
Towards a Generally Applicable Self-adapting
Hybridization of Evolutionary Algorithms

Wilfried Jakob1, Christian Blume2, Georg Bretthauer1

1 Forschungszentrum Karlsruhe, Institute for Applied Computer Science, Postfach 3640,
76021 Karlsruhe, Germany

{wilfried.jakob, georg.bretthauer}@iai.fzk.de
2 University of Applied Sciences, Cologne, Campus Gummersbach, Am Sandberg 1,

51643 Gummersbach, Germany
blume@gm.fh-koeln.de

Abstract. When applied to real-world problems, the powerful optimization tool
of Evolutionary Algorithms frequently turns out to be too time-consuming due
to elaborate fitness calculations that are often based on run-time-intensive simu-
lations. Incorporating domain-specific knowledge by problem-tailored heuris-
tics or local searchers is a commonly used solution, but turns the generally ap-
plicable Evolutionary Algorithm into a problem-specific tool. The new method
of hybridization implemented in HyGLEAM is aimed at overcoming this
limitation and getting the best of both algorithm classes: A fast, globally
searching, and robust procedure that preserves the convergence reliability of
evolutionary search. Extensive tests demonstrate the superiority of the ap-
proach, but also show a drawback: No common parameterization can be drawn
from the experiments. As a solution, a new concept of a self-adapting hybrid is
introduced. It is stressed that the methods presented can be applied to Evolu-
tionary Algorithms other than the one used here with no or minor modifications
being required only.

1 Introduction

The Evolutionary Algorithm (EA) GLEAM (General Learning Evolutionary Algo-
rithm and Method) introduced by Blume [1] was successfully applied to a broad range
of real-world applications in the last fourteen years: Collision-free robot path planning
and program development [1,2], scheduling [3], resource optimization [4] or design
optimization [5,6,7] to mention only the most important. A common experience
gained from these applications is that the time available for identifying a solution al-
ways is too short. Often, applications were possible only, because non-optimal solu-
tions obtained in the given time frame were better than the state of the art and, thus,
an improvement. But it is not satisfying to win only because common practice is weak
enough so that your half-way finished solutions are performing better. Even in the
area of design optimization, where it is often no problem to do runs over night, more
sophisticated and precise simulation models require so much computing time that
again there is a demand for fewer fitness calculations [7]. The goal of a reduced num-
ber of evaluations is usually achieved by hybridization with problem-specific knowl-
edge or heuristics ([8], most papers reporting on practical applications in last PPSN,

- 2 -

ICGA, GECCO etc. conferences). This partly speeds up the performance drastically,
but always results in a more or less problem-specific solution.

HyGLEAM (Hybrid GeneraL-purpose Evolutionary Algorithm and Method) is
aimed at overcoming this limitation by improving the performance of the evolutionary
search, while maintaining the robustness, global nature of the search, and general ap-
plicability of EAs in the resulting hybrid algorithm. It is especially intended for prob-
lems where only little or no information is available about the search space. The con-
cept of HyGLEAM [9] described in section 2 was published in 2002 together with a
brief overview and comparison of all thirteen kinds of hybridization to which the
method was applied [10], see sections 3 and 4. This paper focuses on the work to ex-
tract a common parameterization for the best basic kind of hybridization. The results
presented in section 5 lead to the consequence of self-adaptation. This new concept is
described in section 6 as an outlook for future work.

2 HyGLEAM Concept

The basic idea of the HyGLEAM concept can be summarized in two points:
1. Use of generally applicable local search algorithms instead of the commonly

used problem-specific ones for hybridization.
2. Use of a convergence-dependent control mechanism for distributing the compu-

tational power between the basic algorithms for suitable kinds of hybridization.
The first point may appear to be simple, but it is a matter of fact that nearly all real-

world applications and investigations are based on problem-specific local searchers.
Appropriate local search algorithms for parameter optimization must be derivative-
free and able to handle restrictions in order to be generally applicable.

