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Abstract 
 
In this paper we present numerical investigations of co-current downward Taylor flow in a square vertical mini-channel by a 
volume-of-fluid method. The focus is on the shape of the front and rear meniscus at different values of the capillary number, 
which is here in the range 0.04  Ca  0.66. At low values of Ca the bubble tip and rear adopt a hemispherical shape. With 
increase of Ca the curvature of the front meniscus increases while that of the rear meniscus decreases. This behavior is 
qualitatively similar to that in circular capillaries. For the highest value of Ca we find a novel regime in a square channel, 
where the bubble tip and body are axisymmetric, whereas the rear meniscus is not axisymmetric but shows symmetry with 
respect to the mid-planes and diagonals of the channel. We show that this break of symmetry is related to the pressure 
distribution in the liquid phase, which is non-uniform in cross-sections close to the bubble rear with the highest values 
occurring in the channels corners. Results for the evolution of the bubble shape during the transition from Taylor flow to 
annular flow are also presented. 
 
 
Introduction 
 
Taylor flow is a special kind of slug flow in small channels, 
where the liquid slugs which separate the elongated 
bullet-shaped bubbles (Taylor bubbles) are free from gas 
entrainment. Taylor flow occurs in micro-fluidic devices 
for applications in life sciences, material synthesis and 
chemical process engineering (Günther & Jensen, 2006; 
Kreutzer et al., 2005). The hydrodynamics of Taylor flow 
is mainly governed by two non-dimensional groups, the 
capillary number Ca  µL UB /   and the Reynolds 
number Re  L Dh UB / µL. Here, UB is the magnitude of 
the bubble velocity, µL and L are the liquid viscosity and 
density, respectively,  is the coefficient of surface tension 
and Dh is the channel hydraulic diameter. 
 
In vertical round channels, the bubble shape is always 
axisymmetric, whereas for co-current upward flow in 
square vertical channels the bubble shape is axisymmetric 
for Ca > 0.04 and non-axisymmetric for Ca < 0.04 
(Thulasidas et al., 1995). Recently, we used an in-house 
computer code based on the volume-of-fluid method and 
performed a computational study of the co-current 
downward Taylor flow of nitrogen bubbles in a viscous 
liquid (squalane) in a square mini-channel for capillary 
numbers in the range 0.04  Ca  0.66 (Keskin et al., 
2010). We compared the computed steady bubble shape 
with experimental flow visualizations obtained by a high 
speed CCD camera and found good agreement. The 
experimental and numerical results show both an 
increase/decrease of the curvature at the front/rear 
meniscus as the capillary number increases. 

 
In the present study we investigate the shape of the front 
and rear meniscus for co-current downward Taylor flow in 
a square channel for varying values of the capillary 
number in more detail. At the highest value of Ca, we find 
a novel steady bubble shape regime, where the bubble tip 
and body are axisymmetric while the rear of the bubble is 
not. In an axial cross-section close to the rear meniscus, the 
bubble shape adopts a square with rounded corners. To the 
best of our knowledge, this regime has not been found in 
experiments or numerical simulations so far. Here, we 
show that this break of symmetry from an axisymmetric 
state to one with mid-plane and diagonal symmetry is 
related to the pressure distribution in the liquid film 
surrounding the bubble and has its origin in a substantial 
cross-sectional variation of the pressure in the film and 
corner region of the square channel. Finally, we investigate 
in this paper the transient evolution of the bubble shape 
that occurs in a square mini-channel when there is a 
transition from Taylor flow to annular flow. 
 
Computational set-up 
 
In this section we give a short description of the numerical 
method and the computational set-up. The time-dependent 
three-dimensional computations are performed with an 
in-house computer code, called TURBIT-VOF. This code 
solves the Navier-Stokes equation with surface tension 
term in non-dimensional single field formulation for two 
incompressible Newtonian fluids with constant viscosity 
and coefficient of surface tension on a regular staggered 
Cartesian grid by a finite volume method. All spatial 
derivatives are approximated by central differences. Time 



  

 

 

integration is performed by an explicit third order 
Runge-Kutta method. A divergence free velocity field at 
the end of each time step is enforced by a projection 
method, in which the resulting Poisson equation is solved 
by a conjugate gradient technique. The dynamic evolution 
of the interface is computed by an un-split volume-of-fluid 
method with piecewise planar interface reconstruction. For 
further details about the governing equations and the 
numerical method we refer to Sabisch et al. (2001) and 
Öztaskin et al. (2009). 
 
