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Abstract—By influencing the demand side by means of price 

signals (Demand Response) additional flexibility potential in 

electric supply systems can be provided. However, by 

influencing the demand side typical consumption patterns of 

previously unaffected consumers are changed. This will lead to 

increasing uncertainty in load forecasting. This paper deals with 

the forecast of load time series in consideration of price-based 

consumption influence. Additional requirements for load 

forecasting methods resulting from the price elastic 

consumption behaviour are analysed in this paper. 

Furthermore, the model residuals of established model 

approaches will be analysed to explain the disturbance 

characteristic caused by the price elasticity. Finally, the impact 

of the model residuals on the load forecast was investigated. 

Index Terms-- Demand forecasting, demand response, consumer 

behaviour, time series analysis. 

I. INTRODUCTION  

The climate and energy policy objectives and the 
associated rising percentage of the feed-in from fluctuating 
generation by renewable energies are significant technical 
challenges for the future electricity supply systems. To 
maintain the system stability and the security of supply by the 
permanent balancing of production and consumption, there is 
a need to introduce new flexibility potentials. Besides the 
development of storage technologies or the implementation of 
production management for fluctuating generation, flexibility 
for the electric supply system can be provided by adjusting the 
demand side to the given fluctuating feed-in (consumption 
follows production). The influence on the consumption is 
done by exploiting the demand side load shifting potentials 
and is technically realized via the Demand Side Management 
(DSM). DSM contains all measures to influence the load on 
the demand side, whereas indirect DSM and Demand 
Response (DR), respectively, specifies the influence of time-
varying incentive signals (e.g., price signal) on the 
consumption behaviour. A detailed categorization of DSM 
measures and related definitions is carried out in [1], [2].  

A disadvantage of DSM is that the typical previously 
unaffected consumption patterns are altered by market and/or 
generation situational incentive signals. This in turn increases 
the uncertainty in the load forecast and thus the uncertainty in 
subsequent processes. In energy supply, load forecasts are an 
important contribution for the optimal planning and operation 
of energy and resources.  

In section II the rising uncertainty is demonstrated by 
smart meter data of two field studies. In this paper, the 
requirements for a load forecasting method considering price-
based consumption influence (price elastic consumption 
behaviour) are analysed. The problem is described and a 
system technical examination given in Section III. In Sections 
IV the requirements for new forecasting methods are 
discussed. The properties of the residuals that occur through 
price-based consumer influence are explained and a possible 
contribution for modelling is discussed in Section V. Thereby, 
the price effect is interpreted as a disturbance. Section VI 
gives a summary of the investigations and case studies in this 
paper and an outlook for further researches is conducted. 

II. UNCERTAINTY IN FORECAST 

In the present paper, time series, forecasts of established 
method approaches and the resulting forecast errors are 
evaluated as a measure of uncertainty. The smart meter data 
sources from the Olympic Peninsula Project (OPP) [3], in 
which the consumption behaviour of household consumers in 
response to variable tariffs (Time of Use - TOU consumer 
group and Real Time Pricing - RTP consumer group) 
compared to a control group with a constant tariff (FIXED 
consumer group) were examined. On the basis of established 
method approaches, such as Autoregressive Integrated 
Moving Average (ARIMA) and Artificial Neural Networks 
(ANN), different forecasts for the respective consumer groups 
are generated and compared. The ARIMA model approach (to 
estimate consumer load changes instead of consumer loads) 
bases on (1) [5] where ε[k] is white noise and ai and bj are 
model parameters. The orders p and q of the ARIMA model as 



well as the difference filters ∇d
 are determined in advance as a 

result of a data analysis. By including the tariff as an 
exogenous variable, the ARIMA approach is extended to 
ARIMAX (ARIMA with exogenous variable). 
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In the context of signal models, the ANN approach can be 
attributed to nonlinear stochastic models. ANN approaches are 
also widely used in energy economics and literature 
concerning forecast time series [6]-[9]. The ANN approach 
used in this paper is a simple feed forward neuronal network 
with three layers, hyperbolic tangent activation function and a 
backpropagation algorithm for the training [10], [11].  