For the second point, means are required to measure the convergence of a popula-
tion. This can be done on the basis of observing the establishment of sub-populations
(niches) of similar individuals in the course of generations. To estimate the genotypic
diversity, distance measures for chromosomes are required, which quantify the para-
meter distance, the different gene ordering for combinatorial problems, and the com-
mon genes in the case of dynamic chromosomes as required by some applications, see
section 4.2 or [2,7]. Distance functions reported in literature [11,12] often are too spe-
cialized for the problem on hand to serve as a solution here. The measures used are
independent of the application in so far as they are not influenced by actual parameter
ranges or the number of genes. Details are omitted here due to the lack of space, see
[9,10] and the web page: www.iai.fzk.de/~jakob/HyGLEAM/.

For estimating the convergence of a population, the individuals are assumed to be
in linear circular order so that they all have a neighborhood. A niche is formed by ad-
jacent individuals with a greater fitness than half of the global best and with a distance
∆ being smaller than the strategy parameter ε. Chromosomes of less quality are ig-
nored, as they do not contribute to niching of individuals of high fitness. Niches,
whose center individuals differ by less than ε, are merged regardless of their position.
The resulting amount of niches N and the maximum difference of their center indi-
viduals ∆N,max are compared to the strategy parameters Nmax and εPop. The population
is considered to be converged, if:

- 3 -

PopN ε≤∆ max, and maxNN ≤ (1)

It is sufficient to check the population for convergence only, if a certain amount of
generations without improvement or, stronger, without acceptance of any offspring
occurs. As the formation of niches is common to EAs, this control method can be
adapted easily to other EAs.

The following four general hybridization alternatives were investigated:
1. Pre-optimization of the start population

It can be applied to the entire population or a fraction of it. It provides the evolu-
tion with solutions of more or less good quality to start with.

2. Post-optimization of the EA results
As EAs are known to converge slowly, an improvement can be expected by
stopping the evolution after approaching the area of attraction of the (global) op-
timum and leaving the rest to the local search. The appropriate switching point
is determined by the control procedure introduced above.

3. Direct integration
Optimizing every or the best offspring of one mating only causes the EA to op-
erate over the peaks of the fitness landscape exclusively rather than to treat the
valleys and slopes, too. The offspring’s genotype can be updated (Lamarckian
evolution) or left unchanged (Baldwinian evolution). As both methods which
are usually applied to domain-specific local searchers are controversially dis-
cussed in literature [14,15], this was also investigated. In accordance with a rec-
ommendation, updating 5% of the accepted offspring [16] was examined.

4. Delayed direct integration
This is a variant of direct integration, where the evolution works on its own until
a certain convergence of the population has occurred.
Pre-optimization can be combined with the other methods, while a fusion of di-
rect integration and post-optimization does not appear to be reasonable.

3 Basic Algorithms of the Test Implementation

For the test implementation that was needed to evaluate the approach introduced, a
representative EA and local searchers which meet the above-mentioned requirements
must be chosen. As Schwefel [17] gives a detailed description of the selected local
procedures together with experimental results, they are explained here only briefly.

3.1 Rosenbrock Algorithm

Rosenbrock [18] modified the well-known coordinate strategy by rotating the coordi-
nate system so that it points in the direction that appears to be most favorable. For this
purpose, the experience of failures and successes is gathered in the course of the itera-
tions. The remaining directions are fixed to be normal to the first one and mutually or-
thogonal. A direct search is done parallel to the axes of the rotated coordinate system.
The procedure stops when the rate of changes of the main search direction decreases
below a certain value and when the distances covered become too small. The algo-

- 4 -

rithm can be controlled by this strategy parameter. The implementation on hand [19]
uses normalized object parameters in the range between zero and one, thus allowing
the definition of application independent threshold values for the termination. In the
experiments, the five values of 10-2, 10-4, 10-6, 10-8, and 10-9 are compared.

