
SHF, Lyon, 18-19/11/2008

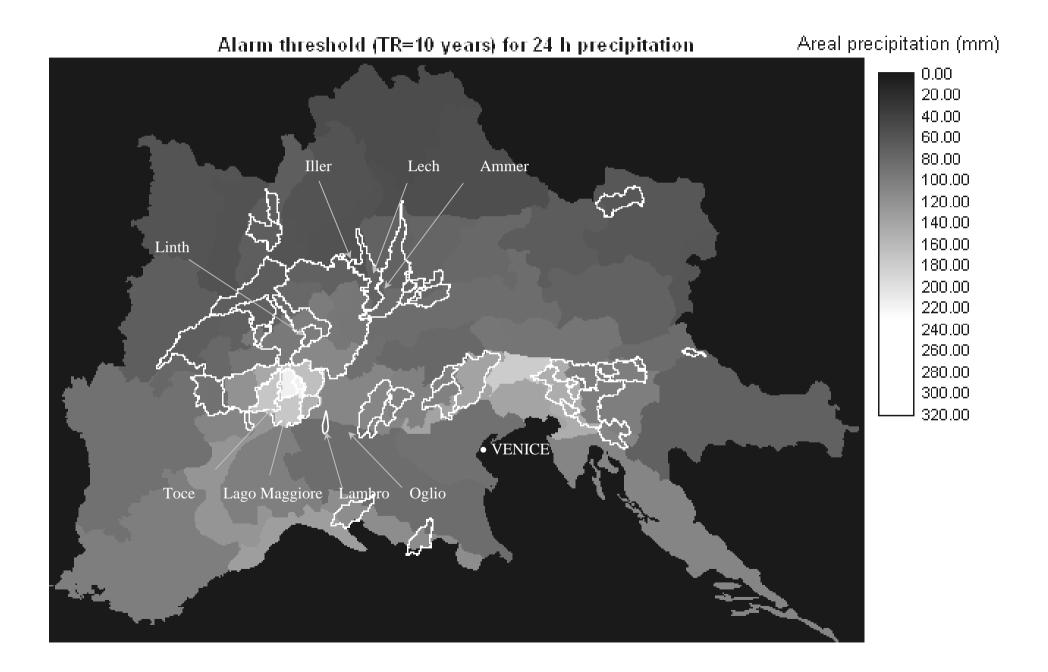
Real-time demonstration of hydrological ensemble forecasts in

MAP D-PHASE

Outline of the presentation

- MAP D-PHASE presentation
- Impact areas in the Alps
- Criteria for meteorological and hydrological warning thresholds
- Results of hydrological forecast chains
- Hydrology-oriented end users feedback

MAP D-PHASE


- Follow up of **MAP-M**esoscale Alpine Programme (Bougeault et al., Bull. Am. Meteorol. Soc., 2001)
- Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region is the second (after Sydney Olympics) Forecast Demonstration Project of the WWRP-World Weather Research Programme. Real time in June-Nov. 2007
- Main **objective** was to **test and demonstrate** to **end-users** the benefits in forecasting heavy precipitation and related flood events in **real-time, and especially in ensemble mode**.
- Meteorological aspects Rotach et al., Bull. Am. Meteorol. Soc., 2008 (submitted)

WG HEU 'Hydrology and End users' Chairs: Christoph Hegg (WSL, CH), Roberto Ranzi

Main tasks:

- 1. definition of the **hydrological basins** (**'impact areas'**) and the control sections where average precipitation, and runoff will be computed for verification;
- definition of common needs of hydrological modellers and end users with respect to atmospheric model output (e.g., parameters, meteorological warning thresholds,..);
- 3. Collect **feedback from** end users who had access to a **Visualisation Platform**
- 4. definition of common format of hydrologic model output and **runoff warning levels thresholds**

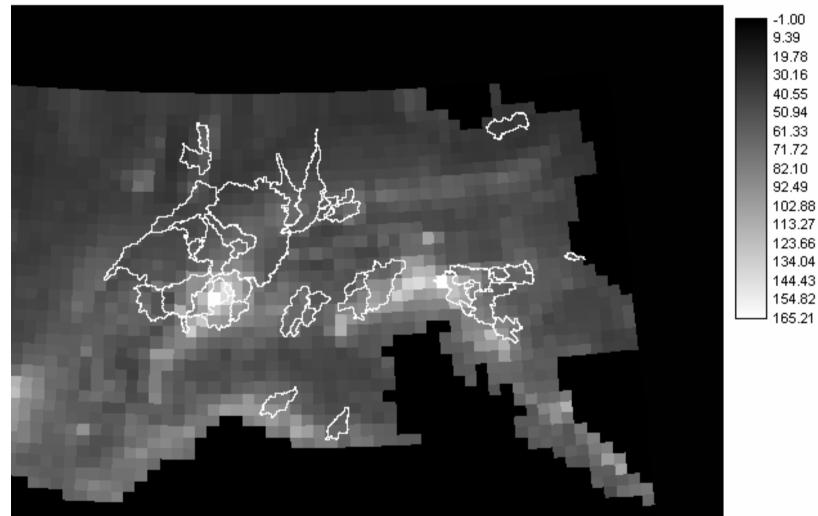
Impact areas (hydrological basins) in the Alps

Meteorological thresholds over > 100 of target and impact areas for duration of 3, 6, 12, 24, 48, 72 h

- 1. <u>Attention level</u> (yellow): annual maxima corresponding to mean of annual maxima m- 2St.dev. From theoretical considerations of Poisson occurrence of events with exponential probability distribution function this corresponds to about 7 events/year of the daily precipitation statistics.
- 2. <u>Alert level</u> (orange): return period of 1.15 years in the tables corresponding to mean of annual maxima m-St.dev corresponding to about 2 events/year of the daily precipitation statistics.
- 3. <u>Alarm level</u> (red): return period of 10 years.