TABLE I.  RESULTS BASED ON OLYMPIC PENINSULA PROJECT DATA 

Consumer 
group 

Forecast results for different methods 

ARIMA ANN ARIMAX+ 
tariff 

ANN+ 
tariff 

Forecast error MAPE [%] 

FIXED 15,26 15,04 - - 

RTP 17,53 17,39 17,49 17,27 

TOU 19,48 19,04 19,52 19,37 

Increase of the forecast error compared to the control group [%] 

RTP 14,87 15,63 14,61 14,83 

TOU 27,65 28,99 27,92 28,79 
ARIMA – Autoregressive integrated moving average, ARIMAX – Autoregressive integrated 
moving average with exogenous variable, ANN - Artificial Neural Network 

The OPP dataset was split for the investigations. Two-
thirds of the data are used to train the ANN and one-third are 
used as test data. The investigations indicate an increasing 
forecast error for price elastic load. The results of the 
investigations based on OPP dataset are summarized in Table 
I. The error is measured as the mean absolute percentage error 
(MAPE) defined in (2). Here x are the measured values, x̂ are 
the forecast values and N stand for the number of forecasts 
values. 
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In [12], the impact of load shifting as a response to a price 
signals is analysed. Different forecast methods, approved and 
commonly used by the German energy industry, are used to 
forecast the consumption of a price influenced consumer 
group (groups for house owners and tenants) in comparison to 
a control group with a constant tariff. The investigations are 
based on smart meter data from a field study called 
RESIDENS. The investigation in [12] indicates results 
analogous to those based on the OPP dataset in this paper. The 
results from [12] are summarized in Table II. 

TABLE II.  RESULTS BASED ON RESIDENS DATA 

Consumer 
group 

Forecast results for different methods 

AR ANN RNN ANN+ 
tariff 

RNN+ 
tariff 

Forecast error MAPE [%] 

Control 14,63 13,2 12,93 - - 

House 18,93 16,61 15,96 16,56 16,04 

Tenant 20,38 17,74 17,09 17,55 17,09 

Increase of the forecast error compared to the control group [%] 

House 29,39 25,83 23,43 25,45 24,05 

Tenant 39,30 34,39 32,17 32,96 32,17 
Abstract of results from [12]: AR – Autoregressive, ANN - Artificial Neural Network, RNN – 
Recurrent Neural Network  

III. PROBLEM DESCRIPTION 

The emphasis of this paper is the indirect influence of the 
consumption behaviour by price signals in an electrical power 
system (Fig. 1). The result of the complex planning in DSM is 
the price signal p[k] at sampling time k. The planning and thus 
the price building mechanism are taking into account various 
factors influencing the electric energy system uEES[k], e.g. 
existing network restrictions, market criteria or current 
generation and load forecasts. With the distinction between 
market-oriented or net-oriented use of DSM measures [2], 

Fig. 1.  Price elastic consumption process with consumer behavior model and planning [4]: k - index of time (sampling time 15 minutes); H - forecast 

horizon, p[k] - price signal, x̂ - estimation of x, u[k] - exogenous influencing values, uEES[k] - exogenous influencing values of electric energy system, y[k] - 
price elastic consumer load, yU[k] - unaffected component of consumer load, yR[k] - affected component of consumer load, z[k] - disturbance value 
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[13], forecast and planning methods are needed to influence 
the electrical load optimally with consideration of energy 
market and technical aspects. For certain cases of generation 
feed-in situation, the need and the range of a load influence for 
a future planning horizon H can also be measured 
meaningfully based on the forecast of the unaffected load 
ŷU[k+H]. The unaffected consumption behaviour is the 
starting point of the planning. Therefore, the used forecast 
methods must be able to predict the unaffected component of 
the total consumption. These methods must be able to 
conclude from the influenced historic consumption data 
y[k-1]…y[k-j] and other available input variables u[k] to the 
unaffected load behaviour using reverse-calculation. The 
result is a corresponding forecast. The price signal, as a result 
of the planning, influences the consumption behaviour in 
return. The influenced load curve y[k] is obtained from the 
unknown unaffected and affected signal components yU[k] and 
yR[k] respectively. There is a system feedback due to the 
forecast of the unaffected load curve introduced as an input of 
the planning. The resulting system structure is discussed in 
detail in [4]. 

