KIT | KIT-Bibliothek | Impressum | Datenschutz

Bootstrap based goodness of fit tests for the generalized Poisson model

Henze, Norbert ORCID iD icon 1; Klar, Bernhard ORCID iD icon 2
1 Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik), Karlsruher Institut für Technologie (KIT)
2 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Due to its versatile natuie, the Generalized Poisson distribution (GPD) of Consul and Jain (1973) has been an object of sustained interest Howeer, apart from the classical x$^2$test ith its inherent problems, there is a paucity of genuine goodness of fit tests foi checking the GPD model on the basis of given data In this paper we study empirical distribution function based tests for the GPD model A key tool is a weak convergence result for an estimated (discrete) empirical process, regarded as a random element in some suitable sequence space. A parametric bootstrap version of the procedure is shown to maintain a desired level of significance very closely even for small sample sizes The test is applied to data sets of frequencies of the duration of atmospheric circulation patterns.


Postprint §
DOI: 10.5445/IR/171495
Veröffentlicht am 16.10.2025
Originalveröffentlichung
DOI: 10.1080/03610929508831592
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik – Institut für Mathematische Stochastik (Inst. f. Math. Stochastik)
Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2007
Sprache Englisch
Identifikator ISSN: 0361-0926, 1532-415X
KITopen-ID: 171495
Erschienen in Communications in statistics / Theory and methods
Verlag Taylor and Francis
Band 24
Heft 7
Seiten 1875-1896
Vorab online veröffentlicht am 27.06.2007
Schlagwörter Generalized Poisson distribution, goodness of fit test, empirical distribution function, weak convergence, parametric boot-strap, atmospheric circulation patterns
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page