The 'engineering' solution for the threshold task:

From Frei 2006 0.25° gridded daily precipitation,


- statistics of gridded annual maxima were computed,
- Extreme Value of the 1st type Cumulative Distribution Function
- and scaling of rainfall depth *h* with duration *d* was assumed *h=adⁿ* with exponent *n* increasing with altitude (after literature)
- Areal Reduction Factor scaling with area and duration

Ticino	m-2s 7/ yr	m-s 2/yrs	T=10 Years
03h	20	29	59
06h	28	41	83
12h	40	58	117
24h	56	82	165
48h	79	115	233
72h	97	141	284

Тосе	m-2s 7 / yr	m-s 2/yrs	T=10 Years
03h	16.6	27	62
06h	23	38	87
12h	33	54	123
24h	46	76	173
48h	65	106	243
72h	79	130	297

Hydrological Impact areas

Mean of annual maxima of daily precipitation

Map of the impact areas superimposed to the mean of annual maxima of daily precipitation, computed after the Frei, 2006 climatology. Notice: impact areas are nested into larger basins and are not visible.

Questionnaires feedback

METEO (+hydro + users):

- 1. ARPA-FVG OSMER Friuli
- 2. ARPA-Valle d'Aosta
- 3. Meteotrentino
- 4. ARPA-ER**
- 5. <u>CNR.ISAC**</u>
- 6. ARPA-Liguria**
- 7. APAT**

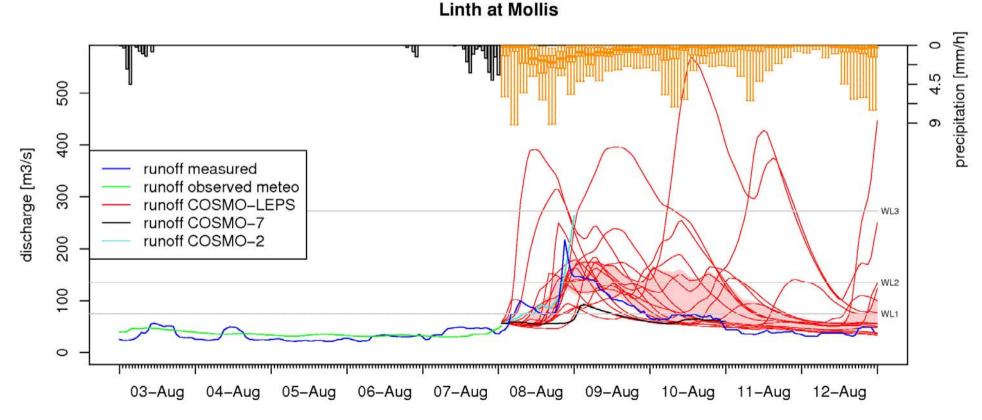
**run meteo models

HYDRO-Forecasters in real-time

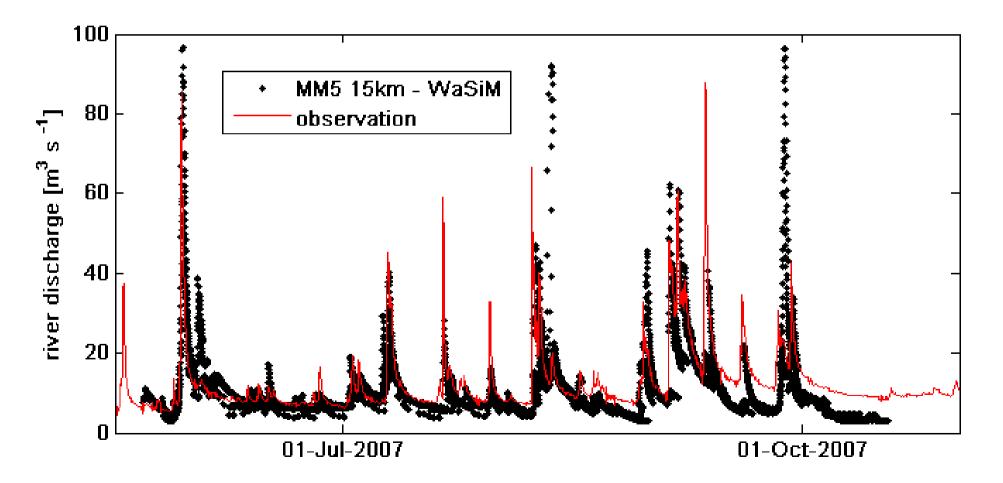
- 1. University of Brescia
- 2. ARPA Lombardia
- 3. Politecnico di Milano and Arpa Piemonte
- 4. WSL, IACETH (CH)
- 5. IMK-IFU Karlsruhe (D)
- 6. Wasserwirtschaftsamt Kempten (D)

HYDROLOGY- ORIENTED END USERS:

- 1. ENEL Mestre (I)
- 2. Consorzio dell'Oglio Water Authority (I)
- 3. ARPA Lombardia, (I)
- 4. SOI-Ufficio Dighe–PAT–Trento (I)
- 5. Protezione Civile Regionale- FVG (I)
- 6. ARPA Piemonte (I)
- 7. Several in Switzerland
- 8. WWA (D)
- 9. Env. Agency of Slovenja (SLO)
- 10. Meteo-Hydro Service (HR)