3.2 Complex Procedure

The Complex method of Box [20] is based on the SIMPLEX strategy of Nelder and
Mead [21], which was improved to handle constraints (COnstrained siMPLEX). The
idea is to use a polyhedron of n+1 to 2n vertices (n is the number of dimensions),
whose worst vertex is reflected at the midpoint of the remaining vertices. The result-
ing line is lengthened by a factor of 1.3, thus expanding the polyhedron. If this leads
to an improvement, the worst vertex is replaced by the new one, otherwise the poly-
hedron is contracted. The algorithm stops when no improvement is achieved in five
consecutive iterations. The stopping criterion of this procedure is left fixed in the im-
plementation used [19]. As this method can exploit multiple start points, it is assumed
to be better suited for post-optimization using a set of EA results of more or less good
quality for forming one start complex instead of just optimizing the solutions in an
isolated manner.

3.2 GLEAM

GLEAM is an Evolutionary Algorithm of its own that combines elements from Evo-
lution Strategy (ES) and real-coded Genetic Algorithms (GA) with data structuring
concepts from computer science. The coding is based on chromosomes consisting of
problem-configurable gene types. The definition of a gene type constitutes its set of
real, integer or Boolean parameters together with their ranges of values. There are dif-
ferent rules for constructing chromosomes from genes. If the chromosomes are of
fixed length, exactly one gene of each gene type will go into the chromosome. Addi-
tionally, the order of genes can be defined to be relevant or not, depending on the ap-
plication. This mainly affects the set of applicable mutation operators. If the problem
requires a dynamic set of parameters, as the robot program development task de-
scribed in section 4.2 or some design optimization problems [7], the rule for dynamic
chromosomes applies: Any number of genes, including zero, of every gene type can
occur in a chromosome. This provides the user with a flexible mechanism of naturally
mapping his problem to the chromosomes and genes, often resulting in genotypes
from which phenotypic properties can be derived easily. Contrary to the binary coding
of classical GAs, no artificial solutions are needed. Another advantage of this ap-
proach is that problem-specific genetic operators can be added easily to the set of
general ones, if desired.

The type definition of genes allows for mutation operators that take explicit re-
strictions into account. The relative mutation operator is inspired by the ES: At first, it
is randomly chosen whether to increase or decrease the actual value. Then, the range
of possible alteration with respect to the parameter boundaries is calculated. This
range is divided into ten equidistant classes, from which one is chosen by chance to
define the actual range of mutation, from which the value of modification is selected

- 5 -

randomly. This is faster than calculating the normal distribution, as done with ES, but
has a similar effect: Greater changes are less likely than smaller ones. In contrast to
ES, however, there are no strategy parameters for mutation changed by the evolution-
ary process. Mutation is treated in a more general way as common with GAs or ES:
Genes may be substituted by newly generated ones or deleted, moved or replicated in
case of dynamic chromosomes. Additionally, there are evolvable sub-structures
within a gene, the so-called segments. They are subject to some sort of macro muta-
tion and they serve as bases of crossover operators which are similar to those of tradi-
tional GAs: Single and n-point crossover operators work on these segment bounda-
ries. A more detailed description of GLEAM is given in [13].

4 Test Cases and Results for All Kinds of Hybridization

Appropriate test cases must be representative of real-world applications, their calcu-
lation must be comparatively fast for statistical investigations, and the exact or an ac-
ceptable solution must be known. Two series of test runs were performed, with the
shorter second one being aimed at trying to identify suitable general parameter set-
tings for the best kind of hybridization found in the first one. The first series consisted
of five test functions taken from GENEsYs [22] and three real-world problems, which
are described very briefly only due to the lack of space. The interested reader is re-
ferred to the given literature. The three test functions for the second series were taken
from Schwefel [17].

4.1 Benchmark Functions

Table 1 shows characteristic properties of the test functions. The sphere function is
known to be easy for ES, but hard for ordinary GA, while Shekel’s foxholes and the
Rastrigin Function are hard for ES and local searchers. The test function of Fletcher &
Powel is of considerable complexity, while the fractal function with its unknown op-
timum is really hard. The functions of Bracken and Beale were chosen because of
their implicit restrictions. The helical valley is another example of a unimodal func-
tion of considerable complexity.

