Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Ivan Kondov, Institute for Scientific Computing, ivan.kondov@iwr.fzk.de Abhinav Verma, Wolfgang Wenzel, Institute for Nanotechnology

Protein Folding and Structure Prediction of Proteins Containing Disulfide Bridges

OVERVIEW

We used the all-atom protein force field PFF02 to calculate the internal free energy of the protein and search for the global free-energy minimum using of a stochastic optimization methods, in particular the basin hopping method. Various constraining potentials were employed to describe the covalent disulfide bonds between cysteine residues in following proteins: the β -hairpin 1KVG, the potassium channel blocker 1WQE, the antimicrobial peptide protegrin-1 (1PG1), and the pheromone 1HD6. Prediction accuracy of the results was assessed by comparing the simulated structures with experimental NMR structures

PFF02 A free-energy force field

The native three-dimensional structure of a protein is assumed to occupy the global free energy minimum. We employ stochastic optimization methods to perform the search for the global minimum of the free-energy. The free-energy within the forcefield PFF02 of the state $[\vec{r}]$ is partitioned into several contributions

$$G([\vec{r}]) = \sum_{ij} V_{ij} \left[\left(\frac{R_{ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{ij}}{r_{ij}} \right)^6 \right] + \sum_{ij} \frac{q_i q_j}{\epsilon_{g_i g_j} r_{ij}} + \sum_i \sigma_i \cdot A_i + \sum_{\text{Hbonds}} V_{\text{hb}}$$

- \blacktriangleright Lennard–Jones Potential, V_{ij} and R_{ij} mean potential depth and equilibrium distance
- > Electrostatic interaction, q_i and q_j are the partial charges of two atoms, $\epsilon_{g_ig_j}$ the groupspecific dielectric constants, depending on the aminoacid type of atoms i and j
- > Implicit solvent interaction by minimal accessible surface area, σ_i gives the free-energy per area unit, A_i is the surface area
- \blacktriangleright Short-range contributions to hydrogen bonding interactions, $V_{\rm hb}$
- > Torsional potential for backbone dihedral angles (not shown)
- Specific backbone electrostatics in segments with different secondary structure (not shown)

CONSTRAINING POTENTIAL

This is a potential which favors the formation of disulfide bonds between predefined cysteine pairs. In the case shown $\beta = 1 \text{ Å}^{-1}$, $E_0 = 5 \text{ kcal/mol}$ and $r_0 = 2 \text{ Å}$.

PERFORMANCE ANALYSIS Occurrence of near-natural conformations

1WQE

no constraining potential $\mathsf{E}_0[\sqrt{|\mathsf{r}-\mathsf{r}_0|}-1]$ $\mathsf{E}_0\{[1-\mathsf{e}^{-\beta(\mathsf{r}-\mathsf{r}_0)}]^2]-1\}$

1PG1

method	energy	RMSDb	$r_{\rm SS},$ Å		Sequence and secondary structure
			6-15	8–13	RGGRLCYCRRRFCVCVGR
natural					CCSEEEEETTEEEEEC
no constr ext	-38.5	7.24	8.8	4.7	CTTCHHHHHHTCCSSSCC
Morse 2 ext	-38.9	4.57	5.0	2.9	CCSEEEEECSSCEEEECC
Morse 5 ext	-47.4	3.81	2.7	2.7	CCSSEEEEETTEEEEECC
sqrt 5 ext	-40.1	4.89	2.6	2.6	CCSEEEEETTEEEEESCC

1HD6

method	energy	RMSDb	$r_{\rm SS}$, Å			Sequence and secondary structure
			3–18	10–32	15–24	DICDIAIAQCSLTLCQDCENTPICELAVKGSCPPPWS
natural						CHHHHHHHTCHHHHTTSTTHHHHHHHHHHSCSSCC
no constr ext	-50.8	5.26	14.9	5.3	13.0	CHHHHHHHHHHCCSTTCCCHHHHHHHHHTSSSTTTC
no constr nat	-59.7	2.15	3.5	5.6	4.6	CHHHHHHHTCHHHHHHHSCHHHHHHHHHTSSCTTTC
Morse 5 ext	-59.4	6.31	2.6	2.6	2.7	СНННННННSCCHHHHHTSSHHHHHHHHHHCCCCCCCC
Morse 5 nat	-62.8	1.53	2.6	2.7	2.7	CHHHHHHHTCHHHHHHSSCHHHHHHHHHHSSTTTC
Morse 2 ext	-54.8	3.60	3.2	2.9	6.9	CHHHHHHHTCHHHHHHHHSSSCHHHHHTCCCTTTC
Morse 2 nat	-57.7	0.94	2.8	2.8	2.9	СНННННННТСНННННЯТТНННННННННКЯТТС
tanh ext	-53.1	7.50	2.8	6.5	8.6	CCSEEEEEECCHHHHHHHHSSBEEEEESSSCCCSBC
tanh nat	-59.8	2.38	3.0	11.3	3.0	CHHHHHHHTCHHHHHHSSSHHHHHHHHHTSSCTTTC

method	energy	RMSDb	$r_{\rm SS},$ Å	Sequence and secondary structure
			2-11	SCHFGPLGWVCK
natural				CEEEETTEEEEC
no constr ext	-8.7	2.12	3.3	CBCBTTTBSCBC
Morse 2 ext	-8.2	2.12	2.9	CEEEETTEEEEC
Morse 5 ext	-9.9	2.25	2.7	CEEESSSSEEEC
sqrt 5 ext	-7.1	2.11	2.6	CEEESSSSEEEC

1WQE

method	energy	RMSDb	$r_{\rm SS}$, Å		Sequence and secondary structure
			4–22	8–18	NDPCEEVCIQHTGDVKACEEACQ
natural					ССННННННННТССНННННННС
no constr ext	-42.6	2.10	3.3	5.5	СНННННННННТССНННННННС
Morse 2 ext	-43.6	1.94	2.8	2.9	СНННННННННТССНННННННС
Morse 5 ext	-47.8	4.43	2.7	2.7	CHHHHHHSCSSTTTCHHHHHHHC
sqrt 2 ext	-41.9	6.04	11.8	6.2	CHHHHHHHHHTCCSSSCHHHHHC
sqrt 5 ext	-39.9	6.28	10.7	7.3	CCSBCSSSBSSCCSCSBCSSBCC

CONCLUSIONS

- For all proteins studied, inclusion of the constraining potential resulted in improved RMSDb values compared to constraint-free simulations.
- The potassium channel blocker 1WQE can be folded to near-native conformation without constraining potential; however, this is computationally much less efficient than folding with constraining potential.
- > All proteins folded qualitatively correctly from extended to native conformations with inclusion of the constraining potential.
- For 1PG1 β -sheet secondary structure is more favorable than the α -helical structure in presence of constraining > potential
- On the example of 1HD6 the interplay between formation of helical regions and closure of disulfide bridges can be studied.
- > The Morse potential exhibits better efficiency and accuracy compared to other constraining potentials.

Acknowledgment

Grant of computing time within the project CampusGrid (www.campusgrid.de) at the Research Center Karlsruhe is gratefully acknowledged