IV. REQUIREMENTS FOR LOAD FORECASTS REGARDING 

PRICE ELASTIC CONSUMPTION BEHAVIOUR  

For the modelling of the price-based consumption 
behaviour, various approaches can be found in the literature. 
The price elasticity as a measure of the change in demand in 
response to a price change is the basis of various approaches 
[13]-[17]. The price elasticity is often explained as a time-
variant function, depending on month, day, hour, seasonal 
influences or even specific type days [15]-[17]. The 
predictability of consumers to adjust to price changes and thus 
the price elasticity also depends on lead time (planning 
horizon) for which prices are known in advance. The effects 
occurring by the price-based consumption influence not 
necessarily have to occur directly in response to price changes. 
Rather, the reactions are also expected a priori or a posteriori 
time-shifted, potentially leading to “non-causal load reactions” 
to existing or estimated future price changes. Furthermore, the 
own signal past of influenced signals is an important impact 
(autoregressive behaviour), because the percentage of already 
exploited influence potential can be derived which is currently 
not available. Assuming the influence on the consumption 
behaviour is a measure for load shifting (only the time of the 
power consumption is changed), an energy storage like 
behaviour is obtained. However, there are special properties 
and degrees of freedom by the storage behaviour of influenced 
consumers. Thus, in [18] the consumer behaviour is modelled 
as a virtual storage. Furthermore, regression models [19], 
fuzzy systems [16] or optimization models [17] are used or 
different DR scenarios are determined stochastically using 
Monte Carlo simulations [20]. As a summary of system 
analysis in Section III and the modelling approaches used in 
the literature, different requirements for forecast methods of 
price elastic consumption signals can be determined: 

 The forecast of the unaffected load component for 
price elastic consumption behaviour is needed for the 
planning. 

 Type day and seasonal price elasticity 

 Autoregressive behaviour of estimated load  

 Storage behaviour at load shifting 

 Consideration of the planning horizon (lead time) 

 Dynamics of consumer reactions depending on price 
forecast horizon (causal and non-causal behaviour) 

V. MODEL RESIDUALS 

If a model explicitly takes into account all systematic 
factors of the consumption behaviour, the model residuals 
(model error e[k]) will only include randomly occurring 
deviations between the measured values and the estimated 
model outputs. In this case, the model error e[k] is white noise 
[5], [21], [22]. In the literature, a variety of modelling 
approaches can be found for the load forecast of the 
consumption behaviour (without price elastic consumption 
behaviour). An overview of established model approaches for 
load forecasts offer among others [6] and [7]. For the 
following discussion (see Fig. 2), it is assumed that an 
established approach for load forecasting exists, assuming 
white noise ε[k] as an error signal. By demonstrating that the 
error signal corresponds to white noise, the optimal forecast 
method is modelled (assumption of optimal forecast) [5], [22]. 
The periodogram test is used to demonstrate the existence of 
white noise [5]. The periodogram test is a null hypothesis test 
with consideration of the significance level alpha and is based 
on the cumulative periodogram. 

 

 

Figure 2.  Optimal forecast model: e1[k] - residuals/ forecast error, ε[k] - 
white noise 

If the consumption behaviour is additionally influenced by 
price signals, the influences of the price signal can be 
interpreted as a disturbance (Fig. 3). Without the knowing of 
the price signal, the forecast model is unable to consider the 
price effects on the load signal.  

 

 

Figure 3.  Forecast model without price consideration and model residuals: 
e2[k] – residuals/ forecast error 



Consequently, relevant price changes increase the model 
error, and thus, price and model error are correlated with each 
other. The functional relationship between price and load 
change is transmitted to the error signal. In practice not all 
systematic factors can be included in consideration, because 
the data logging is technically impossible, too costly or some 
relevant factors are unknown. In such cases, the error signal 
cannot be characterized as white noise, because the values still 
contain functional relationships to unknown factors or are 
correlated with each other. To forecast the unaffected load 
component in consumption processes with price elastic 
consumption behaviour (described in Section II), in this paper 
investigations focus on whether and how the discussed error 
signal can be used for the modelling. With an exact 
approximation of the affected load component yR[k], the 
unaffected load component yU[k] can be calculated as follows. 

 yU[k]=y[k] – yR[k].  (3) 

Based on the unaffected load component, calculated for a 
historic  time domain, conventional and established forecast 
methods [6], [7] can be used to forecast the unaffected load 
component. In the following subsections, the disturbance 
characteristic, that occurs with the price elasticity, is 
investigated with the help of two case studies.   

A. Case Study 1: synthetic smart meter data 

To validate the postulated proceeding (Fig. 2 and Fig. 3), a 
synthetic dataset is used in Case Study 1. With the aid of the 
synthetic dataset, the investigation can be executed under 
controlled conditions by knowing all signal components. The 
load time series yU[k] is a standard load profile (SLP) 
superimposed with a random disturbance and represents the 
unaffected consumer (FIXED) group. The influenced load 
time series y[k] represents the RTP consumer group and is 
affected by a dynamic tariff with several price levels. Thereby 
the simulated price elasticity of the affected load component 
yR[k] varies with type day and with time of day and is known 
for Case Study 1. An ANN method is used to forecast the load 
time series of the FIXED group for the forecast horizon of 24 
hours (96 samples by a sampling interval of 15 minutes).  
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Figure 4.  Partial autocorrelation function of the forecast error e1[k] and 

confidence interval and a lag up to one week (672 samples by a sampling 
interval of 15 minutes) for Case Study 1 