For the computational set-up, we follow the procedure of 
our previous papers and consider one unit cell, which 
consists of one gas bubble and one liquid slug. We use in 
axial (vertical) direction periodic boundary conditions to 
mimic the influence of the trailing and leading bubble in 
Taylor flow. No-slip boundary conditions are applied at the 
four lateral walls of the square channel. In accordance with 
the experiments, the inner dimensions of the square 
channel are 1 mm  1 mm. The axial length of the unit cell 
Luc is either 4 mm or 6 mm. In the former case the uniform 
grid consists of 80  320  80 cubic mesh cells, while in 
the latter case the number of grid cells is 80  480  80. So 
in total up to about 3106 mesh cells are used and typically 
a few 10,000 up to 100,000 time steps are computed. 
 
In accordance to the experimental results reported in Bauer 
(2007) and Keskin et al. (2010) we use as continuous 
liquid phase squalane (C30H62) while the disperse gas phase 
is nitrogen. These experiments were performed at a 
pressure of 20 bar. The corresponding fluid properties of 
nitrogen used in the simulations are G = 23.6 kg/m3 and 
G=0.01804 mPas. Since the physical properties of 
squalane at a pressure of 20 bar are not available to our 
knowledge, we use the known (constant) properties at 
standard conditions which are L = 802 kg/m3, L=0.029 
Pas, and  = 0.0286 N/m. Thus, the viscosity of squalane 
is about 30 times higher than that of water. 
 
The initial phase distribution of the simulations was 
defined by placing an elongated axisymmetric bubble of 
given volume on the channel axis. By this procedure the 
gas hold-up  is fixed. The initial velocity field for both 
phases was given by fluids at rest, or, to save CPU time, by 
a constant axial velocity, or by a parabolic axial velocity 
profile within the channel cross-section (which was axially 
uniform). Starting from these initial conditions, the flow is 
driven by a prescribed constant source term in the axial 
momentum equation which corresponds to the axial 
pressure drop along the unit cell. In the course of the 
simulation, the evolution from the initial velocity field and 
prescribed bubble shape toward a fully developed Taylor 
flow is computed. The latter is assured by recording the 
mean axial gas and liquid velocities in the computational 
domain and continuing the simulation till both velocities 
approach constant terminal values. This final steady bubble 
shape corresponds to a certain (constant) bubble velocity 
and capillary number Ca. The Reynolds number Re is 
related to the capillary number by Re = LaCa, where La  
LDh/µL

2 is the Laplace number, which is constant here 
(La = 27.27). Furthermore, the Weber number is given by 
We = CaRe = LDhUB

2/. 

Results and Discussion 

Bubble shape in numerical simulations 

In Figure 1 we show the steady bubble shape at different 
values of Ca as computed by Keskin et al. (2010). The 
displayed bubble shape does not correspond to a certain 
iso-surface of the liquid volume fraction but is obtained as 
follows. For each mesh cell that contains both phases the 
center of area of the plane which represents the interface in 
this mesh cell is computed. The centers of area of such 
planes in neighboring mesh cells that contain an interface 
are then connected to form triangles or quadrangles so that 
a closed surface is obtained. 
 
From Figure 1 we observe that with increase of the 
capillary number the front of the bubble becomes more 
pointed while the bubble rear becomes more flat (see also 
Keskin et al., 2010). This result is in agreement with the 
numerical study of Taha & Cui (2006) who found that in a 
square channel a single Taylor bubble acquires spherical 
ends at low values of Ca, while the back of the bubbles 
changes from convex to concave at high Ca. This behavior 
is similar to circular channels (Martinez & Udell, 1989; 
Giavedoni, & Saita, 1999). 
 
 

Figure 1: Side view (top) and perspective view (bottom) 
of computed steady bubble shape for Luc = 6 mm and  = 
0.4 for five different values of the capillary number. From 
left to right the values of (Ca; Re) are (0.045; 1.22), 
(0.117; 3.19), (0.17; 4.64), (0.25; 6.81), (0.491; 13.4). (For 
further details about the simulations see Keskin et al., 
2010). The solid lines indicate the size of the 
computational domain. 