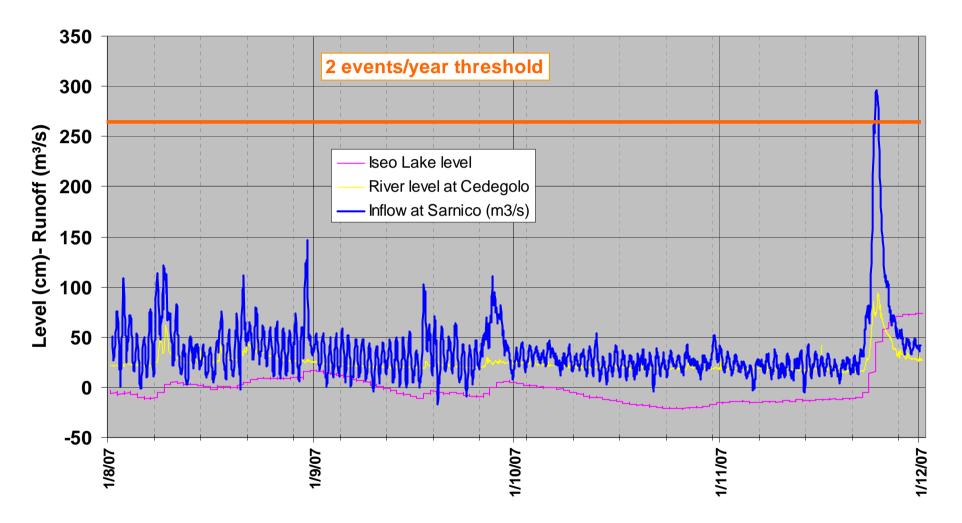

Real-time modelling chains

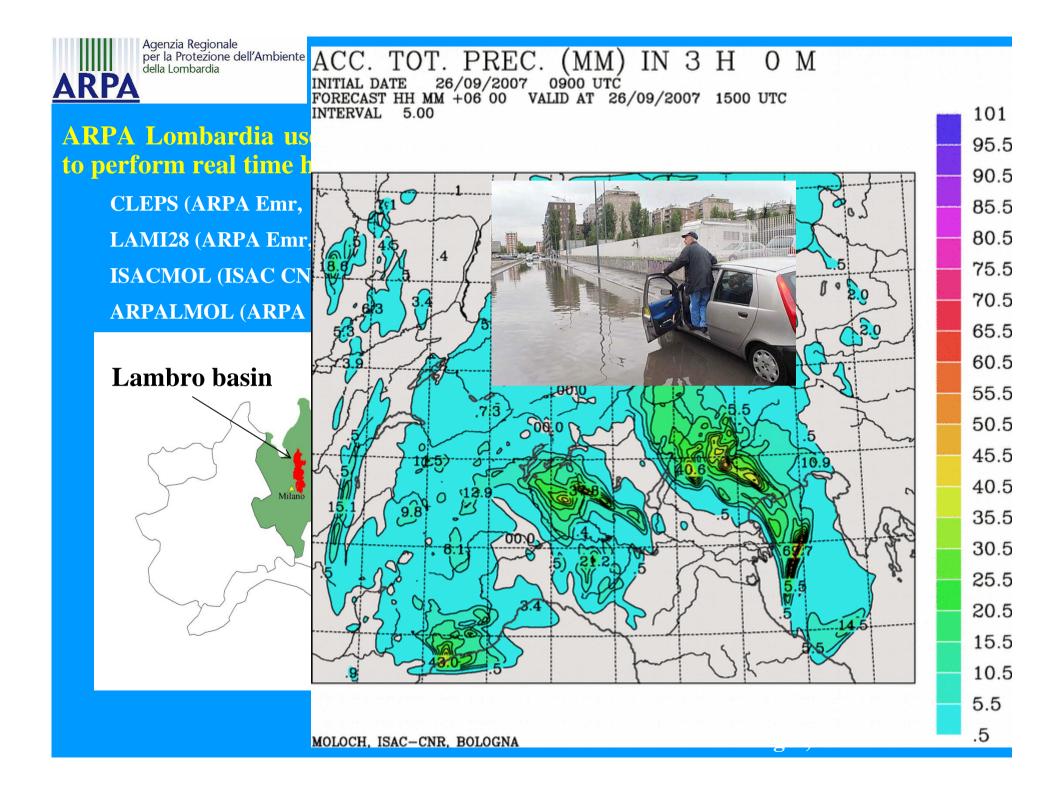
(Italian Alps)