The periodogram test with alpha = 5% demonstrated that 
the forecast error corresponds to the white noise (e1[k]≙ε[k]) 
in Case Study 1, which confirms the assumption of an optimal 
forecast. Fig. 4 shows the partial autocorrelation function of 
the error signal. The dashed line represents the confidence 
interval with a significance level of alpha = 5%. No 

significant frequencies or autocorrelations occur. In the next 
step, the identical ANN method is used to forecast the RTP 
group without the price signal as an input variable (see Fig. 3). 
In Table III, the correlation coefficients ryx between p[k] and 
e2[k] and p[k] and yR[k], respectively, is calculated. 

TABLE III.  CORRELATION COEFFICIENTS FOR CASE STUDY 1 

Correlation coefficient 
rxy to the price signal 

p[k] 

Affected load 
component yR[k] 

Forecast error e2[k] 

-0,66 -0,59 

    

The negative correlation coefficients, shown in Table III, 
are obtained by the inverse proportional relationship between 
a price change and load change (price elasticity). In Fig. 5, the 
correlation coefficients are presented for separate time 
intervals for the time of day. The varying correlation 
coefficients for the time intervals of a day can be explained by 
the time dependent price elasticity. 
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Figure 5.  Correlation coefficient rxy of forecast error e2[k] and price signal 

p[k] depending on time of day for Case Study 1 

The day time dependent correlations between the forecast 
error e2[k] and the price signal p[k] conform to the correlations 
between the affected load component yR[k] and the price 
signal p[k]. The average daily curves of e2[k] and yR[k] are 
shown in Fig. 6 with a nearly exact approximation. The 
influencing price signal is shown as the green line.           

 
Figure 6.  Comparing affected load component yR[k] and residuals/ forecast 

error e2[k] for Case Study 1 (average daily curves) 

By confirming the assumption of an optimal forecast and 
executing the proceeding according to Fig. 3, the functional 
relationship between price signal and load change can be 
transmitted to the error signal. The error signal extensively 
corresponds to the affected load component only 
superimposed with a random variance. Thus in Case Study 1, 
the performance of the postulated proceeding could be 
demonstrated under controlled conditions based on synthetic 
data. 



B. Case Study 2: real smart meter data 

For Case Study 2, the postulated proceeding (Fig. 2 and 
Fig. 3) is executed again and the OPP dataset are used for the 
investigation. An ANN method was used to forecast the 
consumption behaviour of the FIXED group with a constant 
tariff and a forecast horizon of 24 hours. The forecast error 
e1[k] is tested for white noise. The result of the periodogram 
test (alpha=5%) did not confirm that the forecast error 
corresponds to white noise. The partial autocorrelation 
function of e1[k] (Fig.7) shows that the used forecast method 
does not generate a forecast with a resulting ideal white noise 
error signal. The error signal is auto-correlated and a marginal 
day frequency is present. One reason for the non-optimal 
forecast is the non-optimal modelling of the input-output 
relationship by the used ANN method. Another reason is the 
imperfect knowledge of all systematic factors in terms of 
building the forecast model. Potential exogenous factors, 
which influence the behaviour of the OPP dataset, are not 
available for the investigation in this paper. Furthermore, 
potential influences caused by specific calendar days are not 
known either. Additional investigations aimed to enhance the 
model quality, e.g. by introducing an error model to map the 
autoregressive error properties of e1[k], are planned. 
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Figure 7.      Partial autocorrelation function of the forecast error e1[k] and 
confidence interval and a lag up to one week (672 samples by a sampling 

interval of 15 minutes) for Case Study 2 

The previously utilized ANN method is used to forecast 
the RTP and TOU group without the price signal as an input 
variable (see Fig. 3). The real affected load component yR[k] is 
no measurable time series and not available for the OPP 
dataset. To substitute the real affected load component, the 
difference of the consumption time series of the FIXED and 
the RTP group is used (yR,RTP[k] = yFIXED[k] - yRTP[k] and 
yR,TOU[k] = yFIXED[k] - yTOU[k]). The substituted affected load 
component yR[k] is used as benchmark. Note that the 
difference between the FIXED and RTP group and FIXED 
and TOU group, respectively, does not have to be a result of 
variable tariffs outright. Principled differences of the 
consumer groups in terms of consumption behaviour 
(independent to the price changes) cannot be excluded. So the 
substituted affected load component yR[k] does not have to 
represent the real consumer response to price changes. Table 
IV includes the calculated correlation coefficients.  