 
 
 



  

 

 

Taylor (1961) showed for a circular pipe that at small 
values of the capillary number the streamlines in the liquid 
slug show a recirculation pattern in a frame of reference 
moving with the bubble, while at large Ca so-called bypass 
flow occurs. Thulasidas et al. (1997) found experimentally 
that for co-current upward flow in a square channel this 
transition to bypass flow occurs for Ca  0.47. The highest 
capillary number in the simulations of Keskin et al. (2010) 
is obtained for case 4_20_B (in this case denomination the 
first and second numbers indicate the axial length and the 
gas-holdup while the letter refers to different values of the 
pressure drop). For this case it is Luc = 4 mm,  = 0.2, Ca = 
0.655 and Re = 17.86. It is interesting to note that thought 
this value is higher than 0.47, there is now bypass flow 
because it is   UB / Jtot = 1.96 < 2.096 (see discussion in 
the next subsection). This suggests that the transition from 
recirculation flow to complete bypass flow occurs in 
downward flow at higher values of Ca than in upward flow. 
This conjecture is supported by Fig. 5 in Kececi et al. 
(2009), where  is displayed as function of Ca and 
numerical results for upward and downward flow are 
compared. This figure shows that for a given value of Ca, 
 is higher for upward flow than for downward flow. 
 
In Figure 2 we show the bubble shape for case 4_20_B. 
This figure shows that the rear of the bubble is flat. At the 
axial position of the bubble, where the liquid film is 
thinnest and the bubble diameter is largest, the bubble 
shape is axisymmetric. At the rear of the bubble, however, 
this symmetry is lost. Figure 2 b) shows that the red line 
which denotes the position of the interface in a 
cross-section close to the bubble rear is not a circle but 
adopts the shape of a square with rounded corners. Thus, at 
the rear of the bubble the interface is not axisymmetric. 
Instead, there is symmetry with respect to the two 
mid-planes and diagonals of the square channel. To the 
authors knowledge this behavior has not been observed so 
far neither in experiments nor in numerical simulations. 
While the measurements of the three-dimensional shape of 
the rear meniscus of a moving Taylor bubble is a difficult 
subject by itself, it is further complicated by the fact that 
the axial extension of the non-axisymmetric shape reported 
here is only about 50 µm. 
 
Theoretical analysis of local interface curvature 
 
In this subsection we investigate the reasons for the shape 
of the rear meniscus as displayed in Figure 2 b). To this 
end we consider the dynamic boundary condition at the 
interface, i.e. the local force balance between pressure, 
viscous stresses and surface tension. Here, we are only 
interested in the projection of this dynamic boundary 
condition in direction of the unit vector ni, which is normal 
to the interface and points into the continuous liquid phase. 
Then it is 
 

L,i G,i L,i G,ip p         (1) 

 
with  being twice the mean local interface curvature 
 

min max2 1/ 1/H R R     (2) 

Thus, by virtue of Eq. (1) at any point on the bubble 
surface, the local curvature of the interface, , is related to 
the pressure p and normal viscous stress   on both sides 
of the interface. For a Newtonian fluid, the normal viscous 
stress at the liquid and gas side of the interface is given by 
 

 T
L,i L L L i i( ) :     v v n n  (3) 

 

 T
G,i G G G i i( ) :     v v n n  (4) 
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Figure 2: Bubble shape for case 4_20_B in a) perspective 
view and b) view from behind (only one half of the bubble 
is shown). The two lines indicate the bubble shape in an 
axial cross-section in the middle of the bubble (blue line) 
and very close to the bubble rear (red line). 
 
An evaluation of the local pressure field shows that the 
pressure in the bubble is constant (see also Figure 3). 
Therefore, we assume pG,i = pB = const. In the present 
simulations, the ratio between the gas and liquid viscosity 
takes a value of about 0.0006. Therefore, we assume that 
the normal viscous stress at the gas side of the interface 
can be neglected. Then Eq. (1) yields the following 
relation for the non-dimensional local interface curvature, 
K,  
 

 h
h L,i B L,i

D
K D p p 


     (5) 

 
When the bubble moves either in positive or negative 
y-direction (unit vector ey), then the dyadic product at the 
bubble front and rear becomes nini = eyey and we have with 
vL = (uL,vL,wL)T for the normal viscous stress on the liquid 
side of the interface at the bubble tip and rear the relation 
 