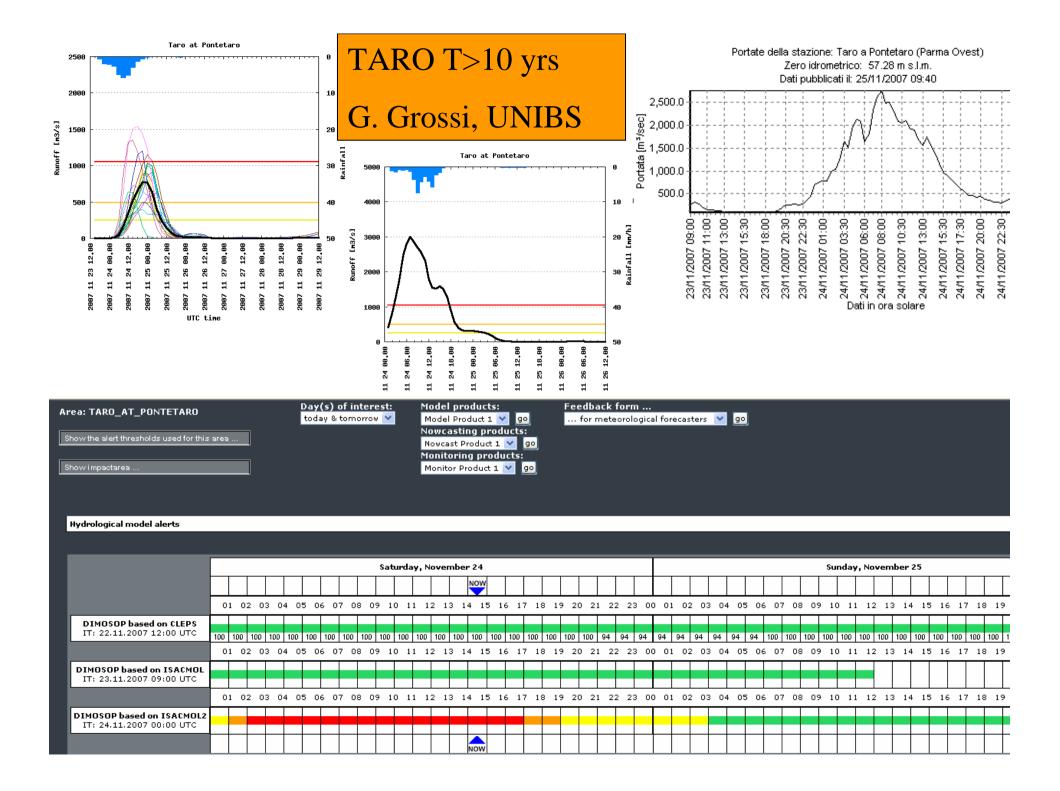

Hydrological models forced by ensemble (E) and deterministic (D) high resolution meteorological models

			Met	eorological n	nodel		
Hydrological	CLEPS	ISACMOL	ISACMOL2	COSMOCH2	COSMOCH7	LAMI28	ARPALMOL
Model	(E)	(D)	(D)	(D)	(D)	(D)	(D)
DIMOSOP	•	•	•				
LAMBRO	•	•				•	•
FEST	•	•					
PREVAH	•		•	•	•		

In Switzerland COSMO 2km & LEPS (Meteo) and Radar Ensemble (Germann et al. 2008) +PREVAH (Hydro)

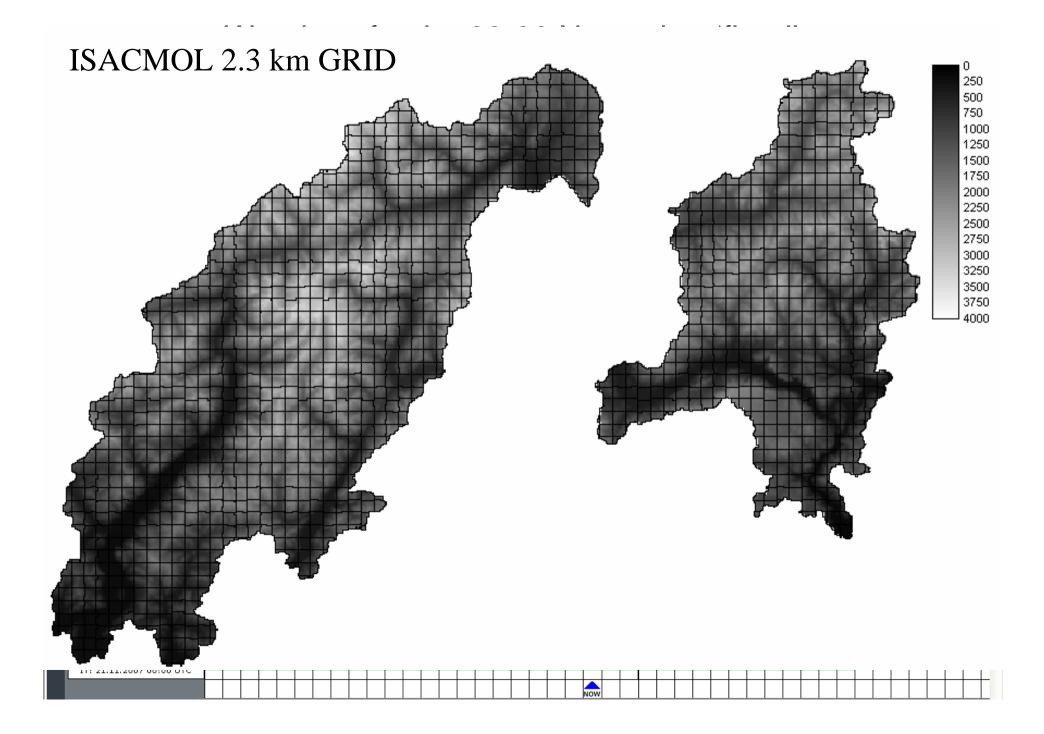



In the Bavarian Alps MM5 15 km + WaSim for Ammer watershed (710 km2)

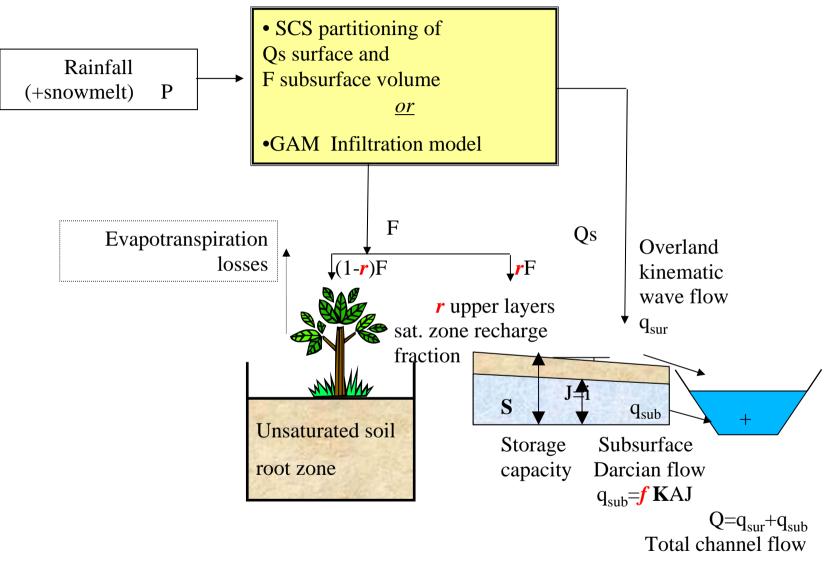


In the Italian Alps

Oglio@Sarnico (1840 km²)

