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Abstract 
 
In this paper we show that the ratio  between the bubble velocity (UB) and the total superficial velocity (Jtot) is a key 
parameter in Taylor flow. Depending on the value of  the streamlines in the liquid slug show a recirculation pattern or 
complete bypass flow. Among the quantities that are related to  are the mean liquid velocity, the relative velocity, the gas 
hold-up, the cross-sectional area of the bypass and recirculation flow region, the non-dimensional recirculation time in the 
liquid slug, the thickness of the liquid film and the bubble diameter. In experiments and technical applications Jtot is often 
known or prescribed, whereas UB is unknown. Thus, when  is known, UB and all the other above quantities can be directly 
computed. By a similitude analysis we show that  may depend on up to ten non-dimensional groups. However, the 
evaluation of literature data for Taylor flow indicates that it mainly depends on the capillary number. When inertial and 
gravitational effects are important additionally the Laplace number and the Eötvös number may be of some influence. We 
thus suggest focusing in future experimental and theoretical studies on further clarification of these functional relationships 
and propose to correlate  with the capillary number CaJ, which is based on Jtot as velocity scale. 
 
 
Introduction 
 
Taylor flow is a special kind of slug flow in small channels, 
where the liquid slugs which separate the elongated 
bullet-shaped bubbles (Taylor bubbles) are free from gas 
entrainment. Taylor flow occurs in micro-fluidic devices 
for applications in life sciences (lab-on-a-chip), material 
synthesis and chemical process engineering, e.g. in 
catalytic multiphase capillary and monolithic reactors 
(Kreutzer et al., 2005). Taylor flow is attractive because of 
its well defined interfaces and flow conditions which are 
easier to control than in macroscopic devices and because 
of its advantageous mass transfer properties. The later 
stems from (i) the high interfacial area per unit volume, (ii) 
the thin liquid film which separates the body of the bubble 
from the channel wall, and (iii) the recirculation in the 
liquid slug which accounts for good mixing and a 
wall-normal convective transport in laminar low. 
 
In Taylor flow, the liquid film thickness and the 
recirculation in the liquid slug depend mainly on the 
capillary number CaB = µL UB / , where UB is the bubble 
velocity, µL is the liquid viscosity and  is the coefficient 
of surface tension. For given gas and liquid superficial 
velocities JL and JG the total superficial velocity Jtot  JL + 
JG and the volumetric flow rate ratio   JG/J are known, 
whereas the bubble velocity (and thus CaB) and the 
gas-holdup  = JG / UB are unknown. 
 
In this contribution we perform a similitude analysis for 
incompressible Taylor flow in straight circular and 
rectangular channels. We show that many characteristic 

quantities in Taylor flow are related to a single key 
parameter, namely to the ratio between the (unknown) 
bubble velocity and the (given) total superficial velocity. 
Thulasidas et al. (1997) denoted this ratio by   UB / Jtot. 
We compare theoretical and experimental results from 
literature to elucidate the functional dependence of  on 
the capillary CaJ, which is based on Jtot as velocity scale. 
 
Problem Description 
 
We consider the pressure-driven flow of two immiscible 
fluids with constant physical properties in a straight 
channel. The channel cross-section with area Ach is either 
circular (diameter D, radius R, area Ach = D2/4) or 
rectangular with width B and height H (area Ach = BH). For 
the rectangular channel we assume H  B so that the aspect 
ratio   H/B is in the range 0 <  1. We further define 
the hydraulic diameter Dh  2BH/(B+H). 
 
We assume that the Taylor flow consists of a sequence of 
alternating gas bubbles and liquid slugs, where the length 
of all gas bubbles and that of all liquid slugs is the same. 
Then, the flow hydrodynamics is fully described by a 
single unit cell of length Luc = LB + Lslug. In Figure 1 we 
show a sketch of such a “perfect” Taylor flow.  
 