4.2 Real-world Problems

As test functions are just a substitute of real applications, a significant evaluation of a
new concept should always include some real-world applications. From the range of
applications of GLEAM, three tasks were selected, which fulfill the requirements for
use as test benches: Being fast enough for allowing multiple runs and complex
enough for leaving room for improvements. As another criterion, they are to cover
different areas of applications and problem properties, see Table 2. All tasks were
multi-objective optimization using the weighted sum for fitness calculation. Penalty
functions were applied if necessary. For the last two problems, the local searchers
work on the parameters only and leave the combinatorial aspects to GLEAM.

- 6 -

Table 1. Important properties of the test functions (gray: functions of the 2nd test series)

Test Functions Number of
Parameters Modality Restric-

tions Range Target Value

Sphere
[22, f1] 30 uni no [-1010, 1010] fopt = 0

ftarget = 0.01
Shekel’s foxholes
[22, f5] 2 multi no [-500, 500] fopt = ftarget =

 0.998004
Gen. Rastrigin
function [22, f7] 20 multi no [-5.12, 5.12] fopt = 0

ftarget = 0.0001
Fletcher & Powel
[22, f16] 5 multi no [-3.14, 3.14] fopt = 0

ftarget = 0.00001
Fractal function
[22 , f13] 20 multi no [-5, 5] fopt is unknown

ftarget = -0.05
Bracken et al. [17,
f2.32] 2 multi yes,

active
0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.25

fopt = -2
ftarget = -1.999999

Beale,
[17, f2.29] 3 uni yes 0 ≤ x1,2 ≤ 3.0

0 ≤ x3 ≤ 1.5
fopt = 1/9
ftarget = 0.111112

Helical valley
(Fletcher & Powel)
[17, f2.34]

3 uni no
 0.1 ≤ x1 ≤ 100
 -2.5 ≤ x2 ≤ 100
-100 ≤ x3 ≤ 7.5

fopt = 0
ftarget = 0.000001

Table 2. Important properties of the real-world problems

Test Cases Combinat. Opt. Parameters Modality Restrictions
Design Optimization no 3 real multi no
Scheduling & Resource Opt. (yes) 87 int multi yes
Robot Path Planning yes dynamic, mixed multi yes

Design Optimization. A micro-optical communication device shall be designed in
such a way that despite of fabrication tolerances within a given range, the reject rate is
as low as possible. Consideration of fabrication tolerances turns the relatively easy
optical problem into an interesting, highly multimodal optimization task. It depends
on three parameters and yields four criteria, three technical properties to be fulfilled,
and the reject rate to be minimized. The target fitness corresponds to a fulfillment of
the technical properties and a reject rate of less than 9.5% [6].

Scheduling and Resource Optimization. This task from chemical industry [4] deals
with 87 batches with varying numbers of workers being required during the different
phases of each batch. The objective of scheduling these batches means a maximum
reduction of the maximum number of workers per shift (human resource) and
production time. Restrictions like due dates of batches, necessary pre-products from
other batches, and the availability of shared equipment must also be observed.
Allocation conflicts are solved by the sequence of the batches within a chromosome.
As it can be overwritten by suitable changes of the starting times, however, the
combinatorial aspect is limited to solving allocation conflicts (bracketed “yes” in
Table 2). The optimum is not known in this case. For the test, a reduction from 12 to 9

- 7 -

workers per shift and to 70% of the original production time given in manual
schedules was regarded sufficient. This is close to the best reported solution [4].