 T
L,tip/rear L L L y y

tip/rear

L
L

tip/rear

( ) :

2
v

y

 



    






v v e e

 (6) 



  

 

 

The velocity gradient in y-direction in the liquid phase at 
the bubble tip and rear may be approximated as (see Fig. 4) 
 

L,cl BL L

nvbl,tip/reartip rear

U Uv v

y y L

 
  

 
 (7) 

 
Here, UL,cl is the magnitude of the axial velocity in the 
liquid slug on the channel centerline and Lnvbl is the axial 
distance across which this velocity change occurs. For a 
fully developed liquid slug the axial centerline velocity is 
given by  
 

L,cl tot tot2.0962U C J J   (8) 

 
Here, Jtot   UB + (1  ) UL is the total superficial 
velocity. UL denotes the magnitude of the mean axial liquid 
velocity within the unit cell. Using Eq. (8) and defining  
 UB/J we can write 
 

h B L,tip h
tip

nvbl,tip

( ) 2
1

D p p D C
K Ca

L 
  

   
 

  (9) 

 
and 
 

h B L,rear h
rear

nvbl,rear

( ) 2
1

D p p D C
K Ca

L 
  

   
 

  (10) 

 
Thus, the effect of the normal viscous stress on the 
curvature of the bubble front and rear depends on the ratio 
C□ / . For recirculation flow it is  < C□ and the normal 
viscous stress acts to increase the curvature of the bubble 
tip and to decrease the curvature of the bubble rear. For  
> C□ we have bypass flow and Eqs. (9) and (10) suggest 
that the curvature of the bubble tip is decreasing with 
increase of Ca, while that of the bubble rear is increasing. 
Here, we have always  < C□ and the second term on the 
r h.s. of Eq. (9) is positive. 
 
Combining Eqs. (9) and (10) yields 
 

h L,rear L,tip
tip rear

h h

bl,tip bl,rear

( )

2 1

D p p
K K

C D D
Ca

L L






 

  
       



 (11) 

 
Thus, the difference in curvature of the front and rear 
meniscus depends on the pressure drop in the liquid phase 
over the length of the bubble. For a given pressure 
difference pB –pL,tip, this difference in curvature increases 
with increase of Ca for  < C□ and decreases with increase 
of Ca for  > C□ where  itself is a function of Ca. 
 
With exception of the bubble front and rear stagnation 
point, the normal viscous stresses may be neglected. Then, 
the following relation for the local curvature at an arbitrary 
point xi lying on the interface should approximately hold 

 h
i B L i( ) ( )

D
K p p


 x x  (12) 

 
Thus, the knowledge of the pressure field on the liquid side 
of the interface is the key to understand the bubble shape. 
Since variations of the pressure in the channel 
cross-section are related to the velocity field, we 
investigate in the next subsection both, the local pressure 
field and the local velocity field. 
 
Analysis of local pressure and velocity field 
 
Figure 3 shows for case 4_20_B of Keskin et al. (2010) the 
axial profile of the pressure for different positions within 
the channel cross-section. While in the governing 
equations adding a constant to the pressure field is without 
influence as only the pressure gradient matters, in Figure 3 
for clarity of presentation a constant has been added to the 
pressure values so that the minimum pressure at the bottom 
of the channel (y = 0) is zero. From Figure 3 it is evident 
that in the liquid slug the pressure within an axial 
cross-section is uniform as it is typical for laminar single 
phase flow in a straight channel. Furthermore, in the liquid 
slug the axial pressure drop is constant. Figure 3 also 
shows that the pressure in the bubble is about constant (see 
profile for channel centerline in the range y = 2  4 mm). It 
further indicates that a notable variation of the pressure 
within an axial cross-section occurs only at the bubble rear. 
There, the pressure difference between the bubble and the 
liquid is clearly larger in the lateral film region than in the 
corner flow region. At the rear edge of the interface the 
normal viscous stresses may be neglected; therefore for 
this region Eq. (12) may be used to estimate the local 
interface curvature. As Figure 3 shows the difference 
between the pressure in the bubble and on the liquid side 
of the interface is finite in lateral direction, whereas it is 
almost zero in diagonal direction. According to Eq. (12), 
therefore, the local interface curvature close to the center 
of the channel side walls is finite (and positive) while it is 
about zero in diagonal direction. This explains the 
cross-sectional interface shape as given by the red line in 
Figure 2b). 
 