We denote the constant volumetric flow rates of both 
phases by QG and QL. Then, the gas and liquid superficial 
velocities are JG  QG / Ach and JL  QL / Ach, respectively. 
The bubble velocity and the mean liquid velocity are given 
by UB  JG /  and UL  JL / (1  ). Here,  = VB / Vuc is 
the fractional volumetric gas content in the unit cell, and 
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VB and Vuc = Luc Ach denote the volumes of the bubble and 
the unit cell, respectively. With these definitions, the total 
superficial velocity is given by 
 

G L
tot G L B L

ch

(1 )
Q Q

J J J U U
A

 
       (1) 

 
For any cross-section at a certain axial position y it is  
 

ch L B( ) ( )A A y A y    (2) 

 
where AL and AB are the cross-sectional areas occupied by 
the liquid and the bubble, respectively. 
 
Similitude Analysis 
 
In this section we perform a similitude analysis of the 
problem described above and begin with a list of the 
relevant quantities for a rectangular channel. 
 
First, there are six (constant) physical properties, namely 
 Gas and liquid density (G, L) 
 Gas and liquid viscosity (G, L) 
 Coefficient of surface tension () 
 Gravitational acceleration (g) 

 
Next, there are three flow specific quantities, namely 
 Gas and liquid volumetric flow rate (QG, QL) 
 Pressure drop along the unit cell (puc) 

 
Finally, there are five geometrical quantities, namely 
 Channel height (H) 
 Channel width (B) 
 Length of the unit cell (Luc) 
 Bubble volume (VB) 
 Angle of channel axis with respect to the gravitational 

field () 
 
These are in total 14 variables with three basic dimensions, 
namely kg, m, s. According to the -theorem there are 
eleven independent non-dimensional groups that 
characterize the problem. (For a circular channel it is one 
less because the two length scales H and B are replaced by 
the single length scale D). 
 
From the above 14 quantities, in an experiment usually the 
following eleven quantities are given or prescribed: G, L, 
G ,L , ,g ,QG ,QL ,H ,B ,. The three main unknown 
parameters are then the length of the unit cell, the gas 
holdup in the unit cell and the pressure drop along the unit 
cell. The respective three non-dimensional groups are: 
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1

h
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As the eight other independent non-dimensional groups we 
choose 
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11     (13) 

 
Thus in an experiment 4  11 are (usually) given, while 
the non-dimensional groups 1  3 are unknown. 
 
We note that the non-dimensional unit cell length  
depends in a significant way on the device and mechanism 
used to generate the Taylor bubbles. Thus, it is often 
possible to adjust an experiment so that  is within a 
certain range. 
 
The main global quantities of interest are then the gas 
holdup  and the Euler number Euuc, which represents the 
non-dimensional pressure drop. For both quantities the 
following functional relations hold: 
 

uc J( , , , , , , , , , )F Eu Ca La Eö         (14) 

 

uc J( , , , , , , , , , )EuEu F Ca La Eö         (15) 

 
The key parameter  
 
From the above eleven independent non-dimensional 
groups further non-dimensional groups can be defined. 
Examples are the Reynolds number 
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D J
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and the Weber number 
 

2
2L h tot

J J J J

D J
We Ca Re LaCa




    (17) 

 
Here, we have chosen the Laplace number as group 8 

instead of the Reynolds and Weber number because for 
given fluid properties and a certain channel hydraulic 
diameter La is a constant. The same holds for the Eötvös 
number Eö. 
 
In this paper we suggest as an especially useful 
non-dimensional group the ratio 
 

B

tot

U

J




    (18) 

 
so that 
 

uc J( , , , , , , , , , )

F

F Eu Ca La Eö






    



  
 (19) 

 
and 
 

uc J( , , , , , , , , , )EuEu G Ca La Eö         (20) 

 
In this paper we will not consider relations for the Euler 
number Euuc but focus only on the functional relationship 
for , which is of fundamental importance for Taylor flow. 
Namely, when  is known, the following quantities can be 
directly computed from other given or prescribed 
quantities: 
 
 The bubble velocity 

 

B totU J   (21) 

 
 The mean liquid velocity (this follows from Eq. (1)) 

 

L

tot

1

1 /

U

J


 





  (22) 

 
 The gas holdup 

 



   (23) 

 
 The capillary number 

 

B JCa Ca   (24) 

 

 The bubble Reynolds number 
 

B J JRe Re LaCa     (25) 

 
 The non-dimensional relative velocity, both in the 

form 
 

B tot

B

1
1

U J
W

U 


     (26) 

 
and in the form 

 

B tot

tot

1
U J

Z
J


     (27) 

 
Next, we show that  is also related to important local 
quantities in Taylor flow such as the liquid film thickness. 
 