Collision-free Robot Path Planning. By controlling the robot axis motors, an indus-
trial robot shall be moved along a line as straightly and fast as possible from a starting
to a destination point with collisions with itself and some obstacles being avoided, see
[1,2]. The motor parameters are real values. Due to a command that tells the robot
control to keep the actual motor settings for a specified amount of control cycles,
however, this task has both integer and real parameters. As the number of necessary
motor commands is not known in advance, the chromosomes must be of dynamic
length and the order of the commands is essential. The chromosomes consist of com-
mands for switching on motors at a given angular velocity and ramp and switching
them off using a ramp together with the already mentioned command for keeping the
actual motor settings. The two main objectives are to minimize the deviations from
the target point and from the straight line. Further criteria are a reduction of the dura-
tion of the move and the amount of commands. Collisions are dealt with by a penalty
function.

4.3 Results for All Kinds of Hybridization

A basic algorithm or a hybridization together with a setting of its strategy parameters
(see Table 3) is called a job. For the test functions, the results are based on 100 runs
per job. Due to the greater computational effort required for the real-world applica-
tions, except of the jobs of the basic procedures and some of the “fast” hybrids, this
number was reduced to 50. The comparisons shown in Figures 1 and 2 were made on
the basis of the effort measured by the average number of evaluations needed for suc-
cess. If not stated otherwise, only successful jobs (jobs where all runs reach the given
target values) were taken into account for comparison. They were measured by the
improvements in effort achieved compared to the best GLEAM job. Table 3 shows
the acronyms for the algorithms and their parameterizations.

Fig. 1 gives an overview of the best runs of all thirteen kinds of hybridizations on
the basis of the improvements achieved compared to the best GLEAM job. The
sphere function is not included, because GLEAM had no success and therefore did
not produce any reference value for comparison. It can be stated, however, that post-
optimization and (delayed) direct integration yield very good results compared to
GLEAM. The robot task was not covered by this comparison, as there was no im-
provement worth mentioning. This clearly demonstrates the limitation of the approach
of locally optimizing parameters: If the combinatorial aspect dominates, the additional
effort for local improvements is too costly. For the Foxhole and the Rastrigin func-
tions, no improvement could be achieved. These two functions turned out to be too
easy for GLEAM to leave room for any enhancements. Fig. 1 obviously shows the
superiority of (delayed) direct integration. This type of hybridization reached the aim
of increasing the convergence velocity while preserving, or in case of the sphere func-
tion, increasing the convergence reliability. Together with the observation that no
suitable common setting for all strategy parameters could be derived from the ex-
periments, this was the essential result of the first test series.

- 8 -

Table 3. Acronyms, basic algorithms, hybrids, and strategy parameters

Acronym Algorithm Strategy Parameters
G GLEAM Population size p =5,10,20,30,50,70,90,120,…
R Rosenbrock Termination thresholds, see section 3.1
C Complex None

GiR, GiC GLEAM with Rosenbrock/ Com-
plex pre-optimization

Percentage of pre-optimized individuals for the
initial population.

GpR GLEAM with Rosenbrock post-opt.

Gp1S GLEAM with Complex post-opt.,
each EA-result is 1 start point (1S)

Gp1C GLEAM with Complex post-opt.,
all EA-results: 1 start complex (1C)

The niching is controlled by three parameter
settings for ε and εPop, P1=(0.005, 0.01),

P2=(0.002, 0.005), P3=(0.001, 0.002), and by
Nmax which varies between 2 (p<20) and 5

(p>90). The tests are done after 3 generations
without local improvement.

GR, GC Direct integration of Rosen-
brock/Complex

Lamarck-rate (0, 5, 100%), optimization of all
or the best of the descendants of one mating.