Figure 3 shows that the axial pressure drop in the liquid 
phase across the bubble length occurs to the main part over 
the first third of the bubble. In the region, where the 
thickness of the lateral liquid film is about constant, the 
pressure is nearly constant too, and no significant axial 
pressure drop exists. 
 
It is obvious that in the bubble region the pressure field is 
closely related to the velocity field. Hazel & Heil (2002) 
analyzed the steady propagation of a semi-infinite bubble 
into a channel of rectangular cross-section by solving the 
free-surface Stokes equations and investigated in detail the 
pressure and velocity field in the liquid phase in axial 
cross-sections at various distances from the bubble tip. 
They found that in square channels the fluid particles tend 
to move towards the corners, which offer less resistance to 
the flow than the thinner regions along the sides of the 
channel. The ensuing transverse flows induce a transverse 
pressure gradient that lowers the fluid pressure in the 



  

 

 

corners, where the gas-liquid interface moves radial 
outwards. In the region behind the bubble tip, surface 
tension acts to restore the gas-liquid interface to an 
axisymmetric shape, and the non-uniform pressure 
distribution continues to drive fluid into the corner until the 
bubble diameter in lateral and diagonal direction are equal. 
As concerns the case 4_20_B, Figure 3 shows that in axial 
regions which are closer to the bubble tip than to the 
bubble rear, the pressure within a certain axial 
cross-section is indeed slightly lower in the corners than at 
the channel sides. However, in axial cross-sections which 
are closer to the bubble rear than to the bubble tip, we find 
the opposite behavior, i.e. higher pressure values in the 
channel corners than at the channel sides. 
 

 
Figure 3: Axial profile of pressure at different positions in 
the channel-cross section for case 4_20_B in Keskin et al. 
(2010). The values (i,k) denote the mesh cell index within 
the channel cross-section (1  i  80; 1  k  80). 
 
In Figure 4 we show axial profiles of the liquid axial 
velocity at different positions within the channel 
cross-section. We find that the axial liquid velocity is, as 
expected, in general higher in the corner region than in the 
lateral liquid film region. However, at a position close to 
the bubble rear and close to the interface the liquid axial 
velocity is about the same in lateral and diagonal direction 
(compare in Figure 4 the profile for i = k =14 with the one 
for i = 7, k =40 at y  4mm). A comparison of the velocity 
components within the channel-cross section (not shown 
here) indicates that the magnitude of the liquid velocity in 
the cross-section is higher in the channel corners than at 
the channel sides. Thus, in a cross-section close to the 
bubble rear the liquid moves faster inward in the channel 
corners than at the channel sides. This inward directed 
liquid flow is associated with curved streamlines, which 
result in the presence of non-negligible inertial forces in a 
non-uniform cross-sectional pressure distribution which 
has, in the present case, maxima in the channel corners. 
However, further investigations are needed to elucidate the 
intimate relation between the local pressure and velocity 
fields and the interface curvature at the bubble rear. 
 
From Figure 4 we can evaluate the length Lnvbl and find 
Lnvbl,tip / Dh  0.2 and Lbl,rear / Dh  0.16, respectively. With 
these data, the numerical values of the different terms in 
Eqs. (9) and (10) become 

tip

0.001m(812Pa 541Pa)

0.0286N/m
2 2.096

0.655 1
0.2 1.96

9.475 0.455 9.93

K




   
 

  

 (13) 

 
and 
 

rear

0.001m(812Pa 770Pa)

0.0286N/m
2 2.096

0.655 1
0.16 1.96

1.468 0.568 0.9

K




   
 

  

 (14) 

 
While these values should be considered as estimates of 
the magnitudes of the relevant forces, they nevertheless 
show that in the present case 4_20_B the curvature of the 
bubble tip is one order of magnitude larger than the one at 
the bubble rear. Furthermore it is evident that at the bubble 
tip the normal viscous stresses are one order of magnitude 
smaller than the pressure forces, while at the bubble rear 
the magnitude of the normal viscous stresses is about 38% 
of that of the pressure forces. Since at the bubble rear the 
normal viscous stresses on the liquid side of the interface 
act opposite to the pressure forces for  < C□, they are 
definitely important and should not be neglect at high 
values of the capillary number. 
 