Dependence of bubble diameter and liquid film 
thickness on  
 
A mass balance for the liquid phase in a frame of reference 
moving with the bubble yields 
 

tot B ch L,cs B L( ) ( ) ( )J U A U y U A y      (28) 

 
Here, UL,cs(y) is the mean cross-sectional liquid velocity at 
a certain axial position y. In the liquid slug it is AL = Ach so 
that for this case it follows immediately from Eq. (28) the 
well known result Uslug = Jtot, which states that the mean 
axial velocity at any cross-section within the liquid slug is 
equal to the total superficial velocity. (For the flow of two 
incompressible phases through a straight channel with 
constant cross-section this result also follows from global 
mass continuity, see Suo & Griffith, 1964). 
 
From Eq. (28) it follows with Eq. (2) 
 

L
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and 
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( ) /
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 (30) 

 
If in the liquid film the velocity UL,cs(y) is zero, then it 
follows from Eqs. (29) and (30) the result 
 

L B

ch ch

1
1 1

A A

A A 
     (31) 

 
Thus, in the case of a stagnant liquid film the 
cross-sectional area of the bubble and that of the liquid 
film is constant and axially uniform. An example for this 
case is the penetration of an inviscid gas phase into a 



  7th International Conference on Multiphase Flow 
  ICMF 2010, Tampa, FL USA, May 30-June 4, 2010 
 

 4

capillary where it displaces a viscous liquid in the absence 
of gravity. Indeed, in such a situation the thickness of the 
liquid film becomes constant in a distance sufficiently far 
from the bubble tip (Bretherton, 1961; Giavedoni & Saita, 
1997). In this case the fraction of liquid, m, left behind the 
semi-infinite bubble is of interest (Taylor, 1961). Since this 
fraction is equal to the ratio AL / Ach it follows from Eq. 
(31) and definition (26) that it is m = W in this special case. 
 
For a circular channel where the thickness of the liquid 
film, F, is uniform at the bubble circumferential it is 
 

2 2
F

L F F
2

2ch

( 2 ) 4 ( )4 4

4

D DA D

A DD

    


  
   (32) 

 
With this result and Eq. (31) we obtain for the thickness of 
the stagnant liquid film the quadratic equation 
 

F F 1 1
1 1

4D D

 


       
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  (33) 

 
which has the solution 
 

F 1 1
1

2D




 
   
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For F << D it follows from Eq. (33) the approximation 
 

F 1 1
1

4D
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
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  
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so that 
 

F

F

41
1

4
1 D

D

   


  (36) 

 
For the bubble diameter in a circular channel we obtain - 
under the assumption of a stagnant liquid film - from Eq. 
(31) the result 
 

B 1D

D 
   (37) 

 
For a rectangular channel and an axisymmetric bubble 
surrounded by a stagnant liquid film it follows from Eq. 
(31) for the bubble diameter 
 

B 2
D

B




 ,   B 2D

H 
  (38) 

 
or, in terms of the hydraulic diameter 
 

B

h

1D

D





   (39) 

 
It is important to note that in inclined or vertical channels 
and in the presence of gravity, the velocity in the liquid 
film UL,cs(y) will be in general different from zero and will 
vary with the axial position. Then, also the liquid film 
thickness and the bubble diameter become, according to 
Eqs. (29) and (30), a function of y and are no longer 
uniform along the body of the bubble. In this case  will 
depend on the Eötvös number and on the angle . 
 
Recirculation flow and bypass flow 
 
In incompressible Taylor flow in a frame of reference 
moving with the bubble a recirculation pattern in the liquid 
slug occurs when the bubble velocity is lower than the 
liquid velocity on the channel axis, i.e. for UB < UL,max 
(Taylor, 1961; Cox, 1964). For a liquid slug with a fully 
developed laminar velocity profile the maximum liquid 
velocity is given by UL,max = CUslug, where C is a constant. 
The value of C depends on the shape of the channel 
cross-section. For a circular channel it is C○ = 2 while for a 
square channel it is C□ = 2.096. Since in incompressible 
Taylor flow it is Uslug = Jtot, the condition for recirculation 
flow becomes UB < CJtot, or  < C, respectively. 
 