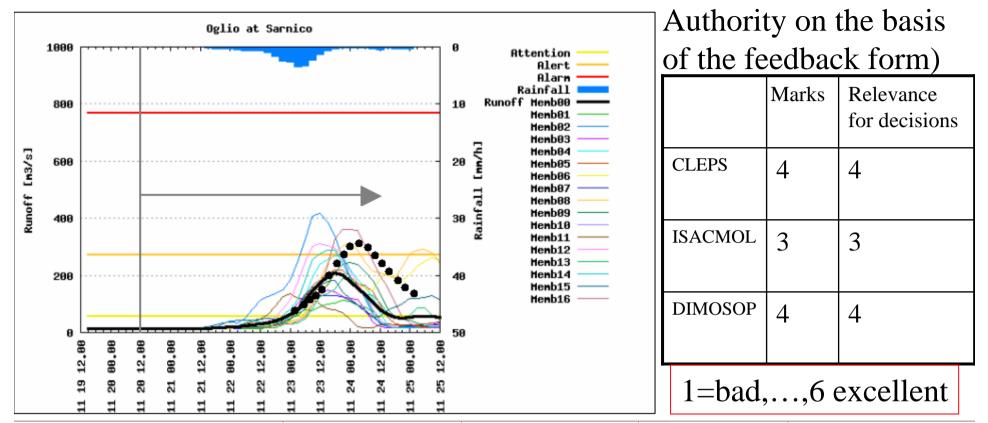


D-P a WWRP	HA		onstra	ation I	Project	t,																							
Start About D-PHASE D-PH	ASE ale	rts Term	ns and (conditio	ons Tro	uble sh	ooting	Intra	net																	L	anguage	: eng	lish 💌
» Level 1 Level 2 Level 3							-																						
Disclaimer: D-PHASE g			erim	ental			- For intere			odel p			consi	ilt wv			larm.e form .												
							morrow		N	lodel P owcas	rodu	ct 1 🔽							recaster	's 🚩	go								
Show the alert thresholds us	ed for th	is area	_						N	owcast onitor	: Prod	luct 1	~ 9																
Show impactarea	_	_							M	Ionitor	Prod	uct 1	~ 👳																
Hydrological model aler	ts																												
																		-											
								Frid	ay, No	vembo	≥r 23			-	N	w		_						Saturd	ay, No	vembe	r 24		
		01	02 0	3 04	05 06	5 07	08 09	9 10	11 1	2 13	14	15 1	5 17	18 1	9 20		2 23	00 0	1 02 1	03 04	05 06	07 0	08 09	10 1	1 12	13 1	4 15	16 17	18 19
DIMOSOP based on 0 IT: 21.11.2007 12:00	LEPS D UTC	100 10	0 100	94 9	4 94	64 64	4 64	58 5	8 58	35 3	35 34	5 47	47 4	7 76	76 7	6 94	94 9	4 94	94 94	47 4	47 47	41 41	41	70 70	70	76 76	76 7) 76	76 70 7
		01	02 0:		05 06		08 09		_					18 1				00 0			05 06		08 09			13 1			18 19
DIMOSOP based on IS IT: 22.11.2007 10:00	DUTC																												
DIMOSOP based on IS	41 MOI		02 0	3 04	05 06	5 07	08 09	9 10	11 1	2 13	14	15 1	5 17	18 1	9 20	21 2:	2 23	00 0	1 02 1	03 04	05 06	07 0	08 09	10 1	1 12	13 1	4 15	16 17	18 19
IT: 22.11.2007 01:0	D UTC																			<u> </u>									
CLEPS	∑OЗh	38 38	38 8	1 81	81 69	9 69	69 88	88	88 7	6 75	75	50 51	0 50	88 8	8 88	38 3	8 38	50 5	0 50	69 69	69 8	1 81	81 88	88	88 94	94	94 94	94 94	94 94
initial time 22.11.2007 12:00 UTC	∑06h	88 88	88 5	6 56	56 56	3 56	56 94	94	94 6	3 63	63	69 6	9 69	81 8	1 81	76 7	6 76	50 5	0 50	38 38	38 6	3 63	63 38	38	38 75	75	75 81	81 81	88 88
history	Σ12h	94 94	94 10	00 100	100 44	1 44	44 63	63	63 8	8 88	88	94 9	4 94	100 10	00 100	94 9	4 94	88 8	8 88	81 81	81 6	3 63	63 50	50	50 69	69	39 56	56 56	63 63
info	Σ24h						_													44 44							94 88	88 88	69 69
		01 03	2 03	04 0	5 06	07 0	3 09	10 1	1 12	13 1	4 15	5 16	17 1	8 19	20 2	1 22	23 00	0 01	02 03	04 0	5 06	07 08	09 1	10 11	12 1	3 14	15 16	17 1	8 19 2
CSREPS	∑03h	100 100	100 10	00 100	100 44	4 44	44 50	50	50 4	14 44	44	63 6:	3 63	76 7	6 76	76 7	6 76	94 9	4 94	81 81	81 10	0 100	100 100	100	100 100	100 1	00 100	100 100	100 100
initial time 23.11.2007 00:00 UTC	∑06h		8	1 81	81 44	4 44	44 44	44	44 7	6 76	76	75 7:	5 76	76 7	6 76	50 5	0 50	76 7	6 75	75 75	75 8	1 81	81 100	100	100 88	88	38 94	94 94	100 100
history	∑12h						38	38	38 4	14 44	44	38 3	3 38	76 7	6 76	56 5	6 56	76 7	6 75	50 50	50 3	3 38	38 50	50	50 63	63	33 63	63 63	38 38
info	∑24h															76 7	6 76	81 8	1 81	69 69	69 6	9 69	69 69	69	69 94	94	94 94	94 94	81 81
		01 03	2 03	04 0	5 06	07 0	3 09	10 1	1 12	13 1	4 15	5 16	17 1	8 19	20 2	1 22	23 00	0 01	02 03	04 0	5 06	07 08	09 1	0 11	12 1	3 14	15 16	17 1	8 19 2
MPEPS	∑озһ														67	67 5	0 50	50 5	0 50	33 83	67 8	0 40	80 50	75	75 100	100 1	00 100	100 100	
initial time 23.11.2007 18:00 UTC	Σ06µ																67	100 11	00 100	83 83	83 10	0 100	100 100	50	50 100	100 1	00 100	100 100	
history	∑12h																				100 10	0 100	80 75	50	50 100	100 1	00 100	100 100	
info	Σ24h																											100	
		01 02	2 03	04 0	5 06	07 0	3 09 	10 1	1 12	13 1	4 15	5 16	17 1	8 19	20 2	1 22	23 00	0 01	02 03	04 0	5 06	07 08	09 1	10 11	12 1	3 14	15 16	17 1	8 19 2
	∑03h			_																									
23.11.2007 09:00 UTC	∑06h																												
history	∑12h																			4									
info	Σ24h																							Η		H	K	-	
		01 0:	2 03	04 0	5 06	07 0	8 09	10 1	1 12	13 1	.4 1	5 16	17 1	8 19	20 2	1 22	23 0	0 01	02 03	04 0	5 06	07 08	09	10 11	12 1	.3 14	15 16	5 17 :	18 19 2
ISACMOL2	Σозн																												
initial time 23.11.2007 00:00 UTC	∑06h			_									K	5	F								+		-				
history	∑12h																			F			+		+	H	F	+	ĽЦ
info	∑24h			-						+										◀	H	H		H	◀	H	€		H