 
Figure 4: Axial profile of liquid axial velocity at different 
positions in the channel-cross section for case 4_20_B in 
Keskin et al. (2010). The values (i,k) denote the mesh cell 
index within the channel cross-section (1  i  80; 1  k  
80). 
 
Transition from slug to annular flow  
 
In this subsection we present and discuss results of a new 
transient simulation for a square mini-channel, where the 
pressure gradient is so high that co-current downward 
Taylor flow is not stable and a transition from slug flow to 
annular flow occurs. In this simulation it is Luc = 4 mm and 
 = 0.4; we denote this case by 4_40_C. The initial bubble 
shape is displayed in Figure 6. The initial velocity is the 



  

 

 

same in both phases and is constant, namely vL = vG = 0.3 
m/s. The prescribed mean pressure difference between the 
top and bottom cross-section of the channel is for this case 
550.3 Pa. This value is about 27% lower than for case 
4_20_B, where it is 754.4 Pa. However, the hydrostatic 
pressure head that must be overcome to drive the flow 
downward is much lower for case 4_40_C. This is because 
the gas holdup is 40% instead of 20% for case 4_20_B. 
 
Figure 5 shows the temporal evolution of Jtot, UB and UL 
during the course of the simulation. As can be seen, the 
downward velocity of the bubble strongly increases in time 
whereas the magnitude of the mean liquid velocity in the 
domain is slightly decreasing. At about 5 ms the slope of 
UB versus t decreases somewhat before it is strongly 
increasing for t > 8 ms. Thus, the bubble velocity 
approaches no constant value; instead the bubble is always 
accelerating. 
 

 
Figure 5: Transition from Taylor flow to annular flow: 
temporal evolutions of total superficial velocity, bubble 
velocity, mean liquid velocity and liquid slug length for 
case 4_40_C. 
 
Also shown in Figure 5 is the time history of the liquid 
slug length Lslug. For each instant in time, this length is 
evaluated as the axial distance along which in the entire 
channel cross-section only liquid is present. The initial 
liquid slug length is about 1 mm. At t = 5 ms this value is 
reduced to about 0.3 mm while for t > 8 ms its value is 
zero. 
 
Figure 6 shows the bubble shapes for case 4_40_C at 12 
different instants in time. As time proceeds we observe that 
the rear meniscus of the bubble quickly deforms from the 
initially hemispherical shape to a flat interface, which is 
reached at t  2 ms. Characteristic for the time period from 
t = 2  5 ms is a concave rear meniscus on the channel axis 
which goes along with a non axi-symmetric bubble shape 
in some radial distance from the channel centerline. This 
bubble shape will be discussed below. As time proceeds 
further, the diameter of the bubble body continues to 
decrease while the length of the bubble increases and 
accordingly the length of the liquid slug decreases. As a 
consequence of the decreasing bubble diameter, the flow 
along the circumferential of the bubble becomes more 
uniform because the difference in the axial velocity on the 

liquid side of the interface in the lateral liquid film and the 
liquid corner flow diminishes. Due to this, in the time 
period t = 5  8 ms the rear meniscus is almost 
axisymmetric again. For t > 8 ms the liquid slug length is 
zero and the tip of the trailing bubbles penetrates in the 
concave region of the rear meniscus of the trailing bubble. 
At this stage the present simulation breaks down. The 
reason is that during the process of the merger of the 
trailing and leading interfaces a large number of small gas 
and liquid fragments are produced. The curvature of these 
tiny structures cannot adequately be resolved by the grid. 
 

 
Figure 6: Visualization of instantaneous bubble shape for 
case 4_40_C during the transition from Taylor flow to 
annular flow for different instants in time. Top row (from 
left to right): 0 ms, 0.27 ms, 0.53 ms, 0.67 ms, 1.93 ms, 
3.72 ms; bottom row (from left to right): 5.05 ms, 6.65 ms, 
7.45 ms, 7.99 ms, 8.42 ms, 8.62 ms. 
 
 
a) 

 

b) 
 
 
 
 

 
Figure 7: Bubble shape for case 4_40_C at t = 3.72 ms in 
a) perspective view and b) view from front (only one half 
of the bubble is shown). The three lines indicate the 
bubble shape in an axial cross-section in the middle of the 
bubble (black line) and close to the bubble rear (blue and 
red line). 