The cross-sectional regions with bypass flow (close to the 
walls) and recirculation flow (in the channel center) are 
separated by the “dividing streamline” (Thulasidas et al., 
1997), see Figure 1. The position of the dividing 
streamline is obtained from the condition that the total 
flow rate within the recirculation area is zero in the moving 
frame of reference. Thulasidas et al. (1997) showed that in 
a circular channel the radial position r1 of the dividing 
streamline is given by 
 

1 2
r

R
    (40) 

 
while the radial position r0, where the velocity in the 
moving frame of reference is zero, is given by 
 

0 1
2

r

R


    (41) 

 
Thus, in a circular channel the fractional recirculation area 
is A1/Ach = 2   and it is A1/A0 = 2 for any value of . 
 
The intensity of the recirculation can be quantified by the 
time needed for the liquid to move from one end of the 
liquid slug to the other end. A second characteristic time 
scale is the time needed by the liquid slug to travel a 
distance of its own length. Thulasidas et al. (1997) defined 
the ratio of both time scales as the non-dimensional 
recirculation time, . For a circular channel the 
recirculation time is (Kececi et al. 2009) 
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2





 
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 

   (42) 

 
For  = C○ = 2 it is A1/Ach = 0 and the recirculation area 
vanishes. For  > 2 complete bypass flow occurs. 
 
For rectangular channels, the fractional areas A1/Ach and 
A0/Ach as well as the non-dimensional recirculation time  
have been studied theoretically by Kececi et al. (2009). 
Based on the assumption that the liquid slug is sufficiently 
long to form a fully developed laminar velocity profile, the 
authors used an approximation to the exact laminar 
velocity profile in a rectangular channel proposed in 
literature and showed that A1/Ach, A0/Ach and   all depend 
in a unique way on  and on the channel aspect ratio . 
Kececi et al. (2009) evaluated theses relations numerically 
and displayed the results in graphical form as function of  
for different values of . 
 
The transition to complete bypass flow occurs in a square 
channel for  > 2.096 and in a planar channel, formed by 
two parallel plates, for  > 1.5. For rectangular channels 
the transition to complete bypass flow occurs for  > C. 
The value of C can be determined from the relation 
 




2

3 4 5

3
1 0.54669 1.55201

2

4.05943 3.21493 0.85731

C  

  

  

  


 (43) 

 
Eq. (43) was proposed by Spiga & Morini (1994) who 
determined for laminar single phase flow in a rectangular 
channel exact values of Umax / Umean for ten different values 
of the aspect ratio in the range 0    1 and fitted these 
data by Eq. (43) with an accuracy of 0.06%. 
 
Correlations for  
 
In the previous section we showed that  is related to other 
quantities by means of the following identities 
 

B

tot

1
1

1

U
Z

J W



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

 (44) 

 
In this section we collect and compare literature data for 
different expressions in Eq. (44). 
 
Liu et al. (2005) performed experiments in capillaries with 
circular and square cross-section with hydraulic diameters 
in the range of 0.9 – 3 mm using air and three different 
liquids in co-current upward flow. They fitted their 
experimental data for the ratio of bubble velocity to total 
superficial velocity by the correlation 
 

B
0.33

tot J

1

1 0.61

U

J Ca
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
 (45) 

 
This correlation is valid in the range 0.0002  CaJ  0.39. 

Correlations from relative bubble velocity 
 
From experiments in circular tubes, Fairbrother & Stubbs 
(1935) suggested the following correlation for m 
 

0.5
B1.0m Ca   (46) 

 
which is valid in the range 7.5  10-5 < CaB < 0.014. Later 
Taylor (1961) extended the validity of Eq. (46) for CaB up 
to 0.1. With Eq. (26) and with CaB = CaJ Eq. (46) 
becomes an implicit relation for  as function of CaJ 
 

0.5 0.5
J

1
1 Ca


    (47) 

 
Bretherton’s (1961) analytical approach at low CaB 
resulted in the following expression 
 

2/3
B2.68m Ca   (48) 

 
Giavedoni & Saita (1997) found that their numerical 
results for the film thickness match the theoretical 
correlation of Bretherton for CaB < 10-3. Thus, we adopt 
this range also for the validity of Eq. (48). This equation is 
equivalent to 
 