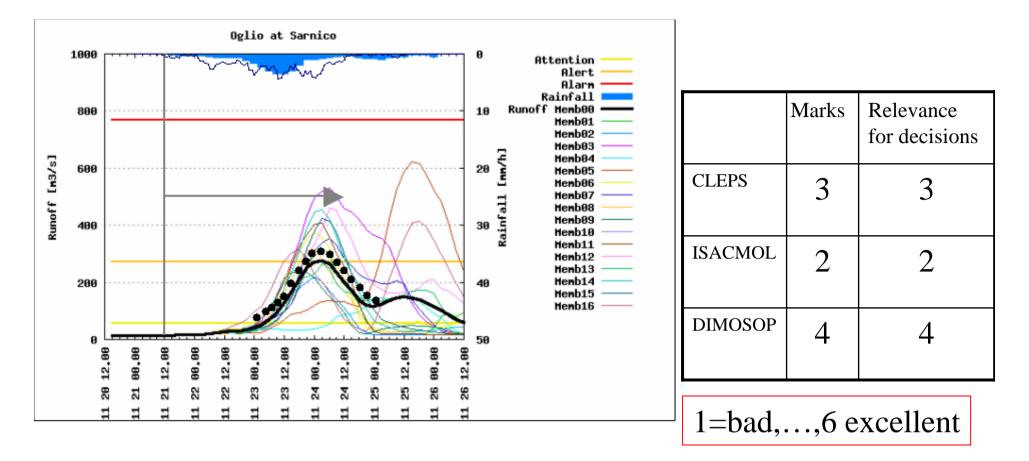

Starting with the end of October it was possible to compare in real-time the results of up to 7 meteo-hydrological forecasting chains (3 Ensemble+ 4 Detetministic) for the Toce at Candoglia.

(Map case study e.g. Bontron, Djerboua, & Obled, LHB, 2002.