  

 

 

In Figure 7 we investigate the shape of the bubble rear for t 
= 3.72 ms in more detail. Similar to Figure 2 we display 
the shape of the interface in the channel cross-section at 
certain axial positions. It is evident that the body of the 
bubble is axi-symmetric (black line in Fig. 7 b). Close to 
the bubble rear we find again the characteristic shape of a 
square with rounded corners (blue line) that was already 
found for case 4_20_B, see Fig. 2 b). However, as 
indicated by the small blue circle, in the present case the 
interface at the rear meniscus is not flat but slightly 
concave. In an axial position slightly more upstream we 
find four closed iso-lines of the bubble interface (red lines). 
These represent cusps that form where the bubble rear is 
close to the middle of the lateral four walls of the vertical 
channel. A detailed inspection of Fig. 7b) shows that the 
red and blue lines are not perfectly symmetric with respect 
to the vertical channel mid-planes or the channel diagonals 
(note that our simulation is full 3D and no kind of 
symmetry is assumed). Instead, the respective patterns 
slightly change in time. We speculate that these interface 
deformations and fluctuations are due to the continuous 
acceleration of the bubble. It is an open question if such a 
shape of the rear meniscus may persist under steady bubble 
motion. To investigate this issue, a new simulation is 
currently under way where we take the final time step of 
case 4_20_B as initial condition, but increase the driving 
pressure difference by about 10%. 
 
Conclusions 
 
In this paper we used results of three-dimensional 
numerical simulations of viscous co-current downward 
Taylor flow in a square vertical mini-channel to investigate 
the shape of the front and rear meniscus at different values 
of the capillary number. It is found that the curvature of the 
front meniscus increases with increase of Ca while that of 
the rear meniscus decreases. This behavior is in qualitative 
agreement with that in circular channels. For the highest 
capillary number, Ca = 0.65, we find a novel 
non-axisymmetric bubble shape regime which has – to the 
author’s knowledge – not been reported so far. This new 
regime is characterized by a bubble shape which is 
axisymmetric at the tip and body of the bubble but adopts 
the shape of a square with rounded corners at the bubble 
rear. We showed that this symmetry breaking is related to a 
non-uniform pressure distribution in cross-sections close to 
the rear meniscus, with local pressure maxima in the 
channel corners. 
 
We also investigated the evolution of the bubble shape 
during the transition from Taylor flow to annular flow in a 
square channel. During this transient simulation, the 
bubble is always accelerating and the diameter of the 
axisymmetric bubble body decreases in time while the 
length of the bubble increases. In certain stages of this 
simulation the rear meniscus shows the novel shape 
described above and even forms cusps close to the middle 
of the four channel side walls. However, it is unclear if the 
latter shape exists only when the bubble accelerates or also 
under steady bubble motion. 
 
 
 

Nomenclature 
 
Ca Capillary number () 
Dh hydraulic diameter (m)  
ey unit normal vector in axial direction () 
g gravitational constant (m/s2) 
H mean interface curvature (1/m) 
i mesh cell index in x-direction () 
Jtot total superficial velocity (m/s) 
j mesh cell index in y-direction () 
K non-dimensional interface curvature () 
k mesh cell index in z-direction () 
La Laplace number () 
Lnvbl thickness of normal viscous boundary layer (m) 
Lslug length of the liquid slug (m) 
Luc Length of the unit cell (m) 
ni unit normal vector to the interface () 
p pressure (N/m2) 
Rmin minimum principal radius of curvature (m) 
Rmax maximum principal radius of curvature (m) 
Re Reynolds number () 
UB magnitude of bubble velocity (m/s) 
UL magnitude of mean liquid velocity (m/s) 
v velocity field (m/s) 
x wall-normal coordinate (m)  
We Weber number () 
y axial coordinate (positive in upw. direction) (m) 
x Cartesian coordinates, x = (x,y,z)T (m) 
z wall-normal coordinate (m) 
 
Greek letters 
 gas holdup in computational domain () 
 interface curvature (1/m) 
 dynamic viscosity (Pa s) 
 coefficient of surface tension (N/m) 
 = UB/ Jtot () 
 normal viscous stress (Pa) 
 
Subscripts
B bubble 
G gas phase 
i interface 
L liquid phase 
nvbl normal viscous boundary layer 
rear rear meniscus on channel axis 
tip front meniscus on channel axis 
uc unit cell 
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