2/3 2/3
J

1
1 2.68 Ca


    (49) 

 
For large values of CaB, Taylor (1961) found that m 
acquires a value of 0.58, while theoretically it was found to 
be equal to 0.6 (Cox, 1964). This was confirmed by the 
numerical simulations of Giavedoni & Saita (1997) who 
found m = 0.559 for CaB = 2 and m = 0.592 for Ca = 10. 
The value of m = 0.559 for CaB = 2 corresponds to  = 
1/(10.559) = 2.268 for CaJ = 2 / 2.268 = 0.882 while that 
of m = 0.592 for CaB = 10 corresponds to  = 1/(10.592) 
= 2.451 for CaJ = 10 / 2.451 = 4.08. 
 
Correlations from liquid film thickness and bubble 
diameter 
 
For a stagnant liquid film Eqs. (34), (36) or (37) can be 
used to determine correlations for  from correlations for 
F or DB, respectively. As an example, we mention the 
experimental correlations of Marchessault & Mason (1960) 
for the thickness of the liquid film in a circular channel 
with various inclinations 
 

F L
B

2
A B U

D

 


      (50) 

 
where A and B are coefficients (the dimension of A is 
cm0.5s0.5 while B is dimensionless). With Eq. (35) the latter 
correlation translates into 
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where UB is in cm/s. For A = 0 and B = 0.5 Eq. (51) 
becomes identical with Eq. (47) from Bretherton (1961). 
 
By scaling arguments for a semi-infinite bubble Aussilous 
& Quere (2000) derived the following equation for the 
liquid film thickness in a circular tube 
 

2/3
F B

2/3
B

0.66

1 3.33

Ca

D Ca





  (52) 

 
which is valid in the range 10-3  CaB  1.4. Inserting Eq. 
(52) in Eq. (34) gives 
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1.32 1 21
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1 3.33 1 3.33
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Ca Ca
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In terms of CaJ the latter equation becomes 
 

22/3 2/3
J
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J
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

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For square capillaries Kreutzer et al. (2005) proposed the 
following correlation for the bubble diameter in the 
diagonal direction 
 

 B,sq 0.445
B

h
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D

Ca
D
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For CaB > 0.04 the bubble is axisymmetric so that Eq. (39) 
can be used to obtain the following implicit equation for  
 

 
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h
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

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
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 (56) 

 
In Eqs. (45), (47), (49), (54) and (56) taken from literature, 
the velocity ratio  is correlated only with 7 = CaJ but not 
with any other non-dimensional group. In Figure 2 we 
display the functional relations  = (CaJ) as obtained by 
Eqs. (45), (47), (49), (54) and (56). Also shown are 
experimental data of Thulasidas et al. (1995) for co-current 
upward Taylor flow in a square channel (Dh = 2 mm). 
These data show a large scatter band for CaJ < 0.01 while 
for higher values of CaJ the scatter of the data is reduced 
and with increase of CaJ an increase of  can be observed. 
For CaJ < 0.03 all correlations which are valid in this range 
give about similar values for  and the deviations are in 
general small. Also the value of  is less than 1.2 in this 
range, indicating that the bubble moves only slightly faster 
than the total superficial velocity. For CaJ > 0.03 a rather 

good agreement is found between the correlations of 
Aussilous & Quere (2000), Eq. (54), and Kreutzer et al. 
(2005), Eq. (56), and the experimental data of Thulasidas 
et al. (1995), whereas the correlation proposed by Liu et al. 
(2005) for their experimental data, Eq. (45), yields much 
smaller values. The correlation of Kreutzer et al. (2005) 
extends to values up to CaJ = 3.86 and approaches a 
limiting value of  = 2.59. So it seems a reasonable good 
fit for square channels for CaJ  0.03 when the bubble is 
axisymmetric. A comparison of the correlations of 
Aussilous & Quere (2000) for a circular channel, Eq. (54), 
and the one of Kreutzer et al. (2005) for a square channel, 
Eq. (56), suggests that for a given value of CaJ the value of 
 is slightly larger in the square than in the circular 
channel. 
 