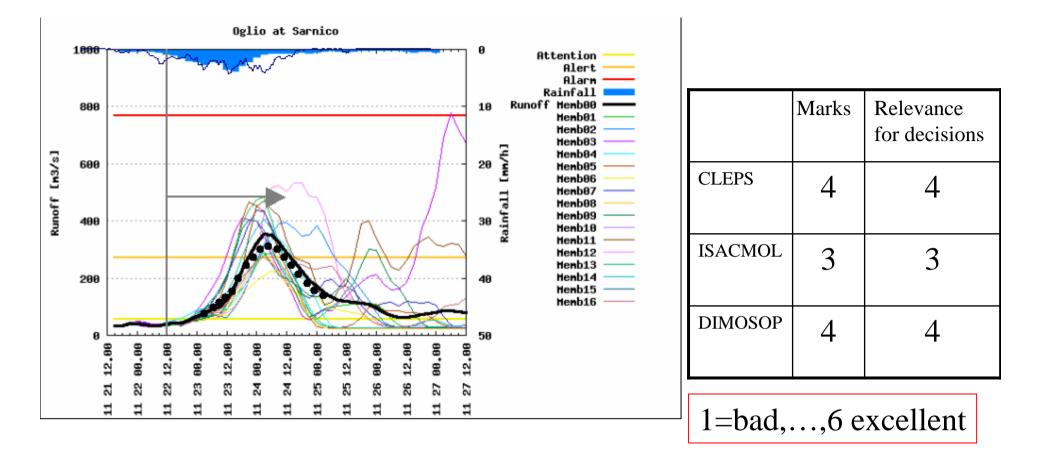
Area: TOCE_AT_CANDOGLIA Show the alert thresholds used for this Show impactarea Hydrological model alerts	area							teres		ľ	Nowa Nowa Moni	el Pro asti ast P torir	oduct ng p rodu ng p	cts: 1 vorod oct 1 rodu ct 1	ucts icts	5: 90				ck fa		 ical fo	recas	sters	>	go														
																						_																		
								۷	/edn	esda	y, O	tobe	er 31										_							Thu	ırsda	y, N	oven	nber	• 1					
							NOW																																	
	01	02	03	04 (05 0	06 0.	7 08	3 09	10	11	12	13 1	4 1	51	61	7 18	B 19	9 20	21	22	23	00 0	1 03	2 03	04	05	06	07 0	8 0	9 10) 11	12	13	14	15	16	17	18	19	
PREVAH based on CLEPS																																							Ŧ	
IT: 31.10.2007 00:00 UTC		_	_	_				100 1	_	_	_	-																-										_		1
	01	02	03	04 (05 0)e 0.	7 08	3 09	10	11	12	13 1	.4 1	5 1	6 1	7 18	B 19	9 20	21	22	23	00 0	1 0:	2 03	04	05	06	07 0	0 80	9 10) 11	12	13	14	15	16	17	18	19	
DIMOSOP based on CLEPS IT: 29.10.2007 12:00 UTC																																								
	- · ·		_	_				100 1 3 09	_	_	_	-																-										_		
FEST based on CLEPS		<u> </u>	<u> </u>	<u>т</u>	т. Т.				<u> </u>	<u> </u>	<u> </u>	<u>т</u>	T 1	<u> </u>	<u> </u>						<u></u>	<u> </u>	T 0.			<u> </u>	.	<u> </u>					<u> </u>		<u> </u>					
IT: 30.10.2007 00:00 UTC	100 1	00 10	00 10	0 100) 100	100	100	100 1	00 10	0 10	0 10) 100	100	100	100	100	100	100	100	100 1	00 10	0 100	100	100	100	100 1	00 10	0 100	100	100	100	100	100	100	100	100	100	100 1	00 11	l
	01	02	03	04 (05 0	0. 0.	7 08	3 09	10	11	12	13 1	.4 1	5 1	61	7 18	B 19	9 20) 21	22	23	00 0	1 03	2 03	04	05	06	07 0	8 0	9 10) 11	12	13	14	15	16	17	18	19	
PREVAH based on COSMOCH2																																						\top	\top	
IT: 31.10.2007 00:00 UTC																																								
	01	02	03	04 (05 0	06 0	7 08	3 09	10	11	12	13 1	4 1	51	61	7 18	B 19	9 20	21	22	23	00 0	1 02	2 03	04	05	06	07 0	8 0	9 10) 11	12	13	14	15	16	17	18	19	
PREVAH based on COSMOCH7 IT: 31.10.2007 00:00 UTC																																								
11: 31.10.2007 00:00 01C																																								
		02	03	04 (U5 (16 0.	/ 08	3 09	10	11	12	13 1	.4 1	5 1	ь 1 Г	7 18	5 19	9 20	21	22	23	00 0	1 02	2 03	04	05	06	U7 C	18 0	9 10	11	12	13	14	15	16	17	18	19	
DIMOSOP based on ISACMOL2 IT: 30.10.2007 00:00 UTC																																								
	\vdash	-	+		+			\vdash	+	-	+	+	+	-	-						-	+	-		-		+	-	-			-	+	+	-+	+	+	+	+	~