GdR,
GdC

Delayed direct integration of
Rosenbrock/Complex

Like post-optimization, but testing for every
generation w/o local improvement

Fig. 1. Comparison of the thirteen kinds of hybridization investigated. Empty fields indicate an
insufficient success rate (below 100%), while flat fields denote the fulfilling of the optimization
task, but with greater effort than GLEAM. Improvement is calculated on the basis of the best
GLEAM job, see section 4.3. Combinations of (delayed) direct integration and pre-optimization
are abbreviated by, GR,iR, for example, in case of pre-optimized direct integration using the
Rosenbrock procedure. For Gp1S, a 100 % success rate was not reached in any test case

- 9 -

5 Extended Results for the Direct Integration

To find out more about a suitable common parameterization, additional runs were per-
formed for both versions of direct integration. Besides the three last test functions of
Table 1, variants of Shekel’s foxholes and the Rastrigin function were used, which
were rotated by 30o. This turned out to be much harder for GLEAM, because the tasks
did no longer have any regularities with respect to the coordinate axes. Evolutionary
Algorithms like the ES, GAs or GLEAM work with mutations that tend to alter at
once a small amount of parameters only. Consequently, a search is carried out more
or less parallel to the coordinate axes frequently resulting in a fast solution of the two
original functions.

The results of all suited test cases for all types of direct integration are compared in
Fig. 2. Integration of the Rosenbrock procedure always works, while the Complex al-
gorithm yields better results in many cases, but only if it works at all. Thus, integra-
tion of the Rosenbrock procedure is more reliable, but less promising compared to the
Complex algorithm. The delayed version often yields better results. Table 4 shows the
parameters for the best runs and the evaluations required together with the evaluations
of the best GLEAM job. The second best job often is only a little worse as shown in
both figures. From the entire material, only some parameters can be narrowed down
or fixed: The population size should not be too small to avoid premature convergence,
so a size between 10 and 50 can be recommended depending on the estimated com-
plexity of the problem on hand. Optimization of the best offspring of one mating in-
stead of all and Lamarckian evolution can be fixed, while the termination threshold of
the Rosenbrock algorithm and the niching parameterization are still an open question.

Fig. 2. Overall comparison of all types of direct integration. Explanations see Fig. 1

- 10 -

Table 4. Evaluations required and strategy parameters (see also Table 3) of the runs of Fig. 2

Test case
GLEAM
evalua-
tions

Hy-
brid

Evalu-
ations

Popu-
lation
size

Rosen-
brock

threshold

Opt. of
best or all
offspring

Lamarck
rate

Niching pa-
rameter

Fletcher 483,566 GdC 4,635 5 best 100 % P3
Resource 5,376,334 GdR 60,225 5 10-2 best 100 % P1
Beale 76,229 GC 1,319 5 best 100 %
Hel. Valey 47,288 GC 2,576 5 best 100 %
Rot. Fox. 103,195 GC 8,831 20 best 0 %
Rot. Rast. 3,518,702 GR 315,715 70 10-2 all 100 %
Fractal 195,129 GdR 30,473 5 10-2 best 100 % P2
Design 5,773 GdC 996 5 best 100 % P3
Bracken 5,000 GC 1,433 5 best 100 %

6 A Concept of Adaptive Direct Integration

As pointed out in the previous section, (delayed) direct integration of the local search-
ers in the offspring production (memetic part of HyGLEAM) yielded superior results
compared to GLEAM. The delayed variant was an attempt to reduce the effort by a
better balance between global and local search. For a further step in this direction, it is
assumed that local search may be inaccurate to some extent in the beginning and the
effort spent for the exact determination of local optima rejected later on can be saved.
Thus, local search shall start coarsely and become more precise as the search goes on.
As neither the optimum nor the path to it is known in advance, the process of becom-
ing more precise should be adjusted adaptively instead of using fixed schedules as
proposed by Zitzler et al. [23]. This also holds for the choice between Rosenbrock and
Complex algorithm.

