

Evaluation of Chirp and Binary Codes based Excitation Pulses for 3D USCT M. Zapf, B.F. Derouiche, N.V. Ruiter

16

Forschungszentrum Karlsruhe GmbH, Institute for Data Processing and Electronics, Karlsruhe, German

Background

• at Forschungszentrum Karlsruhe we are developing a new imaging method for early breast cancer detection: 3D ultrasound computer tomography (3D USCT)

USCT concept

 3D SAFT with unfocussed spherical waves emitted and received by single transducers. multistatic ellipsoid aperture 17cm x 12cm x 12cm, lift- and rotatable aperture walls lined with hundreds of transducers • transducers with resonance frequency of

2.8 MHz and an opening angle of \pm 23° at -6dB

Challenge: low signal SNR

 unfocused emission and reception long traveling distances in 3D aperture for wide opening angle of transducers small active transducer area in designated medical application strong frequency damping

Approach

 advanced coded excitation techniques known from radar basic idea: prolonging the excitation pulse for higher energy, followed by pulse compression

 matched filtering (optimal filter) for pulse compression usage of frequency modulated chirps usage of phase encoded binary codes: Barker codes

usage of complementary binary codes: Golay codes

Table 1: Barker binary codes of various lengths, on the right is given the nominal peak-sidelobe level (PSL)

Figure 1: Current status of the aperture of the 3D USC demonstrator of 2rd generation, right-bottom: 2rd gener

Table 2: Golay complementary binary codes of different lengths, A and B as signal sequence and A* and B* as corresponding matched filters

Figure 4: Barker binary code: (a) damped sine base pulse, (b) Barker of length 13, (c) convoluted pulse, (d) time-compressed by matched filtering

Methods

Measurement setup

 water filled container (45x30x30cm³) 3D USCT 2nd generation prototype transducer with 2.8 MHz resonance frequency and 2 MHz (-6 dB) bandwidth - 3D movable hydrophon-arm (Onda HNC-400) LabWindows based DAQ and control-software
 PC based Gage digitization card (20MHz)
 Tectronix AWG 2021 (arbitray-wave-generator)

Figure 5: Golay complementary binary codes of different lengths, A and B as signal sequence and A* and B* as corresponding matched filters

Empty measurement

• to simulate the multistatic 3D USCT aperture and evaluate signal processing and transducers measurement was done for varying angular position of the hydrophone Phantom measurement breast tissue mimicking phantom consist of a bottle (wall thickness < λ/4) with dimensions 34cm x 8cm x 8cm filled with castor oil, frequency damping 0.72 dB/(MHz*cm) Evaluated pulses

 sinoid pulse and linear chirp pulse
 Barker of length 13 and Golay of length 16, both convoluted with the sinoide pulse

Results

Evaluation applicability to the USCT setup and designated medical application is evaluated with well-established metrics SNR, GSNR, PSL, and ISL:

Table 3: Scores for different excitation pulses and the empty measurement setup, signal context forevenue, 1 Miler and bandwidth 0.25 Miler, measurements were averaged 512 tir

Empty measurement f_=2.8MHz f_=1MHz Barke - Chirp - Golay - Sine 5 30 ÷ 20 20

angle (°) Figure 9: SNR for empty measurement for varying angular 2.8 MHz and bandwidth 1.0 MHz, measurements were aver

Discussion

 techniques are suitable to the USCT setup and designated medical application • Golay complementary code is a promising option for extending SNR, but downside doubled measurement time · Barker is also a promising option without this downside

Outlook

further evaluations are required for analyzing the tissue depended frequency dispersion

GSNR = SNR ... - SNR

 $ISL = 10 \cdot \log(\frac{P_{stability}}{D})$

 $PSL = 10 \cdot \log(\frac{M_{stdelsh}}{M})$

19 6

Sinoide Pulse

Golay Barker Chirp Code 16 Code 13 Pulse

 $SNR_{out} = 10 \cdot \log_{10}(\frac{P_s}{p})$

 $P_{e} = MSE = \frac{1}{N} \sum_{i=1}^{N_{e}-1} e($

42 26

29

 $P_i = \frac{1}{N_i} \sum_{n=0}^{N_i-1} s(n)^2$

Phantom

SNR [dB]

15 20 25 30 35 40 45 angle [°] Figure 10: SNR for 1.0 MHz and band

REFERENCES [1] H. Gemmeke and N. V. Ruiter, 3D Ultrasound Computer Tomograph for Medical Imaging Nucl. Instr. Meth., inpress, 2007.
[2] S. J. Norton and M. Linzer, "Ultrasonic reflectivity imaging in three dimensions

- Reconstruction with spherical transducer arrays, in *Curusome anagong*, R. M. Arthur and S. R. Broadstone, Imaging Via Inversion of Elli Solutions to the Linear Acoustic Wave Equation, *IEEE Transaction on M*
- Solutions to the Lancar Acoustics, wave expansion, e.g., Solutions to the Lancar Acoustics, wave expansion, and the Solution of the Solution o

- [10] Compared Tell, Solin, and P. K. Samuel, S. L. Schwart, S. W. S. Samuel, T. S. Samuel, S. Samuel,

Universität Karlsruhe (TH)

Michael Zapf Email: zapf@ipe.fzk.de Phone: +49 7247 82-5668