Conclusions 
 
In this paper we showed that the ratio between the bubble 
velocity (UB) and the total superficial velocity (Jtot), which 
is here denoted as , is a key parameter in Taylor flow. 
Among the quantities that are uniquely related to  are the 
mean liquid velocity, the relative velocity, and the gas 
hold-up. Depending on the value of , the flow in the 
liquid slug shows - in a moving frame of reference - a 
recirculation pattern in the channel center and bypass flow 
close to the walls or complete bypass flow. The 
cross-sectional area of the bypass and recirculation region, 
and the non-dimensional recirculation time in the liquid 
slug depend on  and, for rectangular channels, on the 
channel aspect ratio. The local thickness of the liquid film 
in a certain cross-section depends on the mean liquid 
velocity in this cross-section and on . If the liquid film is 
stagnant, unique relations exists between the liquid film 
thickness and bubble diameter and . A similitude analysis 
showed that  may depend on up to ten other 
non-dimensional groups. However, the evaluation of 
literature data for Taylor flow indicates that  mainly 
depends on the capillary number. While these data show 
some scatter, they nevertheless give a consistent picture of 
this dependence. 
 
In experiments and technical applications the total 
superficial velocity is often known or prescribed, whereas 
the bubble velocity is unknown. Thus, when  is known, 
all the above quantities can be directly computed. When 
inertial and gravitational effects are important,  will in 
addition to the capillary number also depend on the 
Laplace number (La) and the Eötvös number (Eö). Also the 
volumetric flow rate ratio () might be of some influence. 
We thus propose to focus in future experimental and 
theoretical studies on further clarification of the functional 
relationship  =  (CaJ, , La, Eö). These four parameters 
are easy to vary and control in experiments. Furthermore, 
 can be determined from the bubble velocity, which is 
easy to measure in transparent channels. 
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Nomenclature 
 
A0 cross-sectional area where the velocity in the 

liquid slug is positive in a frame of reference 
moving with the bubble (m2) 

A1 cross-sectional area of recirculation region (m2) 
AB cross-sectional area of bubble (m2) 
Ach channel cross-sectional area (m2) 
AL cross-sectional area occupied by liquid (m2) 
B width of rectangular channel (m) 
Ca Capillary number () 
D diameter of circular channel (m) 
Dh hydraulic diameter of rectangular channel (m)  
Eö Eötvös number () 
Euuc Euler number () 
g gravitational constant (m/s2) 
H height of rectangular channel (m) 
JG gas superficial velocity (m/s) 
JL liquid superficial velocity (m/s) 
Jtot total superficial velocity (m/s) 
La Laplace number () 
LB bubble length (m) 
Lslug length of the liquid slug (m) 
Luc Length of the unit cell (m) 
puc pressure difference along the unit cell (Pa) 
QG gas volumetric flow rate (m3/s) 
QL liquid volumetric flow rate (m3/s) 
R radius of circular channel (m) 
Re Reynolds number () 
UB bubble velocity (m/s) 
UL mean liquid velocity within the unit cell (m/s) 
Uslug mean velocity in liquid slug (m/s) 
V volume (m3) 
W non-dimensional relative velocity () 
We Weber number () 
Z non-dimensional relative velocity () 
 
Greek letters 
 aspect ratio of rectangular channel () 
F liquid film thickness (m) 
 gas holdup in unit cell () 
 angle between channel axis and gravity vector 

() 
 non-dimensional length of the unit cell () 
 dynamic viscosity (Pa s) 
 density (kg/m3) 
 coefficient of surface tension (N/m) 
 non-dimensional recirculation time () 
 velocity ratio   UB/ Jtot () 
 
Subscripts 
B bubble 
F liquid film 
G gas phase 
J quantity is based on Jtot as velocity scale 
L liquid phase 
slug liquid slug 
uc unit cell 
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Figure 1:  Sketch of Taylor flow with characteristic dimensions, areas, and streamlines in the recirculation flow regime 
(recirculation flow pattern after Taylor (1961)). 
 
 

Figure 2: Literature correlations for  as function of the capillary number CaJ. The symbol ■ corresponds to the numerical 
data of Giavedoni & Saita (1997) for CaB = 2 and 10, respectively. The thin grey horizontal lines indicate the transition 
from recirculation flow to complete bypass flow in a circular (lower line) and a square (upper line) channel. The thin grey 
vertical line indicates the transition from a non-axisymmetric to an axisymmetric bubble shape in a square channel. 
 
 