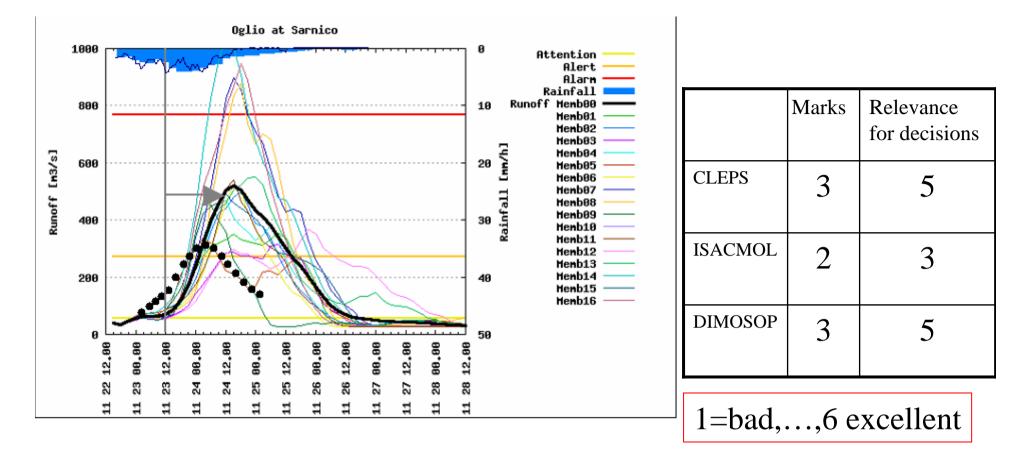


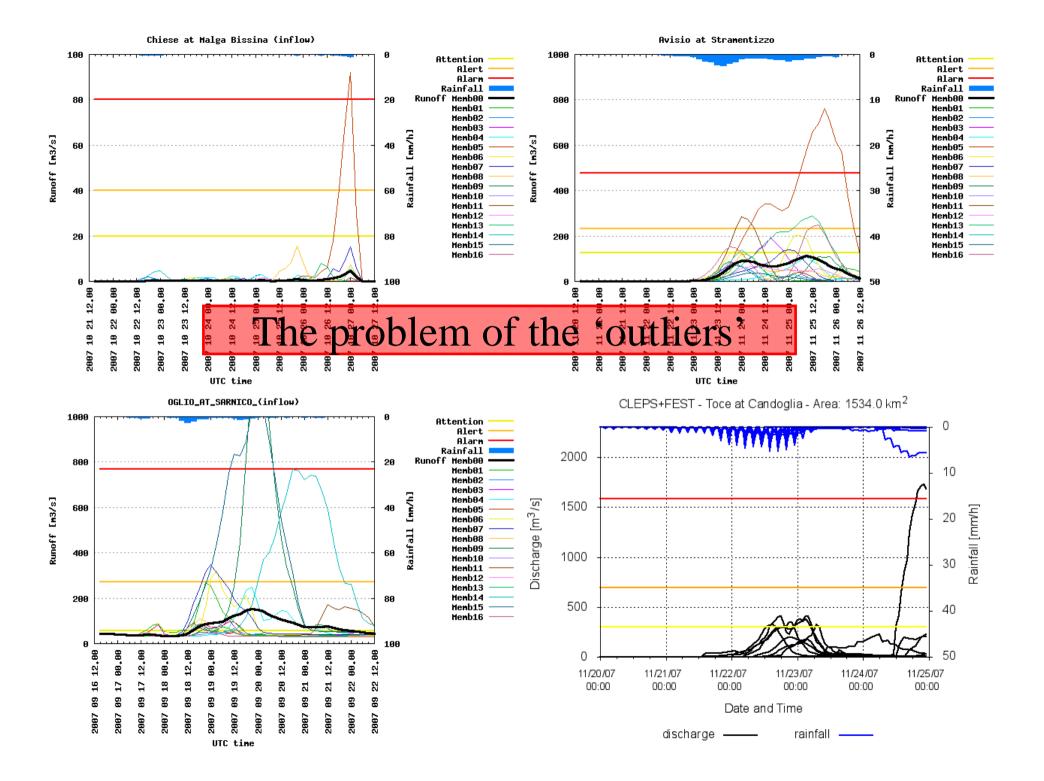
Model scheme

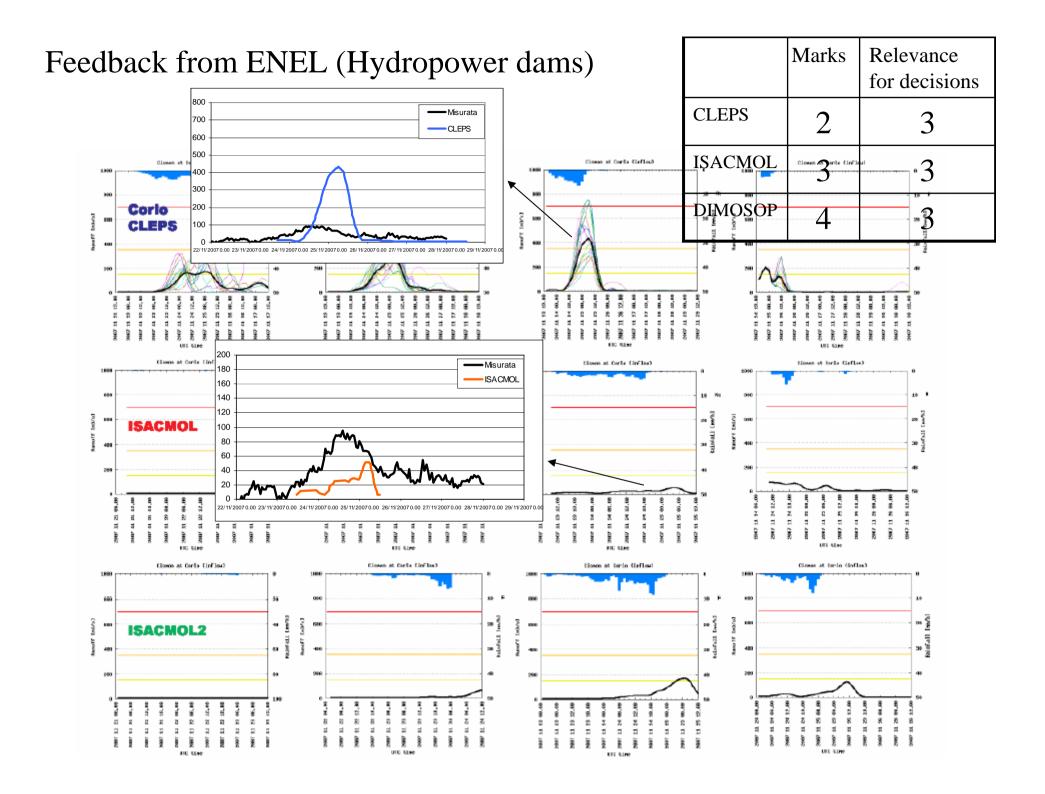


Calibration of *r*-recharge and *f*-transmissivity parameters


End user feedback (interview to M.Buizza, Consorzio dell'Oglio dam


	NWP	HYDROL	NOWCAST	OBSERVATIONS
NO REACTION	X	X		X
CONTACTS WITH HYDROLOGIST				
INTERNAL EVALUATION				
PERSONNELL ALERTED				
ALARM				


	NWP	HYDROL	NOWCAST	OBSERVATIONS
NO REACTION	X	X		X
CONTACTS WITH HYDROLOGIST				
INTERNAL EVALUATION				
PERSONNELL ALERTED				
ALARM				



	NWP	HYDROL	NOWCAST	OBSERVATIONS
NO REACTION				
CONTACTS WITH HYDROLOGIST				
INTERNAL EVALUATION	X	X		X
PERSONNELL ALERTED				
ALARM				

	NWP	HYDROL	NOWCAST	OBSERVATIONS
NO REACTION				
CONTACTS WITH HYDROLOGIST				
INTERNAL EVALUATION	x			
PERSONNELL ALERTED		X		X
ALARM				

Conclusions

- 16 modelling chains were in operation in the Alps in D-PHASE and up to 7 in parallel for Toce ⁽²⁾
- CLEPS better than ISACMOL/2 for Chiese and Oglio (good results) but worse for small dam-gauged basins ⁽²⁾
- Some CLEPS-outliers (or 'crazy members') also for dry events might alert a 'risk-adverse' end user. End user training and 'calibration' needed. ^(C)
- Experienced end users weight the importance of forecasts vs.
 observations for their decision. ⁽²⁾
- Surface raingauge and hydrometric real time observation are of key importance for hydrological model updating and initialisation
- One <u>sure</u> hydrological <u>benefit</u> from D-PHASE: one discharge measurement done by ARPA Lombardia on the basis of the forecasts