For the open parameters, an adaptive mechanism based on the fitness gain obtained
by local search and the effort spent is proposed. It is described for the case of sched-
uling the two local searchers (LS). Initially, both LS have the same probability of be-
ing selected. The fitness gain fg and the required evaluations eval are summed up, and
the applications of each LS are counted. It was one result of the experiments that be-
tween 50 and 200 matings were needed for the (delayed) direct integration with fixed
iteration limits. This value is supposed to increase for a varying precision of ocal
search. Adjustment of the application probabilities of the LS is done, if either each LS
was used three times at minimum or there were 15 matings in total. The new relation
between Complex and Rosenbrock is calculated as follows:

compli

compli

eval
fg

,

,

∑

∑
 :

rosenj

rosenj

eval
fg

,

,

∑

∑
 (2)

After the adjustment, the sums are reset to zero so that the adaptation is faster. If
the relation for one LS is worse than 1:10 for 3 consecutive alterations, it is ignored

- 11 -

from that on. This approach can be extended easily for the adjustment of the follow-
ing parameters as well as for more local searchers, if desired. Both LS can be con-
trolled by the permissible number of evaluations per run and the Rosenbrock proce-
dure additionally by the termination threshold. The five values from the experiments
will be extended to nine values ranging from 10-1 to 10-9. Based on the experiences
gained from the experiments, the number of permissible evaluations shall range from
100 to 1500 using a step size of 100 in the beginning and 200 in the end, resulting in
about 10 levels. Only three of these possible levels are active at the same time and the
first three lowest ones initially have the same probability. If the lowest or the highest
active level receives a probability of more than 50%, the next lower or higher level is
added. The one at the opposite end is dropped and its likeliness is added to its neigh-
bor. The new level receives 20% from the two others. As a result the three consecu-
tive levels are moved along the scale of possible ones according to their performance
determined by the achieved fitness gain and the required evaluations. To raise the
quality of local search at the end of the run, the algorithms for niching control in-
troduced in section 2 can be used to readjust the threshold values for the level move-
ments: The threshold for a level decrease can be raised to 60% for example and the
one for an increase to 40%.

This concept allows for an adaptive control of the schedule of the local searchers as
well as of the intensity of their search, which is based on fitness gain and effort.
Cumbersome parameterization of the hybrid and its adjustment to the problem on
hand, which will not be possible in many practical applications due to time and effort
restrictions, are no longer required.

7 Conclusion and Outlook

The HyGLEAM concept of hybridization between an EA and local searchers for pa-
rameter optimization has been presented. Extensive tests with a total of eight bench-
mark functions and three real-world applications show the superiority of the ap-
proach: About 90 and 100 times less evaluations were required for the two best test
cases (scheduling with resource optimization, Fletcher’s function). The number of
evaluations needed was reduced by about 6 times in the “worst” test application (de-
sign optimization). Convergence reliability of the EA was preserved and in one case
even improved. As no common setting for all parameters of the best hybridization
could be derived, the concept of an adaptive direct integration was introduced, which
will be subject of further work.

References

1. Blume, C.: GLEAM - A System for Intuitive Learning. In: Schwefel, H.P., Männer, R.
(eds): Conf. Proc. of PPSN I. LNCS 496, Springer Verlag, Berlin (1990) 48-54

2. Blume, C.: Optimized Collision Free Robot Move Statement Generation by the Evolution-
ary Software GLEAM. In: Cagnoni, S. et al. (eds): Real-World Applications of Evolution-
ary Computing. Proc. of EvoWorkshops 2000. Springer Verlag, Berlin (2000) 327-338

- 12 -

3. Blume, C., Jakob, W.: Cutting Down Production Costs by a New Optimization Method. In:
Proc. of the Japan - U.S.A. Symposium on Flexible Automation. ASME (1994)

4. Blume, C., Gerbe, M.: Deutliche Senkung der Produktionskosten durch Optimierung des
Ressourceneinsatzes. atp 36, 5/94, Oldenbourg Verlag, München (in German) (1994) 25-29

5. Jakob, W., Meinzer, S., Quinte, A., Süß, W., Gorges-Schleuter, M., Eggert, H.: Partial Au-
tomated Design Optimization Based on Adaptive Search Techniques. In: Parmee, I.C. (ed):
Adapt. Comp. in Engineering Design and Control ’96. Univ. of Plymouth (1996) 236-241

6. Sieber, I. Eggert, H., Guth, H., Jakob, W.: Design Simulation and Optimization of
Microoptical Components. In: Bell, K.D. et al. (eds): Proceedings of Novel Optical Sys-
tems and Large-Aperture Imaging. SPIE Vol.3430 (1998) 138-149