TABLE IV.  CORRELATION COEFFICIENTS FOR CASE STUDY 2 

Correlation 
coefficient rxy to 
the price signal 

p[k] 

yR,RTP[k] 

(FIXED – RTP) 

yR,TOU[k] 

(FIXED – TOU) 

Forecast error 
e2[k] 

0,09 -0,18 0,07 

A significant correlation between the forecast error e2[k] 
and substituted affected load component yR[k] to the price 
signal p[k] cannot be demonstrated. In Fig. 8, the correlation 
coefficients are presented for separate time intervals of the 
time of day for the RTP group. Correlation coefficients of 
separate time intervals cannot be calculated for the TOU tariff 
because fluctuating prices for the same time intervals do not 
exist. Significant correlation can be determined for several 
time intervals of the RTP group. But there are striking 
disagreements for several time intervals which can be a result 
of fundamental differences in the consumer groups or the non-
optimal forecast model.  
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Figure 8.  Correlation coefficient rxy of forecast error e[k] and price signal 

p[k] depending on time of day for Case Study 2 

Figs. 9 and 10 present the average daily curves of the 
forecast error e2[k] and the substituted affected load 
component yR[k]. The difference of the curves shown in Figs. 
9 and 10 arise from the error of the non-optimal forecast 
model and from the different consumption behaviour of the 
consumer groups. The curves of e2[k] and yR[k] have similar 
patterns in each case. However, it is striking that the 
correlation (Table IV and Fig. 8) between the substituted 
affected load component and the price signal has a positive 
sign and thus positive price elasticity is present for RTP group. 
This generally an increasing price leads to an increasing load. 
Besides a market mechanism that leads to high tariffs in peak 
demand times, a possible reason is that RTP tariffs (without 
lead time for the consumers) do not lead to the desired load 
shifting responses with OPP dataset in either case [21]. This 
would also explain the marginal correlations in Table IV. For 
the TOU group, a negative correlation is present so that 
increasing price leads to a decreasing load. A reason for the 
offset between e2[k] and yR[k] in Fig. 10 is a difference in 
energy consumption detected between the FIXED and the 
TOU groups. Even if the assumption of optimal forecast 
cannot be confirmed, it is possible, that the postulated 
proceeding still performs a realistic approximation of the 
affected load component based on the forecast error. However, 
the following aspects should be noted: 

 The uncertainty resulting from the non-optimal 
forecast increases the uncertainty in the results. 

 By transmitting the relationship between price and 
load change to the error signal, the characteristics of 
the uncertainty resulting from the non-optimal 
forecast, is also transmitted to the error signal. 

 For an exact validation of the results, the OPP dataset 
are unsuitable because of systematic differences 
between the consumption behaviour and 
characteristics of the tariff groups. 



 
Figure 9.  Comparing affected load component yR,RTP[k] and residuals/ 

forecast error e2[k] for Case Study 2 (RTP) (average daily curves) 

 
Figure 10.  Comparing affected load component yR,TOU[k] and residuals/ 

forecast error e2[k] for Case Study 2 (TOU)  (average daily curves)     

VI. SUMMARY AND OUTLOOK 

By influencing the demand side by price signals the 
forecast error for load forecasting and thus the uncertainty 
increases. In this paper, investigations with established 
forecast methods (based on real smart meter data from two 
field studies) demonstrate the increasing uncertainty which 
amounts 14,61% up to 39,3% in comparison to consumption 
with a constant tariff. Furthermore, the requirements for load 
forecasting methods regarding price elastic consumption 
behaviour are summarized. In this context, the forecast of the 
unaffected load component of the price elastic consumption is 
discussed as a necessary asset for further planning. By 
confirming the assumption of an optimal forecast, the 
functional relationship between price signal and load change 
can be transmitted to the error signal. In this case, the error 
signal provides an exact approximation to the affected load 
component only perturbed with a random variance. In the 
present paper, a Case Study based on synthetic data 
demonstrates the performance of the postulated proceeding. In 
Case Study 2, real smart meter data are used for the 
investigations. The used dataset is however not completely 
suitable for the carried out investigations. The careful 
selection of the consumer groups in terms of smart meter data 
is required to prevent systematic errors. Further investigations 
are needed to enhance the model quality to confirm the 
assumption of an optimal forecast. 
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