment   yes 

5 The Evolutionary Engine  

GLEAM uses a structured population based on the neighborhood model introduced by Gorges–Schleuter 
[4]. The idea is that mates are not selected from the entire population, as it is the case with panmictic 
populations, but from a neighborhood of the individual, the so-called deme. For this purpose, the individuals 
are placed on a geographical structure like e.g. a ring. As the acceptance of an individual is done within the 
deme of its parent too, only local interaction of the individuals takes place. Now, information can spread 
only via the areas of deme overlapping and, as a consequence, niches of comparable good content establish. 
This process is much more likely as with panmictic populations. After a certain amo unt of generations, the 
niches begin to merge, and the competition between the best approaches to the solution begins. The 
advantages of this concept do not only comprise favorable properties for paralleliza tion, but also a better 
promotion of global diversity preventing premature convergence, and an adaptive balance between depth 
and width search. For multimodal problems, and most practical problems are of that type, this is the 
procedure of choice, because more different areas of the search space are investigated. [12]. 



GLEAM is a steady-state EA: It uses ranking-based mate selection and different acceptance rules for the 
best offspring of every mating. The child must either be better than the parent to be substituted or, with less 
selective pressure, better than the weakest individual of the deme. An elitist modification of the latter 
acceptance rule is available, and it was used for most applications of GLEAM. In ES terms, GLEAM can be 
characterized as follows: 

µ/ρ+λ where  µ is the population size 
  ρ is the number of parents, at present two 
  λ is the number of offsprings (typically between 3 and 10 times of µ) 

Start populations can be generated by random initialization or by using already existing solutions (which 
may be from variants of the task as long as they are based on the same activity model) or a mixture of both. 
For reusing action chains, they can be stored into a file and loaded back again. 

6 Conclusion: Positioning of GLEAM within the Range of Evolutionary 
Algorithms 

Exact positioning of an evolutionary algorithm seems to be impossible, because there are too many new 
developments in the different communities, which are oriented to ES or GA concepts, but enlarge their 
algorithms by features coming from outside. The "nearest" connection is between GLEAM and ES, but there 
are also similarities between GLEAM and GA. In some way, there even is a likeness of GLEAM to GP, in 
so far as GLEAM may generate a control program. Table 3 tries to summarize the similarities and 
differences of GA, ES, and GLEA M. 

Table 3. Similarities and differences of GA, ES, and GLEAM 

Features GA ES GLEAM 

representation bit string real vector vector of data structures of 
integer /real 

basic elements of the 
solution 

parameters parameters actions with parameters 

assignment of genotype to 
phenotype 

mapping of bits to the 
entities of the solution 

reals are parameters of 
the solution 

problem-specific action types 

natural problem 
representation 

no yes yes 

genetic operators  mutation and 
recombination 

mutation and 
recombination 

mutation and recombination 
on different levels  

adaptive behavior  coding of control 
parameters 

adaptive deviations segments for sub-solutions 

kind of problem solutions static description static description static description and 
dynamic control 

 

The GLEAM concept includes the following new features: 
• Action concept: Problem-oriented type definitions, parameters of different data types  
• Meta elements: Segments which represent sub-solutions to speed up evolution 
• Genetic operators for basic and meta elements 
• Code interpretation: Action execution instead of parameter interpretation 
• Description of dynamic processes: Time-related action execution and generation of process control 

elements 

With these features, GLEAM can be regarded as an EA positioned between ES and GA, which is tailored, 
but not limited to evolving dynamic control processes. 

This paper was written using the terms and definitions of VDI/VDE 3550 [13]. 
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