7. Quinte, A., Jakob, W., Scherer, K.-P., Eggert, H: Optimization of a Micro Actuator Plate
Using Evolutionary Algorithms and Simulation Based on Discrete Element Methods. In:
Laudon, M.. Romanowicz, B. (eds): Proc. of the 5th Int. Conf. on Modeling and Simulation
of Microsystems. Computational Publications, Boston, Massachusetts (2002) 194-197

8. Davis, L. (ed): Handbook of Genetic Algorithms. Van Nostrand Reinhold, New Y. (1991)
9. Jakob, W.: Eine neue Methodik zur Erhöhung der Leistungsfähigkeit Evolutionärer Algo-

rithmen durch die Integration lokaler Suchverfahren. Doctoral thesis, FZKA 6965, Univer-
sity of Karlsruhe (in German) (2004), see also: www.iai.fzk.de/~jakob/HyGLEAM/

10. Jakob, W.: HyGLEAM – An Approach to Generally Applicable Hybridization of Evolu-
tionary Algorithms. In: Merelo, J.J., et al. (eds): Conf. Proc. PPSN VII. LNCS 2439, Sprin-
ger Verlag, Berlin (2002) 527-536

11. Ronald, S.: Distance Functions for Order Based Encodings. In: Fogel, D. (ed): Conf. Proc.
CEC 1997. IEEE Press, New York (1997) 46-54

12. Tagawa, K., Kanzaki, Y., Okada, D., Inoue, K., Haneda, H.. A New Metric Function and
Harmonic Crossover for Symmetric and Asymmetric Traveling Salesman Problems. In:
Conf. Proc. CEC 1998. IEEE Press, New York (1998) 822-827

13. Blume, C., Jakob, W.: GLEAM – An Evolutionary Algorithm for Planning and Control
Based on Evolution Strategy. In: Cantú-Paz, E. (ed): GECCO – 2002, Vol. Late Breaking
Papers (2002) 31-38

14. Gruau, F., Whitley, D.: Adding Learning to the Cellular Development of Neural Networks:
Evolution and the Baldwin Effect. Evolutionary Computation, Vol.1 (1993) 213-233

15. Whitley, D., Gordon, V., Mathias, K.: Lamarckian Evolution, The Baldwin Effect and
Function Optimization. In: Davidor, Y. et al. (eds): Conf. Proc. PPSN III, LNCS 866,
Springer Verlag, Berlin (1994) 6-14

16. Orvosh, D., Davis, L.: Shall We Repair? Genetic Algorithms, Combinatorial Optimization,
and Feasibility Constraints. In: Forrest, S. (ed): Conf. Proc. Fifth ICGA, Morgan Kauf-
mann, San Mateo, California (1993) 650

17. Schwefel, H.-P.: Evolution and Optimum Seeking. John Wiley & Sons, New York (1995)
18. Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least Value of a

Function. The Computer Journal, 3 (1960) 175-184
19. Peters, D., Bolte, H., Böhnke, R., Bischoff, L., Laur, R.: MODOS - Model Based Design

Optimization System. In: IEEE Proceedings of the 43rd Midwest Symposium on Circuits
and Systems, Lansing, Michigan (2000)

20. Box, M.J.: A New Method of Constrained Optimization and a Comparison with Other
Methods. The Computer Journal, 8 (1965) 42-52

21. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. The Computer Jour-
nal, 7 (1965) 308-313

22. Bäck, T.: GENEsYs 1.0, University of Dortmund (1992) ftp://lumpi.informatik.uni-
dortmund.de/pub/GA/

23. Zitzler, E., Teich, J., Bhattacharyya, S.S.: Optimizing the Efficiency of Parameterized Lo-
cal Search within Global Search: A Preliminary Study. In: Conf. Proc. CEC 2000, IEEE
press, Piscataway, N.J. (2000) 365-372

