

Zry-4 oxidation in mixed oxygen-nitrogen atmospheres

M. Steinbrück, S. Schaffer

19th International QUENCH Workshop, 19.-21. Nov. 2013, Karlsruhe, Germany

Institute for Applied Materials IAM-AWP & Program NUKLEAR

Motivation

- Air ingress and Zr oxidation in atmospheres containing nitrogen is of actual interest in many countries
 - OECD SFP project indicated a strong need for more experiments
 - PhD thesis EdF and PSI just started
- Air oxidation of Zr alloys is very complex
- During air oxidation, the oxygen/nitrogen ratio changes due to preferred consumption of oxygen
- Which range of composition is affected by the mutual interaction of oxide and nitride formation?
- Experiments in oxygen-nitrogen model mixtures can be used for modeling purposes

Oxidation of Zr alloys in N₂, O₂ and air

Oxidation of Zr alloys in N_2 , O_2 and air

200 µm

Experimental setup

Samples and test matrix

- 2 cm cladding tube segments made of Zircaloy-4
- Isothermal tests
- Temperatures and times:
 6 h @ 800°C
 1 h @ 1000°C
 15 min @ 1200°C
- Atmospheres: 0-100% nitrogen incl. 1 and 99%
- Flow rates: 10 l/h O₂+N₂, 3 l/h Ar

21.11.2013 7

Martin Steinbrück

TG results at 800°C

TG results at 800°C (initial phase)

 Deviation from (sub-)parabolic kinetics after ca. 30 min (after 7 hours in pure oxygen)

TG results at 1000°C

TG results at 1200°C

TG results summary

Micrographs of 800°C samples

N₂ content in the mixture

13 21.11.2013 Martin Steinbrück 19. Int. QUENCH Workshop

Micrograph: 800°C, 10% nitrogen

Micrographs of 1000°C samples

N₂ content in the mixture

1521.11.2013Martin Steinbrück19. Int. QUENCH Workshop

Micrograph: 1000°C, 95% nitrogen

Micrographs of 1200°C samples

N₂ content in the mixture

1721.11.2013Martin Steinbrück19. Int. QUENCH Workshop

Micrograph: 1200°C, 98% nitrogen

Parabolic (pre-trans.) and linear (post-trans.) rate constants

Karlsruhe Institute of Technology

Summary

- The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests
- Already very low concentrations of nitrogen (in oxygen) as well as of oxygen (in nitrogen) strongly affect reaction kinetics.
- Nitrogen strongly reduces transition time from protective to non-protective oxide scale (breakaway).
- The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the strongly porous oxide scales after transition.
- Nitrogen seems to affect also the pre-transition reaction kinetics. This effect increases with temperature.

Zry-4 oxidation in mixed oxygen-nitrogen atmospheres

M. Steinbrück, S. Schaffer

19th International QUENCH Workshop, 19.-21. Nov. 2013, Karlsruhe, Germany

Institute for Applied Materials IAM-AWP & Program NUKLEAR

