
REAPAR User Manual and Reference�

Automatic Parallelization
of Irregular Recursive Programs

Stefan U� H�n�gen
haenssgen�ira�uka�de

Interner Bericht �����
Institut f	r Programmstrukturen und Datenorganisation

Fakult�t f	r Informatik
Universit�t Karlsruhe
Karlsruhe
 Germany

��mar��

Abstract

This report describes the REAPAR system �REcursive programs Automatically PARal�
lelized� for automatic instrumentation� parallelization strategy selection and parallelization
of recursive programs�

It presents the background required for understanding the system and explains how a
user can automatically instrument a program for producing recursion pro�le information�
how to derive a thread�parallel program from recursive ANSI C source code� and how
parallelization strategies are selected automatically� Also� the report explains the options of�
fered by the system and gives troubleshooting advice and workarounds for system limitations�

Supplemental chapters outline the structure of the system and describe the options in
depth� They also detail the algorithms used for instrumenting code to generate recursion
pro�le information� code insertion to allow for thread�parallel execution� and selection
of parallelization strategies for both �ne and coarse grained programs� Additionally�
example of source code before and after transformation� examples for speedups of di�erent
parallelization strategies� and a summary of speedup and strategy selection results are given�

Contents

� Introduction �
	�	 Background� Goal� and Methods Used �

	�� Overview �

� Using the System �
��	 Quick Start �
��� Environment �
��
 Requirements �
��� System Components �
�� Benchmarks �
��� Instrumentation �
��� Parallelization � 		
��� Automatic Strategy Selection and Parallelization � � � � � � � � � � � � � � � � 	

� Advanced Features ��

�	 Options Explained � 	

�	�	 �detail N � 	

�	�� �degree N and �depth N � 	�

�	�
 �noprofile � 	�

�	�� �autonostats � 	�

�	� �out F � 	�

�	�� �record and �rchunk N � 	�

�	�� �time � 	�

�� Understanding and Overcoming Restrictions � � � � � � � � � � � � � � � � � � �	

���	 Correct Source Code �	

���� NOPARALLEL Annotation and Hierarchy selection � � � � � � � � � � � � �	

���
 NEEDRESULTS Annotation ��

���� NOTHREAD Annotation ��

��� NOSTATS Annotation �

���� ANSI C ��

���� No Return Values ��

���� Avoiding Dependencies �

���� Applying the C Preprocessor �

�
 Automatic Parallelization with reapar ��

�
�	 Files generated and �keepfiles option � � � � � � � � � � � � � � � � � ��

�
�� Key procedure for Parallelization ��

�
�
 Program Exit Status ��

�
�� Setting proper simulation parameters � � � � � � � � � � � � � � � � � � ��

	

�
� Di�erences to the PhD thesis results � � � � � � � � � � � � � � � � � � ��

� Recursion Analysis ��
��	 Algorithms Used �
�

��	�	 Procedure Identi�cation �
�
��	�� Call Identi�cation �
	
��	�
 Recursion Identi�cation �
�

��� Example �

� Automatic Instrumentation ��
�	 Details �

�� Algorithm Used �
�
�
 Example �
�

� Automatic Parallelization �	
��	 Adding Threads �
�
��� Algorithm Used �
�
��
 Example �
�
��� Parallelization Strategies ��

����	 Two Examples ��

 Automatic Selection of Parallelization Strategies �

��	 Coarse and �ne grained programs ��
��� Pro�le evaluation ��

����	 Heuristics ��
����� Subtree size estimation algorithms ��
����
 Example and prerequisites ��

��
 Thread simulation �
��
�	 Abstractions and measures �
��
�� Algorithm used � 	
��
�
 Example � 	
��
�� Strategy selection �

��� reapar Script �

	 Summary� REAPAR Results ��
��	 Speedups in comparison to related systems �
��� Quality of automatic strategy selection �
��
 Speedups on more processors �

Bibliography �	

�

Chapter �

Introduction

This chapter describes background information for the REAPAR system and gives an
overview of the report� Users who want to start experimenting right away can directly
skip to chapter � and later return here for more information�

��� Background� Goal� and Methods Used

REAPAR is a system that parallelizes recursive programs automatically�

Writing e�cient parallel programs still is a di�cult task� even after decades of research
into the topic� For data�parallel programs with regular data access patterns� automatic
parallelization has made substantial progress �Wol���� but irregular programs remain a chal�
lenge� An interesting subclass of irregular programs are those whose parallelism is implicit
in multiple independent recursive calls that are started from a loop or statement sequence�
Such procedures� often found in computations on graphs or trees� form the core of a number
of real�life applications� e�g�� Barnes Hut �BH��� galaxy simulation or algorithms used in
computer graphics�

Of course� recursive programs can be brought into iterative form� but this often results
in a less understandable program and� most importantly� will still not allow for e�cient
automatic parallelization if the computational structure is irregular�

The purpose of this technical report and manual is to show that automatic parallelization
is practical for many recursive programs on Shared Memory Multiprocessor �SMP� machines�
As a result� SMP parallelism can e�ciently be used by programmers without knowledge of
parallel programming�

For introducing parallelism� we replace each parallelizable recursive call by a call that
possibly introduces a new thread for the current recursion step�

Additionally� recursion pro�le information is often useful to gain further insights into
how a program works and which parallelization strategy performs best� For obtaining this
information� the system automatically instruments the user program to collect and output
pro�les at runtime�

Together with the automatic selection of an appropriate parallelization strategy based
on the recorded pro�les� these components form a system called REAPAR �for �REcursive
programs Automatically PARallelized� � reaping the fruits of potential parallelism��

��� Overview

The report is structured as follows�

	� Introduction and Overview� What you are reading at this very moment�

�� Using the System� User manual presenting the system�s environment and require�
ments� describing the benchmarks� the system�s components� their features� and giving
examples of their usage�

� Advanced Features� Explains the system�s options and their use� Gives background
information on possible limitations and describes how to overcome them�

�� Recursion Analysis� In�depth description of how programs are analyzed for proce�
dure calls� types� and parameters� and how recursion is detected and handled�

� Automatic Instrumentation� Details the instrumentation� outlines the algorithm
used� and gives examples of code generated�

�� Automatic Parallelization� Describes the details of the parallelization� presents the
algorithm used� and gives examples of code generated by the system and performance
measurements of parallelization strategies�

�� Automatic Selection of Strategies � Explains how parallelization strategies are
automatically selected after a sequential test run and describes the main script�s algo�
rithm�

�� REAPAR Results � Brie�y summarizes the benchmarks� speedups and results of
strategy selection and compares the performance to related systems�

Throughout the report� scienti�c results such as speedups obtained and the e�ects of par�
allelization strategies are only mentioned where appropriate to avoid redundancy� For an
in�depth discussion� please refer to the PhD thesis �H�n��� �only available in German� sorry�
and the forthcoming paper�
For a pure user� reading chapter � is su�cient� maybe supplemented by chapter
 for

trouble shooting hints� The remaining chapters focus on the internal algorithms and details
that allow an advanced user to gain further insights and obtain more performance from the
system�

�

Chapter �

Using the System

This chapter describes how the system is used to instrument recursive programs with pro�le
generating code� how thread�parallel programs are automatically derived by source code
transformation� and how parallelization strategies are automatically chosen�

��� Quick Start

For the impatient� here is what to do in a nutshell � the system just requires a Sun multi�
processor machine running Solaris ���	� the Solaris thread package and a C compiler�

To install the system�

� Unpack the archive reapar�tar�gz�
gunzip �c reapar�tar�gz � tar xvf �

� Compile and install the system components�
make

� Make sure Perl �x is installed in �usr�local�bin�perl or edit the ��program and
reapar scripts in the bin directory accordingly�

� Make sure the bin subdirectory is in your search path or copy the �les contained in it
to a place that is � e�g�� your �HOME�bin directory�

� Place profile�c and profile�h in the same directory as the programs to be instru�
mented resp� parallelized� Symbolic links are OK� too�

To obtain the recursion pro�le from a program�

� Instrument the program�
instrument�program �out instrumented�c myprogram�c

� Compile and link the result�
gcc �g �o instrumented instrumented�c profile�c

� Run the program�
instrumented

� The program will print the recursion pro�le to standard output after any other output
it generates�

To parallelize a program by introducing threads at recursive calls�

� Parallelize the program�
parallelize�program �out parallel�c myprogram�c

� Compile and link the result�
gcc �g �o parallel parallel�c profile�c �lthread �D�REENTRANT

� Run the program�
parallel

� The program will run using the maximum number of processors available� It will output
REAPAR speci�c information gathered during runtime in �BEGIN REAPAR ���� and
�END REAPAR ��� blocks which can easily be �ltered out automatically�

To perform instrumentation parallelization and automatically choose an appro�
priate Parallelization Strategy�

� Submit your source code� the number of processors you want the resulting program to
run on �e�g� ��� and the sample problem to the REAPAR system�
reapar myprogram�c � �sample parameters�

� The system will parallelize your program automatically and generate a parallelized
executable � see section ��� for details�

� Run the resulting parallel program with your input set�
myprogram parallel �input parameters�

Please check http	��wwwipd�ira�uka�de�
haensgen�reapar for updates�

��� Environment

The methods described in this report are implemented as Perl �WC��� programs that
perform the required transformations� Helper scripts are written in csh and performance
critical components such as the strategy selection are written in C� Programs to be parallelized
must be submitted as ANSI C �KR��� source code which is then automatically instrumented
and enhanced with thread calls to exploit parallelism in recursions� The system does not
include a conventional compiler� it just operates on the source code�
The target architecture are Sun shared memory MIMD machines such as Enterprise

Servers or multi�processor SPARCstations running Solaris� The programs generated by the
system can be directly linked with the Solaris thread library �Sun��� to produce code that
runs in parallel�

��� Requirements

A program to be handled by the system has to meet the requirements listed below�
Chapter
 gives background information regarding these restrictions and shows how to

recognize� handle� and overcome them in your programs�

Program � the source program�s requirements are�

� It has to be written in ANSI C� especially regarding the function headers�
� Recursive procedures may not have data dependencies among recursive calls if
they are to be parallelized�

� Recursive procedures to be parallelized have to have the result type void� Any
results have to be passed through reference parameters�

� The system expects syntactically correct source code� i�e�� programs that a C
compiler processes without complaints�

�

Format � the source code has to meet these requirements�

� All if� else� while� for constructs need braces enclosing their respective
blocks� i�e�� if �a f�x else f�y is not allowed while if �a �f�x� else

�f�y� is�
� All relevant program code �all recursive procedures and any code calling them�
has to be contained in one �le�

� The procedure�s header including the parameter list�s opening parenthesis must
be on one line� The parameters themselves may span several lines�

� Strings must not span multiple lines�

Details

� C Preprocessor directives are ignored� e�g�� procedures textually introduced by a
�define are not recognized�

��� System Components

For an idea of how the system�s components work together� please take a look at the REAPAR
main script�s algorithm in �gure ��� on page �
The tar �le of the system distribution contains the following directories and �les �exe�

cutable scripts marked with a ���� directories with a �����

Main directory�

Makefile Builds all C programs in the src� directory and installs
them in bin�� Also builds the executables in utilities��

benchmarks� Directory containing the nine Benchmarks used to construct
and verify the REAPAR system� see below�

bin� Directory with the perl and csh scripts� Executables of the
REAPAR system are installed here� too�

profile�c Recursion pro�le generator code to be linked with instru�
mented programs�

profile�h De�nitions for pro�le generation�
src� Directory in which the C sources of REAPAR components

reside�
utilities� Directory with several useful scripts and programs� e�g� for

creating a graphical representation of a recursion tree or
measuring the performance of all parallelization strategies�

utilities� Directory�

Makefile Builds the programs �called by main Makefile��
do�plots Generates Encapsulated PostScript plots from measurement

series using gnuplot�
komplette�messreihe Performs a complete set of measurements for all paralleliza�

tion strategies�
make�plot�from�

messreihe�awk

Called by do�plots�

tree�graph�output�c Generates graphical representation of recursion tree�
tree�parser�c Performs statistical analysis of recursion tree�

�

src� Directory�

Makefile Builds the programs �called by main Makefile��
evaluate�profile�c Performs the depth strategy selection heuristics on the pro�

�le�
simulation�c Performs thread simulation for given strategy� CPU number

and recursion tree�

bin� directory�

choose�strategy�by�

heuristics�

Chooses a parallelization strategy for coarse grained pro�
grams by thread simulation�

choose�strategy�by�

simulation�

Chooses a strategy for �ne grained programs by pro�le
heuristics�

hierarchies�check�

simulation�

Given a recursion tree� checks if it�s pro�table to deactivate
lower recursion hierarchies�

instrument�program Performs program instrumentation with pro�le generating
code and �optionally� complete recursion tree recording�

parallelize�program Inserts thread generating code for recursive procedures� re�
sulting in parallel execution�

reapar Main script � automatically instruments a program� exam�
ines its execution pro�le� chooses a parallelization strategy
and parallelizes it�

set�strategy�parameters� Activates the given parallelization strategy in a program�s
source code�

��� Benchmarks

The following table gives a brief overview over the benchmarks supplied with the REAPAR
system in the benchmarks� directory� For a closer discussion� please refer to the PhD thesis
�H�n����

Makefile Runs reapar on all the benchmarks with sample problems
in the � 	 minute range�

barnes�c Galaxy simulation� based on the original source code by J�
Barnes �BH���

bitonic�c Bitonic sorting� based on Olden code �Car���
eigenvalue�c Computation of Eigenvalues of symmetrical tridiagonal ma�

trices� based on code by S� Chakrabarti et al� �CRY���
fractal�c Fractal computation by recursive heuristics �own code��
heat�c Heat di�usion simulation� based on Cilk code �Sup���
knapsack�c Solution to the ��	 knapsack problem� based on Cilk code
magic�c Computes number of solutions of magic squares� based on

Cilk code
power�c Power pricing simulation in tree network� based on Olden

code and S� Lumetta�s Split�C work �LML���
queens�c Computes all solution to the n Queens problem� based on

Cilk code

�

��� Instrumentation

The following two sections� Instrumentation and Parallelization� are important only if you
want to perform these operations manually� By default� the main script reapar described in
section ��� handles all these steps automatically� but it is a prototype with some limitations�
so a knowledge of what is going on under the hood can be helpful�
The program is instrumented by calling instrument�program and supplying the name

of the source code �le to be instrumented� If the environment variable IP�OUT is set or
the �out option is given� the resulting program is written to that �le� else it appears on
standard output� The following parameters are recognized � unknown options cause the
Instrumentation to print the available options and exit�

usage� instrument�program �options� filename

Instruments ANSI C source to collect recursion information profiles�

Options�

�detail N Output detail level� 	
none� �
informative default��

�
verbose� �
very detailed� �
chatterbox

�degree N Set max� profile branching degree to N default
 ���

�depth N Set max� profile recursion depth to N default
 �	�

�noisy Same as �detail �

�autonostats Automatically annotate NOPARALLEL procedures NOSTATS

�noprofile Only generate additional parameters but no profile

�out F Write instrumented program to file F default
 stdout�

�quiet Same as �detail 	

�rchunk N Sets chunk size for tree recording default
 �					�

�record Record the complete recursion tree for later analysis

�time Get timings for each recursion subtree implies �record�

�verbose Same as �detail �

Branching degree and depth describe the maximum possible number of recursive branches
in a single invocation of a recursive procedure and the maximum recursion depth� Default
values are 	� and ��� respectively�
By specifying the �noprofile option� you can disable the pro�le information generation�

leaving just the addition of depth and branching degree parameters� This is useful mainly
in combination with parallelization as described later�
Using the �record option adds code that records the complete recursion tree of all

recursive procedures over all iterations� It can only be used for sequential runs and adds
around �� to the runtime of the program� more for very �ne grained programs� �time

additionally measures the CPU time each subtree takes to execute in milliseconds� The
�rchunk option lets you increase the allocation chunk size for the tree recording in case the
default value is not su�cient�
The �autonostats option automatically inserts a NOSTATS annotation �see below� for

each procedure that isn�t parallelized� thus collecting pro�le information only for parallel
procedures�
The resulting output �le has to be linked with the pro�ling code� e�g��

instrument�program �out instrumented�c program�c

gcc �g �o instrumented instrumented�c profile�c

�

Remember to add any include�header �les and libraries your program requires to the above
commands�

Running the instrumented program now results in a runtime pro�le output when the
program exits� In the pro�le� the number of times every branching degree was used at each
recursion depth is given for each procedure� Additional information about user and system
time consumed as well as the procedures for which information was collected is given� too�
All information blocks are in �BEGIN REAPAR ��� END REAPAR ���� brackets and can thus
be �ltered out automagically� either to extract REAPAR information or to remove it in order
to obtain the original program output� A sample pro�le output might look like this�

BEGIN REAPAR RSCINFO

Wallclock time � ����� seconds

User time � ����� seconds

System time � ���� seconds

END REAPAR RSCINFO

BEGIN REAPAR PROCINFO

Procedure 	 �
 LoopBody�h at line �� calls �LoopBody�h�

END REAPAR PROCINFO

BEGIN REAPAR PROFILES

Profile�

��� � LoopBody�h

	 �� � � � � sum � �

	 �� � � � � sum � �

	 �� � � � � sum � �

	 �� � � � � sum � �

	 �� � � �� � sum � ��

	 � � � �� � sum � ��

	 �� � � �� � sum � ��

	 �� � � ��� � sum � ���

	 �� � � �� � sum � ��

	 �� ��� � ��� � sum � ��

	 ��� ��� � � � sum � ���

	 ��� � � � � sum � �

	sum� ��� � ��� � SUM � ����

�����

END REAPAR PROFILES

The pro�le entry at row r column c shows the number of times a recursion of degree c �i�e�� c
branches� occured at recursion depth r� Both c and r start at �� In our example� the possible
degrees range from � to
 and depths from � to 		� For example� the �	��� in line ��� means
that at recursion depth �� the branching degree � �i�e�� a leaf with no further branches at
all� occurred 	�� times� Vertical and horizontal sums allow for an easier overview�

Thus� the above pro�le reads as follows� The recursive procedure LoopBody h at line
�� has been invoked once from the outside� since the number of entries at recursion depth
� is one� It just branches twice or never �degree � or �� and reaches recursion depth 	�� The
number of leafs� i�e�� branching degree �� is ���� Leafs appear just at the last two recursion
levels� and the number of nodes �branching degree �� at recursion depth d is �d� indicating
a perfect binary tree for recursion�

The use of the �record option additionally outputs the recursion trees of all recursive
procedures in brief ASCII notation� Output might look like this�

	�

BEGIN REAPAR TREES

Procedure number � � LoopBody�h

Recursion Tree for �LoopBody�h�� Number �� iteration ��

	�	�	�	�	�	�	�	�	�	�	�
	�

	�	�
	�

	�	�	�
	�

	�

	�	�	�	�
	�

���

���

END REAPAR TREES

Here� the recursion tree for the procedure LoopBody�h is shown � ��� represents a step down
the recursion tree and ��� exits the current recursion� The procedure�s internal number is 	
and it only calls itself recursively since there are no other numbers in the tree� There is just
one iteration �call of the procedure from the non�recursive outside��

Details and tools to analyze this output are described in more depth in section
�	��� The
use of subtree execution time measurement with the �time option is explained in section

�	���

��	 Parallelization

parallelize�program is used to derive a thread�parallel program from a recursive C source�
If the environment variable PP�OUT is set or the �out option is given� the resulting program
is written to that �le� else it appears on standard output� The following parameters are
recognized � unknown options cause the Parallelization to print the available options and
exit�

usage� parallelize�program �options� filename

Parallelizes recursive ANSI C source with thread calls�

Options�

�detail N Output detail level� 	
none� �
informative default��

�
verbose� �
very detailed� �
chatterbox

�degree N Set max� profile branching degree to N default
 ���

�depth N Set max� profile recursion depth to N default
 �	�

�noisy Same as �detail �

�autonostats Automatically annotate NOPARALLEL procedures NOSTATS

�noprofile Only generate additional parameters but no profile

�out F Write parallel program to file F default
 stdout�

�quiet Same as �detail 	

�verbose Same as �detail �

By specifying the �noprofile option� you can disable the pro�le information generation�
leaving just the addition of depth and branching degree parameters � this option is directly
passed to the instrumentation phase� Use this option if the pro�le itself is of no concern and
performance is critical �pro�le collection imposes a ��	� to ���� runtime penalty depending
on the program�s granularity��

The �autonostats option automatically inserts a NOSTATS annotation �see below� for
each procedure that isn�t parallelized� thus collecting pro�le information only for parallel
procedures�

		

In addition to these options� the following annotations can be inserted into the target
program�s source code to in�uence the system�s decisions�

�� NOPARALLEL ��

Annotates that the recursive procedure in which the comment appears should not be
parallelized at all� e�g�� because its recursive branches are not independent from each
other� or because the work done in each branch is too �ne�grained to justify paral�
lelization� By default� all recursive procedures with return type void are parallelized�

�� NEEDRESULTS ��

By default� all threads generated in a procedure are joined just before returning from
the procedure� If data computed by the recursive calls is needed earlier in the proce�
dure� this annotation has to be inserted to mark the place where results are needed�
forcing a wait for all the procedure�s child threads�

�� NOTHREAD ��

This annotation prevents the following procedure call from being parallelized with
threads� Use it if there is a static number of recursive calls in a procedure and you
want to prohibit unnecessary thread creation for the last such call�

�� NOSTATS ��

If a recursive procedure is not interesting or would produce an enormous recursion
tree� you can disable pro�le and recursion tree generation for it using this annotation�
When recording trees� a Nostats�annotated procedure must not call another recursive
procedure that still records statistics � the system recognizes this condition and exits
with an error message if it is not met�

These annotations are explained in more depth in sections
���� through
����

The resulting output �le is automatically instrumented after parallelization to supply the
necessary depth�branch variables� It then has to be linked with the pro�ling code� e�g��

parallelize�program �out parallel�c program�c

gcc �g �o parallel parallel�c profile�c �lthread �D�REENTRANT

Remember to add any include�header �les and libraries your program requires to the above
commands�

When the parallelized program is run� it generates threads for recursive calls according
to some parallelization strategy �i�e�� a decision when to perform a recursive call sequentially
and when to use a thread�� The strategies are explained in chapter ����

By default� the program uses the maximum number of processors available on the ma�
chine� This can be adjusted by setting the environment variable T�CPUNUM to some other
value between 	 and the processor number��

The following sample output shows how the processor number� the selected strategy� the
parallelized procedure�s� and the number of threads generated are printed � in addition to
any other normal program output not shown here�

�This directly a�ects the Solaris concurrency level� i�e�� the number of LWPs used�

	�

� parallel�eigenvalue u ���

BEGIN REAPAR PARINFO

� processors online

strategy general � ACTIVE�N 	N��

Parallel procedure 	 �
 LoopBody�h at line ��

END REAPAR PARINFO

BEGIN REAPAR THREADINFO

total number of threads created � ��

END REAPAR THREADINFO

�����

��
 Automatic Strategy Selection and Parallelization

One of the goals of the REAPAR project was to deliver a turnkey system in which the user
just submits C source code and sample input data to the system and gets a parallelized
program in return�
The reapar script does just that� Given a C program� it instruments the source� compiles

it� runs it on the given input data� analyzes the execution pro�le� chooses a parallelization
strategy and parallelizes the program accordingly� reapar takes the following parameters
and environment variables�

usage� reapar ��detail �n�� ��keepfiles� �source�c� �cpus� �parameters�

Instruments� executes and parallelizes the given ANSI C program�

source�c File containing all the program�s C source

cpus Number of CPUs to use for parallelization

parameters Any parameters the program takes for the sample run

rest of the command line�

n Level of detail 	
none� �
informative default��

�
verbose� �
very detailed�

If the �keepfiles switch is used� temporary files are not

deleted after use� e�g� for examining the profile manually later�

The contents of the environment variable R�COPTIONS are used as

additional arguments to the compiler call for generating the

executable e�g� �othercode�c �lm���

Likewise� the contents of R�SOPTIONS are passed to the simulation�

e�g� for telling it a Nothread annotation is active ��b A�� etc��

Internally� this script calls both Instrumentation and Parallelization as well as the C compiler
and the Strategy Selection scripts mentioned before� It can be con�gured to match your
setup by editing the �rst few lines where e�g� the compiler call and the granularity factor
are de�ned�
Parallelizing a program can be as easy as entering

reapar benchmarks�eigenvalue�c � �u ��		�

	

This parallelizes the Eigenvalue benchmark for the problem �	�� uniformly distributed
eigenvalues�� resulting in the following informational output�

 REAPAR� Instrumenting �benchmarks�eigenvalue�c�

Writing output to file �benchmarks�eigenvalue�instrumented�c� ���

 REAPAR� Compiling �benchmarks�eigenvalue�instrumented�c�

 REAPAR� Executing �benchmarks�eigenvalue�instrumented u ��		�

Overall execution time ����� seconds�

���� leafs in first recursive procedure

�� Coarse grained program� more than ��		 ms�leaf ������

 REAPAR� Performing coarse grained strategy selection

 REAPAR� Instrumenting �benchmarks�eigenvalue�c� with tree recording

Writing output to file �benchmarks�eigenvalue�recorded�c� ���

 REAPAR� Compiling �benchmarks�eigenvalue�recorded�c�

 REAPAR� Executing �benchmarks�eigenvalue�recorded u ��		�

Performing simulations for � CPUs with recording

�tmp�reapar�profile��	��� and options ��

�����

Overall ranking�

Rank �� Depth � ��	� steps�

Rank �� Active � ���� steps�

Rank �� Keep � ���� steps�

 REAPAR� Parallelizing �benchmarks�eigenvalue�c�

Writing output to file �benchmarks�eigenvalue�parallelized�c� ���

 REAPAR� Setting parallelization strategy �DEPTH ��

 REAPAR� Compiling �benchmarks�eigenvalue�parallelized�c�

 REAPAR� Your parallel program is ready for execution�

�rwxr�xr�x � haensgen ����� Mar 	� ����� benchmarks�eigenvalue�parallel

Since the reapar script is just a proof of concept� there are some limitations which are
explained in more depth in section
�
� For more information on how the script works and
which other parts of the REAPAR system are involved� please refer to section ����

	�

Chapter �

Advanced Features

This chapter explores the system�s features in more depth and gives advice on how to rec�
ognize and handle its limitations�

��� Options Explained

The following sections describe the use of the instrumentation�s and parallelization�s options
in more detail and give examples of how and when to apply them� The main reapar script
is described in a separate section later�

����� �detail N

Sets the output detail level� The e�ects of the di�erent levels are�

�detail � or quiet� Does not produce any output except for error messages and �nal
program output con�rmation�

�detail � �default�� Also gives information on the system�s progress and displays the
procedures� calls and recursions detected�

�detail � or verbose� Additionally shows the current output detail level and parameter
settings� prints the source code lines as procedure and call identi�cation progresses
as well as procedures� declarations� variables� calls and annotations found� and thread
resp� pro�le addition phases�

�detail � or noisy� Additionally outputs pattern matches when detecting procedures and
calls� more detailed progress information� internal procedure use �skipping to delimiters
etc��� and even more thread�pro�le addition information�

There is also a detail level �� which outputs a mass of internal information such as the source
code lines being read or all code insertions performed� and is probably not of much use for
anyone who doesn�t want to dive into the system�s source code�
Program parallelization calls the Instrumentation phase internally� but lowers the detail

level by one� i�e�� calling Parallelization with detail level � results in Instrumentation being
called at level 	� This avoids verbose output that is not that interesting for parallelization
itself�
All detail levels output the transformed program�s source code if neither the �out option

nor the respective environment variables are set �see section
�	���

	

����� �degree N and �depth N

By default� programs are assumed to have a maximum branching degree of 	�� i�e�� a recursive
procedure calls performs no more than 	� recursive calls� and a maximum depth of ��� i�e��
there are no more than �� levels of recursion�

If the number of branches or the recursion depth are known in advance� e�g�� the program
just branches twice or never� these options can be used to reduce the size of the pro�le data
structure� However� since each pro�le entry just takes a long plus some bytes of information
for each depth level� the pro�le�s memory requirements are not very high� anyway�

Increasing the depth or degree parameters is necessary if the branching degree or the
depth are known to be higher than the default settings� An indication of this case may
be core dumps � because pro�le generation is very time critical� no boundary checks are
performed� leading to problems if subscripts get out of range during program execution�

Recursion tree recording as described in section
�	�� is done completely dynamically
since it is inherently slower anyway� thus it is not a�ected by these parameters�

����� �noprofile

Using this option disables pro�le information gathering� i�e�� no array of branch counts and
depths is generated at all� However� Instrumentation and Parallelization still add a depth
parameter to each recursive procedure and introduce a branch counter� These variables
are necessary for parallelization to work �keeping track of threads generated� joining them�
recognizing the recursion depth for parallelization strategies that use it� etc���

You may gain some speed by disabling pro�le generation� depending on the program�s
granularity� Additionally� accessing the pro�le information in memory may result in subop�
timal cache usage� If you have no use for the pro�le and want to obtain maximum speed�
this option can save you ��	� to ���� of the sequential runtime� Furthermore� compiling
and linking with the pro�le code �profile�c and profile�h� is no longer necessary�

����� �autonostats

If this option is used� a NOSTATS annotation is automatically inserted before any procedure
that isn�t parallelized� thus collecting pro�le information only for parallel procedures� This
can save much space and time � e�g�� the Barnes Hut benchmark with recursion tree record�
ing runs ��� times slower than the uninstrumented version and produces 	��MB of output
if all recursive procedures are instrumented� However� with the autonostats option and par�
allelization of just the upper recursion hierarchy� output shrinks to manageable MB and
execution time only increases by ��!

����� �out F

This option just sets the name of the output �le for the program generated� Parallelization
additionally uses a temporary �le called tmp�program name�PID in the current directory
on which it then performs the Instrumentation� This �le is deleted after successful paral�
lelization�

Using this option overrides the environment variables IP�OUT resp� PP�OUT�

	�

����� �record and �rchunk N

Often� even the programmer has no intuition how the tree of a procedure�s recursive calls
will look like� or the intuition is wrong� To gain better insights in a program�s behavior�
program Instrumentation o�ers this option to record all recursion trees at runtime� Even
more important for REAPAR� tree recordings are the basis of thread simulation as described
in section ��
� Recording only works on sequential machines since the tree construction would
result in write con�icts when performed concurrently� All recorded recursion trees are output
at the end of the program for all iterations over the recursive procedures� e�g�� for a galaxy
simulation over �� time steps that is internally recursive� �� recursion trees are printed�

The resulting output can be converted to several graphic formats using the
tree�graph�output program which takes the following options�

tree�graph�output � reads profile�generated tree from stdin�

writes tree graphics as commands to stdout�

Usage� tree�graph�output �options� � treefile � comfile

Options�

�comdraw Output in comdraw format also ��c��

�pstricks Output in pstricks format also ��p�� default�

�x n Sets x spacing of nodes to n default
�	�

�y n Sets y spacing of nodes to n default
���

�s n Sets node diameter to n default
 ��

treefile ASCII representation of recursion tree� e�g�

����� for simple binary tree� may be annotated

with procedure numbers and subtree timings

Comdraw output can be fed to the standard input of the comdraw tool freely available from
http	��www�vectaport�com�ivtools�� and PsTricks output can directly be used in the
TEXpackage of that name� The outputs shown below have been rotated ��

o to place the
tree�s root at the top instead of its original left hand side placement� For large trees which
only have one type of node� the node size can also be set to zero for a less cluttered output�

To give an impression what kind of results can be obtained� here are three examples�

	� Single recursive procedure� If every recursive procedure just calls itself recursively�
there will be a recursion tree for each iteration over each procedure� representing exactly
this procedure�s recursions� An example for this structure where foo� calls foo� calls
foo�� � � is�

void foo	int i
 �

if 	i����
 �

foo	i��
�

foo	i��
�

return�

�

if 	i���
 �

foo	i���
�

�

�

For this program� the call foo����� results in the instrumentation output

	�

BEGIN REAPAR TREES

Procedure number � � foo

Recursion Tree for �foo�� Number �� iteration ��

	�	�	�	�	�	�	�

	�	�	�

	�	�	�	�

	�	�	�	�	�

	�	�	�

	�	�	�	�	�	�

	�	�	�

	�	�	�	�

	�	�

END REAPAR TREES

There are no other calls to foo� from the outside� so this is the only iteration� Ana�
lyzing this tree produces the following graphical tree representation� which makes the
program�s recursion structure quite clear�

�� Hierarchically recursive procedures� Often� there are several levels of recursion�
i�e�� a procedure a� calls itself until some condition occurs and then passes the sub�
problem to some procedure b� that works on it recursively� too� There are no calls
back to a�� An example for this structure is the Barnes Hut galaxy simulation� where
a top�level recursion traverses the tree of bodies and for each single body there is a
recursive call that computes the forces on that body�

The following code shows a similar structure�

a	int x�� int x�
 � b	int x
 �

if 	x��x���
 � if 	x��

b	x�
� b	x���

return� �

�

a	x�� 	x��x�
��
�

a		x��x���
��� x�
�

�

Program Instrumentation handles calls of recursive procedures by other recursive pro�
cedures in the intuitive way � the �rst call from the non�recursive outside starts the
recursion tree� After that� each recursive call contributes to the common recursion tree�
no matter in which procedure involved in the recursion it occurs� The same semantics
hold for more than two levels of recursion� too� Thus� the resulting recursion tree for
the call a����� in our example looks like this�

In this case� two shades of gray are automatically used in the graphical output to tell
the two di�erent procedures apart � procedure a� has white nodes� b� has gray

	�

ones�

� Mutually recursive procedures� This is the most challenging case to visualize
without Instrumentation�s help � a procedure a� calling b� or c� calling a�

again� possibly over more intermediate procedures�

a	int i
 � b	int i
 � c	int i
 �

if 	i��
 � if 	i��
 � if 	i��
 �

b	i��
� c	i���
� a	i��
�

� else � � a	i����
�

c	i��
� � �

� �

�

As in the case of hierarchical levels of recursion� the recursion tree of the �rst procedure
called from the outside of this mutual recursion is passed to all other procedures called�
resulting in a recursion tree that covers the mutual recursion as a whole� The graphical
tree representation resulting from the analysis of a����� is�

Again� di�erent shades of gray stand for the di�erent procedures�

The recursion tree is built up in memory dynamically during runtime� Initially� room for
	�� ��� nodes�leafs is allocated by default� and after each iteration over a recursive procedure�
further nodes�leafs are allocated if necessary� Inside an iteration� no boundary checking
is performed for reasons of speed� Therefore� in programs that generate trees with more
than 	�� ��� nodes in a single iteration� you have to increase this number by using the
instrumentation�s �rchunk N option� Otherwise� you can expect segmentation violation
errors�
As mentioned above� the tree recording takes an additional 	� to 	��� runtime for the

REAPAR benchmarks� the �ner grained the program the more� Fortunately� �ne grained
programs only bene�t from the Depth parallelization strategy anyway which can be selected
automatically just by examining the pro�le� not the recursion tree�

����� �time

The exact recursion tree obtained by �record already reveals a wealth of information� How�
ever� for manual �ne tuning it can be important to know how much time exactly is spent in
each subtree� e�g�� if the complexity of recursive procedures varies greatly with their input
or recursion depth� For such procedures� the recursion tree alone does not give enough in�
formation on how well a later parallel execution could be balanced among processors � if
one single procedure invocation requires as much computation as a hundred invocations of
another recursive procedure� timings must be taken into account�

	�

The REAPAR system�s instrumentation component o�ers the option �time for such
cases� Using this option implies �record� When timing is activated� the CPU time used by
each procedure invocation is measured using the clock� system call� CPU time at entering
the procedure is subtracted from the time at leaving it� giving a measure of the time spent
inside its subtree� The instrumentation output re�ects this� as the following example shows�

	�����	�����	�����	����	����	����	����	���

	����	����	���	���

	���	���

	����	����	����	���	���	���

	���	���

	���	���	���

CPU time is given milliseconds� appended with a �	� to the procedure numbers in the
output� Subsequent analysis using the tree�parser program yields�

Tree indented � �proc� time nodes�leafs�

A���	ms
��� C�
	ms
��� A�
		ms �� B��	ms �� C��	ms �� A�
	ms ��
 B�
	ms
�
 C� 	ms 	�

A�
	ms ��� C�
	ms �� A� 	ms
�
 B� 	ms 	�

A� 	ms
�
 C� 	ms 	�

A� �	ms �� C�	ms �� A�
	ms ��� C� 	ms �� A� 	ms
�
 B� 	ms 	�

A� 	ms
�
 C� 	ms 	�

A� 	ms ��
 B� 	ms
�
 C� 	ms 	�

Tree graphically �procs as chars��

A��C��A��B��C��A��B��C

� A��C��A��B

� A��C

A��C��A��C��A��B

� A��C

A��B��C

Under Solaris� the e�ective timer resolution is 	�ms� meaning that small computations can�
not be measured exactly� Also� the CPU timer over�ows at around
� minutes� so only
computations that take less time can be measured at all�
Since no direct bene�ts or better strategy selection can be derived from this information�

timings are not used by the REAPAR system itself� Their purpose is to provide the interested
user with additional information�
The program tree�parser supports the following options�

tree�parser � parse recorded recursion tree from stdin�

optionally with recorded procedure numbers and timings

Program options�

�d output detailed information

�g output graphical tree

�gv ditto verbose procedure name tags�

�s output statistics

�sv ditto verbose sizes of subtrees�

�t output tree

�tv ditto verbose timings etc�

It performs a detailed statistics analysis of the given recursion tree� including the averages
and deviations of �sub�trees and leafs� and optionally outputs the tree as ASCII graphics
as shown above� Additionally� it recommends depths for the Depth parallelization strategy�
but the Simulation described in chapter ��
 is a more recent development and as such better
suited for this job�

��

��� Understanding and Overcoming Restrictions

This section explains the reasons for the system�s limitation mentioned in section ��
 and
shows ways of avoiding them�

����� Correct Source Code

The system handles only syntactically correct input source code� i�e�� code that a C compiler
translates without complaints� There is no way around this requirement � the system
cannot be expected to produce any sensible results from incorrect source code�

����� NOPARALLEL Annotation and Hierarchy selection

By default� all recursive procedures in the program are parallelized� Sometimes� this is not
desired� e�g�� if

� a procedure contains data dependencies �see also
����� such as writing to a global
variable� or a procedure constructs a recursive data structure and relies on some order
of execution� or

� a procedure is potentially parallel but the work performed is so �ne�grained that par�
allelization and thread generation overhead outweigh the bene�ts�

In any of these cases� just insert the annotation �� NOPARALLEL �� inside the procedure and
the system will not parallelize it" adding the annotation just before the procedure works�
too�
The �ne grained case can be identi�ed by taking a look at the program�s pro�le and

estimating the execution time of one recursion leaf � if the total program�s sequential
runtime is �ve seconds and the recursion tree has � million leafs� parallel slowdown instead
of speedup is very likely�
To help the user select procedures that can be annotated Noparallel� the shell script

hierarchies�check�simulation simulates a given recursion tree using the Always paral�
lelization strategy� If the script detects enough parallelism in the upper layers of a recursion
hierarchy� it recommends using the Noparallel annotation on the lower recursion layers� as
the following example shows�

Analyzing recursion tree �recorded�barnes������� on �� CPUs

for potential non�parallelization of recursion hierarchies

Recursion tree starts with procedure computesubtree 	B

computesubtree calls walksub 	C

Simulating with all � procedures parallel 	BC

�� Simulation predicts enough parallelism if all procedures are parallelized

	largest sequential chunk� ����� of all nodes and ����� of all leafs

Simulating with first procedure parallel 	B

�� Simulation predicts enough parallelism if the procedure

�walksub� is executed sequentially

	largest sequential chunk� ����� of all nodes and ���� of all leafs

�� Recommend �� NOPARALLEL �� annotation for �walksub�

�	

����� NEEDRESULTS Annotation

Some recursive programs perform calculations that are just used locally inside each proce�
dure�s invocation and explicitly passed back to the caller later� or that a�ect independent
parts of some global data structure� For these� the system�s default behavior �joining any
threads generated within a procedure call just before returning from the procedure� is per�
fect�

However� other programs use some recursive calculations and then use the results of
those before returning� These programs can be parallelized successfully by performing the
recursive calls concurrently� but for the program to run correctly� the user has to make sure
that all threads are joined and thus their results are available before that data is used�

To do so� insert the �� NEEDRESULTS �� annotation at the source code line just before the
results of previous recursive calls are needed � you can think of Needresults as a statement
that forces all data from former recursive calls to be present� Using this annotation as late
as possible in the code improves performance since it allows the recursive computations to
overlap with the remaining code� See section
���� for further examples�

You can easily notice when a program needs this annotation� The results of the parallel
program are incorrect or the program even crashes� since data with wrong values or even
uninitialized data is used which would have been set to a valid value in a sequential run� but
which is not valid in parallel since the recursive call writing the data has not �nished yet
and is still running in parallel�

����� NOTHREAD Annotation

By default� each recursive call is parallelized using threads� which is appropriate for programs
with a dynamic branching degree� However� for procedures that branch statically and do not
perform much computation between the recursive calls and the place where their results are
needed� it leaves room for optimization� The last recursive call can be performed sequentially�
i�e�� instead of generating a new thread� the last call can be executed by the thread that
originally invoked the procedure itself�

To prevent unnecessary thread creation for a recursive call in such cases� insert the
�� NOTHREAD �� annotation before the call or in the same line as the call� The following
example illustrates this�

foo	int a
 �

���

foo	x
�

foo	y
�

foo	z
� �� NOTHREAD ��

���

�

Here� the procedure foo� branches statically three times� i�e�� the branches occur uncondi�
tionally and without any loop� Therefore� the thread that executes the current invocation
of foo� can perform the foo�z call� too� instead of spawning a new thread for it and then
sitting around waiting for the spawned threads to complete�

For irregular programs using the Active N or Keep N parallelization strategy �see section
����� this can lead to performance improvements of ����� and make the choice of a good
parallelization strategy easier�

��

To help the user in selecting procedures that might bene�t from this annotation� the
program evaluate�profile�c �besides its main function� namely to choose a Depth paral�
lelization strategy� makes the corresponding recommendation if a procedure always branches
n times or never� as the following output shows �marked ������

��� � compute�area

	 �� � � � � � � � sum � �

	 �� � � � � � � � sum � �

	 �� � � � � �� � � sum � ��

	 �� � � � � � � � sum � ��

	 �� � � � � ��� � � sum � ���

	 � ��� � � � �� � � sum � ���

	 �� ��� � � � ���� � � sum � ����

	 �� ���� � � � ���� � � sum � ���

	 �� ���� � � � ����� � � sum � ����

	 �� ����� � � � � � � sum � �����

	 ��� � � � � � � � sum � �

	sum� ��� � � � ����� � � SUM � �����

� ��evaluate�profile �a � profile�fractal�����������

profiled procedure �compute�area� at source line ���

maximum degree � �� maximum depth � �

profile covers � iterations

recommend using the NOTHREAD annotation for branching degree � ���

since degree is always � or �� ���

performing Average Subtree analysis for CPUs

analyzing depth ��

all in all� the average subtree has ������� nodes�

that�s ����� of the tree�s nodes

�� not recommended for CPUs� average subtree not smaller than �� 	������

analyzing depth ��

all in all� the average subtree has ����� nodes�

that�s ���� of the tree�s nodes

�� RECOMMENDED� depth � for CPUs� average subtree is only ����

����� NOSTATS Annotation

For procedures whose pro�le does not need to be collected� the user can insert this annotation
before or inside the procedure� The e�ect is that neither pro�le tables nor recursion trees
are recorded for the procedure� Only the recursion depth counter is added and passed to
recursive procedures called in the annotated procedure� This is useful if

� there are many recursive procedures that are of no interest to the user and clutter the
view�

� the user only wants to see the pro�le of parallel procedures and chooses to disable all
other pro�les� or

� the lower hierarchies of a recursion tree produce so many nodes and leafs that the
recording becomes unmanageable in size and takes a huge amount of computation
time�

�

As mentioned� procedures annotated Nostats must not call other recursive procedures which
still collect statistics if tree recording is activated� Otherwise� the data necessary for the
recording could not be supplied by the Nostats procedure� The instrumentation recognizes
this condition and aborts with a warning� Normal pro�les without trees are not a�ected�
the Nostats procedure just does not appear in the pro�les�

����� ANSI C

As stated in the requirements section� the system needs ANSI C source code� The reason is
that in ANSI C� procedure headers and declarations are much easier to process automatically
than in K#R C� Apart from procedure headers� no ANSI C features are needed� so you can
prepare a K#R C program for parallelization by just ANSI�fying its procedure declarations
and headers�

����� No Return Values

Procedures to be parallelized must not have a return value � the system will ignore non�
void procedures and give a warning message� The reason for this limitation is that it is
di�cult to automatically derive where results are needed after the result has been computed
in a separate thread� For example� take a look at this code fragment�

a � foo	b
 � bar	c
 � foo	d
�

�the system would have to introduce temporary variables� start the calls as threads� and join
the threads at once to compute a� or even this piece of code�

for 	i��� i�max� i��

if 	cond	a�i�

z � z � foo	a�i�

�the system would have to introduce a temporary array of results where depending on the
condition function not all members are de�ned at all��
Therefore� the following two tasks are upon you�

Eliminating Return Values

For all recursive procedures that are to be parallelized� turn the procedure�s return value
into a reference parameter� e�g��

double myfunction	double a
 �

���

return b�

���

�

���

x � myfunction	y

�

void myfunction	double �result�

double a
 �

���

�result � b�

���

�

���

myfunction	 x� y

Adding Temporary Variables

Supply your own temporary variables for results of recursive calls� Here� you can also use
the �� NEEDRESULTS �� annotation described above to make sure the results are available
when you want to refer to them�

��

double foo	double a
 �

���

for 	i��� i�max� i��
 �

if 	cond	a�i�

 �

z � z � foo	a�i�
�

�

�

���

�

�

void foo	double �result� double a
 �

double r�MAXNUM��

���

for 	i��� i�max� i��
 �

if 	cond	a�i�

 �

foo	 	r�i�
� a�i�

� else �

r�i� � FLAG�

�

�

���

�� NEEDRESULTS ��

for 	i��� i�max� i��

if 	r�i� !� FLAG
 �

z � z � r�i��

�

�

����	 Avoiding Dependencies

As stated above� the system can only make use of parallelism in recursive procedures that
do not have data dependencies between them� Recursive invocations of a procedure must
neither use data generated by parent calls �except when the data used is generated in the
parent call before any recursive calls were made�� nor values computed by calls at the same
level� nor values computed by child calls further down the recursion tree �except when the
recursive calls have been joined explicitly before that� see
���
�� Also� concurrent use of
global data is only allowed when disjunct parts of the data are accessed� e�g�� building non�
overlapping parts of a picture in parallel recursive calls is OK� but writing to one global
variable in each recursion step is forbidden�
If these dependencies occur� you have to use the Noparallel annotation �see
����� to

avoid concurrent writing of data with indeterminable results or usage of uninitialized data�
Typical symptoms of data dependencies are wrong or irreproducible results generated by the
parallel program or even crashes�
In many cases� the problem can be solved by

� Using local substitutes for global variables � e�g�� when a global variable is used as
a counter� each recursive call can use its own local counter and return its value to be
summed up in the calling procedure�

� Introduce new temporary variables that can be written concurrently and are used later
when all results are available �see section
������

����
 Applying the C Preprocessor

The REAPAR system does neither recognize nor handle C Preprocessor directives �e�g��
�define�� It just ignores them� Normally� this is no problem and most source code can be
used even if it contains directives�
However� it may be necessary to handle directives if

� Code is �included that is relevant for the system� e�g�� recursive procedure code or
forward declarations of procedures that would have to be adapted by the system�

�

� Conditional compilation ��if� �ifdef etc�� misleads the system� e�g�� procedures that
appear to be recursive but are not given the current preprocessor settings� code that
has been commented out using �if� and so on�

A special form of the second case is incorrect statement skipping � to add code before
a statement� the system skips to the beginning of a statement and inserts code there� Since
preprocessor directives are not recognized� they are skipped as part of the statement� leading
to potential problems� Example�

�if something

statement A� �� �Recognized� as beginning of statement B ��

�endif

statement B� �� Insert ��� at beginning of line to fix it ��

When looking for the start of statement B here� the system skips backward until the
��� at the end of statement A� which leads to errors depending on the outcome of the �if
directive� As quick �x� just add an empty ��� before statement B�

The solution to the more general problems mentioned above is to either resolve the
preprocessor directives manually �recommended for small changes� or run your source code
through the C preprocessor and apply Instrumentation and Parallelization to the resulting
source code�

�usr�lib�cpp �C myprogram�c myprogram�cpp�c
instrument�program myprogram�cpp�c or
parallelize�program myprogram�cpp�c

Depending on your con�guration� you may have to call another preprocessor or add further
de�nitions required for your program� resulting in command lines such as

�export�opt�GNU�lib�gcc�lib�sparc�sun�solaris������������cpp �D��sparc��

�C barnes�c barnes�cpp�c

The REAPAR system handles the resulting output without di�culties� but it may run
more slowly since the preprocessed program explicitly lists all procedures and library calls�
dragging down procedure and call recognition� Therefore� for directives that are easily
resolved manually �deactivating sections code� including a �le� etc�� you may wish to avoid
using the preprocessor�

��� Automatic Parallelization with reapar

The reapar script automatically parallelizes your source code for the given sample problem�
Since it is a prototype implementation� there are some technical restrictions you should
be aware of which are listed in the next sections� All REAPAR sample programs in the
benchmarks directory already take these into account and run �out of the box��

��

����� Files generated and �keepfiles option

Given the source code source�c� reapar generates the following �les�

source�instrumented�c Source code with instrumentation for pro�ling added�
source�instrumented Corresponding executable�
source�recorded�c Source code with instrumentation for pro�ling and tree

recording added �only generated for coarse grained pro�
grams��

source�recorded Corresponding executable�
source�parallelized�c Source code with thread parallelization and chosen paral�

lelization strategy added�
source�parallelized Corresponding executable�

Additionally� several temporary �les are generated �n stands for the PID of the process
executing the reapar script��

�tmp�reapar�tmp�n Output of the instrumented program on its sample run�
�tmp�reapar�profile�n Filtered output of the instrumented program� i�e� the pro�le

of the �rst parallelized procedure for �ne grained programs
resp� the �rst recursion tree for coarse grained programs�

�tmp�reapar�choose�n Output of the strategy selection script�

By default� these are deleted after successful parallelization� However� you may wish to keep
them for manual analysis as described below� In this case� just use the ��keepfiles� option�

����� Key procedure for Parallelization

To reduce its complexity� the reapar script only examines the �rst parallelized recursive
procedure for all its analyses� This means that you have to make sure the procedure to
be parallelized is the �rst recursive procedure in the program� You can achieve this by
using the Noparallel annotation on all other recursive procedures or by moving the target
procedure�s code to the top of the program� adding forward declarations if necessary� reapar
uses the Instrumentation�s autonostats option� so procedures not to be parallelized do
not generate any pro�le information at all� If you are not sure about the sequence of
procedures in your program� just invoke REAPAR with the ��detail �� option and look at
the Instrumentation�s output �Instrumentation and Parallelization are called with a verbosity
level one lower than reapar�s��
Also� the script does not implement pro�le merging� so only the �rst procedure in a recur�

sion hierarchy is analyzed� This a�ects e�g� the Barnes Hut and Bitonic Sort benchmarks� If
you want to include the e�ects of multiple recursive procedures in the parallelization analysis�
use the �keepfiles option described below� edit the resulting pro�le removing the �������
line between the procedures� pro�le tables and run the choose�strategy�by�heuristics
script on the resulting pro�le�

����� Program Exit Status

reapar checks the exit status of all commands it executes to see if any errors occurred� To
avoid false reports of failures during execution of the instrumented program� please make sure

��

your program ends with an �exit��� or �return��� statement on successful completion�
The script reminds you to do so if the instrumented program returns an error code� If you
did add the proper statements� there may be a problem with the instrumentation� Please
check for possible reasons such as �ifdefs as described in the sections above�

����� Setting proper simulation parameters

If you use annotations such as Nothread in coarse grained programs� you have to tell the
simulation about them� You can pass the necessary information to the simulation by setting
the environment variable R�SOPTIONS� There are two kinds of parameters the simulation
takes into account�

�t ABCD��� � Only the procedure A�B�� � � is simulated as parallel� All remaining recursive
procedures that appear in the recursion tree are simulated as sequential as if they were
annoted Noparallel��

�b Ax � Branch number x of procedure A is executed sequentially� This option is used to
simulate the e�ects of a Nothread annotation� Branches are numbered sequentially
starting with �� so e�g� �b A� would cause the simulation to behave correctly for the
Eigenvalue benchmark which has one parallel recursive procedure whose second branch
is annoted as Nothread�

The recursive parallel procedures of a program are represented by upper case letters� A
standing for the �rst such procedure� B for the second and so on� If there is just one recursive
parallel procedure� it is of course A� If there are several such procedures� you can identify
their corresponding letters by running reapar with the �detail � option and looking at the
instrumentation�s output which shows all recursive procedures detected� Procedure number
	 corresponds to A� � to B and so on�

If you do not set the simulation�s options� nothing breaks but the simulations accuracy
may be a�ected� The default behavior is to simulate all branches of all procedures in the
recursion tree as parallel�

The Simulation settings for the REAPAR benchmarks with the �autonostats option
active are as follows ��ne grained benchmarks shown in parentheses do not use the Simulation
at all but are listed for completeness��

Benchmark Setting Comment
Barnes Hut �t B Only top level recursion parallelized
�Bitonic Sort �b A� �b B� Nothread annotations on �nd branches�
Eigenvalue �b A� Nothread annotation on �nd branch
�Fractal �b A� Nothread annotation on �th branch
Heat �b A� Nothread annotation on �nd branch
�Knapsack �b A� Nothread annotation on �nd branch�
�Magic � �
Power �t A Only top level recursion parallelized
�Queens � �

�Since reapar uses the �autonostats switch� no statistics are generated by non�parallel procedures
anyway� However� if you remove the said switch from reapar� you can take sequential parts of the recursion
tree into account� In this case� you have to tell the simulation about it as described�

��

����� Di�erences to the PhD thesis results

Since the reapar script was written as an add�on after the PhD thesis �H�n��� was �nished�
there are some small di�erences between the results of the thesis and what you get when
you run the script on the benchmarks directly� The results described in the thesis are based
on manually calling instrumentation and parallelization and then analyzing the results using
the tools described earlier� while the reapar script uses a more direct approach that does
not take all possible cases into account� Speci�cally� reapar

� only examines the �rst parallelizable recursive procedure as mentioned above� i�e�� no
pro�le merging of all procedures in a recursion hierarchy is performed�

� uses the number of leafs and nodes to determine a program�s granularity� not just the
number of leafs� so the granularity threshold is around ���ms instead of 	ms� This is
because only the �rst recursive procedure�s pro�le is examined and there are cases� e�g�
in the Barnes Hut benchmark� where this procedures does not generate any leafs at
all since it calls a second recursive procedure which does the work� A more advanced
version of reapar could just add dummy leafs for recursive branches that are not
accounted for in the numbers of children in the next recursion level�

� requires that for coarse grained programs� the simulation parameters are provided by
the user� Later versions of the system could derive them automatically� but e�g� even
determining the branching degree a�ected by a Nothread annotation is not trivial�

� uses the system�s timers to achieve a better granularity than the one second resolution
used in the thesis�s measurements�

� does not use the C compiler�s �g option�

None of these items implicates changes in the thesis�s premises� they are just technical details
necessiated by compromises between a tight schedule and the will to really provide a �turn
key system�� A more advanced implementation of the reapar script would produce results
identical to the ones presented in the thesis�

��

Chapter �

Recursion Analysis

Both Instrumentation and Parallelization require an analysis of the source code that identi�es
procedures and extracts information such as

� Procedure name

� Starting and ending source code line

� Forward declarations

� Parameters used

� Return type

� Any calls made to the procedure within the program

� All calls made by this procedure

Once this information is known� recursive procedures are found by building the transitive
closure of calls and checking if the procedure itself appears in it� This also takes indirectly
recursive procedures into account� e�g�� A calls B calls A�
In addition� during source code analysis all program annotations are detected� Annota�

tions and their usage are described in detail in sections
���� and
���
�

��� Algorithms Used

The following algorithms� given in pseudocode� perform the analysis� They are part of both
instrumentation and parallelization�
As mentioned above� the system is based on Perl� so pattern matching and heuristics are

used instead of exact parsing and construction of abstract syntax trees� This leads to some
restrictions �e�g�� function name and starting parenthesis of the parameter list have to be
in one line� else the pattern for function recognition does not match� but allows for rapid
development and makes the system independent from compiler tool availability on a given
platform� The algorithms themselves are independent of the implementation� of course�

����� Procedure Identi�cation

The algorithm in �gure ��	 identi�es procedure occurrences and declarations at top level�
i�e�� not within any braces $%� and extracts procedure types and parameters� It also detects
externally de�ned procedures�

�

INPUT� C source code
OUTPUT� Set of procedure names procnames� list of their starting and ending positions procstarts��
and procends��� list of their declarations procdecls��� list of return calls and places
of NEEDRESULTS annotations within each procedure returns��

bracelevel � � " Number of currently open braces in line

oldbracelevel � � " Ditto on line before

inside�procedure � � " Flags

inside�header � �

initialize procstarts��� procends��� procdecls��� returns�� to �
while 	more lines

read next line
recognize and remember annotations
remove strings and enclosing quotes
remove comments� also ones spanning multiple lines
oldbracelevel � bracelevel

bopens � number of ��� in line
bcloses � number of ��� in line
bracelevel � bracelevel � bopens � bcloses

if 	line matches return statement

returns�pn� � returns�pn� � current position

end if

if 	oldbracelevel �� � and inside�procedure �� � and

line matches procedure header

pn � procedure name
if 	pn � procnames

mark old occurrence as declaration in procdecls�pn�

else

remember procedure type and parameters for pn
procnames � procnames � pn

inside�procedure � �

inside�header � �

end if

procstarts�pn� � current position
end if

if 	inside�header �� �

skip and remember header until
� ��� encountered 	i
e
� it was just a declaration� or
� ��� encountered 	i
e
� end of header�
inside�header � �

end if

if 	inside�header �� � and inside�procedure �� � and bracelevel �� �

procends�pn� � current position
end if

end while

merge return statement positions in returns�� with NEEDRESULTS annotations for later use

Figure ��	� Algorithm� Procedure identi�cation in C source code�

����� Call Identi�cation

The algorithm in �gure ��� identi�es calls to any procedures that were detected in the earlier
phase� i�e�� occurrences of the procedures within one or more levels of braces $%�

	

INPUT� C Source code� lists and sets from procedure identi�cation
OUTPUT� List of procedures called within a procedure directcalls��� list of positions
and procedures where a procedure is called wherecalled��

bracelevel � � " Number of currently open braces in line

oldbracelevel � � " Ditto on line before

initialize directcalls��� wherecalled�� to �
while 	more lines

read next line
remove strings and comments� also ones spanning multiple lines
oldbracelevel � bracelevel

bopens � number of ��� in line
bcloses � number of ��� in line
bracelevel � bracelevel � bopens � bcloses

C � procedure containing the current line
if 		oldbracelevel � � or 	bopens �� bcloses and bopens � �

 and

any known procedure P matches the �procedure call� pattern

directcalls�C� � directcalls�C� � P

wherecalled�P� � wherecalled�P� � 	C � current position

end if

end while

Figure ���� Algorithm� Procedure call identi�cation�

����� Recursion Identi�cation

Now that all procedures and their invocations are known� a recursive procedure P is simply
identi�ed as containing P itself in its transitive closure of calls� i�e�� P calls itself directly� or
P calls some other procedure Q that calls R that calls � � � that in turn calls P � Figure ��

shows the corresponding algorithm�

INPUT� Set of procedures procnames� list of their calls directcalls
OUTPUT� Set of recursive Procedures recursives� list of all procedures a procedure calls allcalls��
initialize recursives� allcalls�� to �

for all P � procnames

sort directcalls�P� eliminating duplicates
allcalls�P� � directcalls�P�

end for

for all P � procnames

repeat

for all C in allcalls�P�

allcalls�C� � allcalls�C� � allcalls�P�

end for

until not 	allcalls�P� changes

end for

for all P � procnames

if 	P in allcalls�P�

recursives � recursives � P

end if

end for

Figure ��
� Algorithm� Identi�cation of recursive procedures�

�

��� Example

The following example output illustrates the operations performed� First� the system iden�
ti�es all procedures with their respective types� parameters� starting and ending lines and
source code position of their forward declaration �if any�� Then� the locations of all calls
to each procedure are given in the format CallingProcedure�LineOfCall�PositionInLine�������
Finally� the system prints the recursive procedure found� instruments the program code� and
writes the output �le�

� instrument�program �out fractal�instrumented�c fractal�c

Reading source code���

Found the following procedures�

�
 procedure print�pixels from line �� to ��

type� void

parameters�

�

�
 procedure compute�pixel from line �� to ���

type� unsigned char

parameters�

int x� int y

�
 procedure compute�frame from line �� to ���

type� void

parameters�

int x�� int y��

int x�� int y�

�
 procedure compute�cross from line ��� to ��

type� void

parameters�

int x�� int y��

int x�� int y�

 procedure edges�match from line �� to ���

type� char

parameters�

int x�� int y��

int x�� int y�

�
 procedure compute�area from line ��� to ��

declared at ��������

type� void

parameters�

int x�� int y��

int x�� int y�

�
 procedure main from line �� to ���

type� int

parameters�

int argc

char ��argv

Found the following procedure calls�

�
 print�pixels called in compute�area#�������main#�������

�
 compute�pixel called in compute�frame#�������compute�frame#�������

compute�frame#�������compute�frame#�������

compute�cross#�������compute�cross#�������

compute�cross#������compute�area#�������

compute�area#�������main#������

�
 compute�frame called in main#�������

�
 compute�cross called in compute�area#�������

 edges�match called in compute�area#������

�
 compute�area called in compute�area#������compute�area#������

compute�area#������compute�area#������

main#�������

�
 main called in �

Found the following recursive procedures�

�
 compute�area

Writing output to file �fractal�instrumented�c� ���

�

Chapter �

Automatic Instrumentation

After all recursive procedures and their parameters are known� the program can be instru�
mented�
The goal of instrumentation is to �nd out at runtime how often any recursive procedure

is called� what maximum recursion depth it reaches� and how often each branching degree
occurs at each recursion depth� This information is recorded while the instrumented program
runs and printed as the program exits�
Instrumentation is realized as the insertion of code at several places in the program source

code� e�g�� the addition of a parameter measuring the recursion depth for each recursive
procedure�
Adding recursion tree recording code �i�e�� using the �record or the �time option� works

exactly the same way� so it is not explicitly mentioned below any more� The corresponding
code insertions are performed during instrumentation� too�

��� Details

All code insertion changes are collected and then performed in order� starting at the last
source code line�
Code that has to be inserted at the very beginning of a procedure is handled using a

trick � a dummy variable is declared and initialized using a procedure that performs the
desired initialization as a side e�ect� e�g��

int do�our�init� �

initialize anything we need
return 	�

�

procedure� �

int out�dummy
 do�our�init�� �� perform initialization ��
���

�

This is necessary since it is hard to detect the end of a variable declaration section in a
procedure syntactically�
Pro�le output at the end of the program is implemented using the atexit� library

function to ensure that pro�le output occurs wherever the program is exited�

To guarantee that inserted statements are executed in the same block as the code they
refer to� both they and the code are encapsulated with braces� Otherwise� they might not
end up in the same if statement as the code they are supposed to measure� Statement
boundaries are recognized by looking for �"� or �$� or �%��
Thread wrappers introduced by the parallelization �see chapter �� are recognized and

ignored for instrumentation� since they already contain the depth parameter�

��� Algorithm Used

The pseudocode in �gure �	 outlines the instrumentation�

INPUT� Source code� Information gathered during program analysis� wherecalled�R� lists all lines
where procedure R is called� allcalls�R� lists all procedures called by R
OUTPUT� instrumented source code
Insert "include $profile�h$ at the �rst line
Insert pro�le initialization code for the global pro�le and for each recursive procedure
at the beginning of main	

Insert atexit	
 handler for the �nal pro�le output
for all recursive procedures R

Prepend recursion depth parameter profile�depth�R to the procedures
parameter list 	in its header as well as in any declarations�
Insert recursion branch counter branch�count to the procedures variables
for all return statements within R

Insert pro�le information update before return�
ProfileAddStat	profile�stat� start line of R� profile�depth�R�

branch�count

end for

Insert pro�le information update just before end of procedure
for all calls C to the procedure in wherecalled�R�

if 	C occurs within R

prepend profile�depth�R � � to the calls parameters
else if 	C occurs within recursive procedure P in allcalls�R�

prepend profile�depth�P � � to the calls parameters
else

prepend � to the calls parameters� starting the recursion depth counter
end if

if 	C occurs within recursive procedure P in allcalls�R�� including R

Insert branch�count�� before call

end if

end for

end for

perform insertion changes

Figure �	� Algorithm� Instrumenting the source code for runtime data collection�

�

��� Example

The following example shows the modi�cations made by the instrumentation with added
characters shown in italics� �� is the line number the instrumented procedure starts in� The
pro�le is initialized for 	�� source code lines� maximum recursion depth �� and maximum
degree �

���

void myfunction	double a�

char �b

�

���

if 	condition
 �

���

return�

�

���

myfunction	c� d
�

���

if 	condition
 �

���

myfunction	e� f
�

�

���

�

���

main	
 �

���

myfunction	a� b
�

�

�

�include �pro�le
h�

���

void myfunction	int pro�le�depth�myfunction�

double a� char �b

�

int branch�count���

���

if 	condition
 �

���

�Pro�leAddStat	pro�le�stat� ���

pro�le�depth�myfunction�

branch�count��

return� �

�

���

�branch�count���

myfunction	pro�le�depth�myfunction � �� c� d
��

���

if 	condition
 �

���

�branch�count���

myfunction	pro�le�depth�myfunction � �� e� f
��

�

���

Pro�leAddStat	pro�le�stat� ���

pro�le�depth�myfunction

branch�count��

�

���

int do�init	� �

pro�le�stat � Pro�leNewStats	����������

Pro�leInitLine	pro�le�stat�����myfunction���

atexit	Pro�leStatPrint��

�

main	
 �

int dummy � do�init	��

���

myfunction	�� a� b
�

�

�

Chapter �

Automatic Parallelization

This chapter describes how code is added to allow for a parallel execution of the program�s
recursive branches� It then outlines the algorithm used for parallelization� and gives an ex�
ample of a program before and after code insertion� Finally� the thread generation strategies
employed by the parallelized program and examples of the speedups reached are detailed�

��� Adding Threads

To call a recursive procedure P as a thread� the system has to insert several helper proce�
dures and data structures � e�g�� a thread procedure has only one single parameter� so the
procedure�s parameters have to be passed to the thread wrapped into a new data structure�
The necessary additions are�

� A struct to hold the procedure�s parameters� for passing a pointer to that struct when
generating a thread for the procedure

� A wrapper procedure ThreadWrapper�P that unpacks the argument structure and
calls the normal sequential procedure P

� A procedure Thread�P that takes P �s parameters� packs them into the structure�
generates a new thread� lets it execute P �s wrapper procedure� and returns its thread
ID

� A procedure Join�P to join the given thread ID� guaranteeing that the results com�
puted by P are available

Also� code is inserted around each recursive call to P to make the runtime decision whether
to generate a new thread and to perform the parallel or sequential call as needed� All this
is summarized in �gure ��	�
Section ��
 gives a more detailed impression of the code added for parallelization�

��� Algorithm Used

The pseudocode in �gure ��� shows the Parallelization algorithm� The resulting program
code is then run through the Instrumentation algorithm that supplies the necessary branch
counter and recursion depths�

�

void foo(int x) {
 ...
 foo(x−1);
 ...
}

void Join_foo(thread_t t) {

}

thr_join(..., t, ...);

void foo(int x) {
 thread_t t = 0;
 ...
 if (THREAD_PREDICATE_foo) {
 t=Thread_foo(x−1);
 } else {
 foo(x−1);
 }
 ...
 if (t) Join_foo(t);
}

thr_create(...,
 ThreadWrapper_foo,
 args, ...);

thread_t Thread_foo(int x) {

}

void *ThreadWrapper_foo(void *args) {

}

foo(x);

Parallelization

Generation of parallel
activities depending on
Strategy predicate

Collect generated
activities

Wrap argument x into args

Unpack arguments from args

Preparation and
thread start

Thread−
parallel
run

Figure ��	� Thread generation by the automatically inserted wrapper procedures �slightly
simpli�ed� e�g� one thread variable instead of an array etc���

��� Example

This example gives an impression of the infrastructure that is added for thread generation�

Take the following code �which does nothing useful at all but shows recursive branches
and return statements��

void foo	int i
 �

if 	i����
 �

foo	i��
�

foo	i����
�

return�

�

if 	i���
 �

foo	i���
�

�

�

main	int argc� char ��argv
 �

foo	atoi	argv���

�

�

It is transformed into the code shown in �gures ��
 and ��� �with abbreviated code in
italics and original code in larger bold face� containing all pro�le instrumentation as well as
de�nitions of thread generation strategies and support procedures for thread introduction
and joining� � �

This code expands into around ��� lines of C source code not to be presented here �
if you do want to examine the exact source� just run parallelize�program on the sample
code above�

�

INPUT� Information from Analysis� Set of recursive procedures recursives� list of their calls
directcalls� list of all procedures a procedure calls allcalls��
OUTPUT� thread parallel program
insert general thread initializations and declarations at beginning of program code

topcode � initialization pre�x
initcode � global thread initialization procedure template
for all recursive procedures R � recursives

threadcode � thread wrapper and join procedures template for R
if 	 	R is not annotated NOPARALLEL
 and 	R has return type $void$

add de�nes� struct for parameters� thread wrapper� thread generation predicates�
and procedure declaration to topcode

if 	R has no forward declaration

add forward procedure declaration to topcode

end if

add strategy depth print statement to initcode

for all parameter variables V of R

add thread argument initialization for V to threadcode

end for

insert actual procedure name� type� arguments etc
 of R into threadcode

insert threadcode before start of R
for all recursive procedures P � recursives

if 	 	R in directcalls�P�
 and 	P in allcalls�R�

callcode � recursion�as�thread call code template including pro�le depth
if 	P has no thread initialization code yet

arrayinitcode � thread array initialization template
arraydecl � $$

joincode � thread joining code template
for all recursive procedures Q called in P

add thread array declaration for Q to arraydecl

add thread array initialization for Q to arrayinitcode

end for

insert arraydecl before Q�s variable declaration
insert arrayinitcode before Q

for all join lines J 	annotated or return� in P

add joincode before J

end for

end if

insert actual procedure name� type� arguments etc
 of R into callcode

for all calls C of R in P

insert callcode around C

end for

end if

end for

else annotate R as NOPARALLEL
end if

end for

insert topcode at start of program
insert initcode before start of main	�
insert call to initcode in main	�
perform insertion changes

Figure ���� Algorithm� Introduction of thread constructs for parallelization�

��

Initialize thread de�nitions

De�ne thread generation predicates for foo

int init�threads�foo	thread�t �newthreads�foo
 �

Init thread arrays for foo

�

void foo	int profile�depth�foo� int i
� �� Forward declaration ��

typedef struct � �� Holds parameters for thread call ��

int profile�depth�foo�

int i�

� ThreadArg�foo�

void �ThreadWrapper�foo	void �arg
�

thread�t Thread�foo	int profile�depth�foo� int i
 �

Generate thread for foo	
 using ThreadWrapper�foo	

�

void Join�foo	thread�t thread�id

Join given thread for foo	

�

void �ThreadWrapper�foo	void �arg

Unpacks arguments and calls foo	

�

void foo�int profile�depth�foo� int i� �

int branch�count � ��

thread�t newthreads�foo�����

int nt�i � init�threads�foo	 	newthreads�foo���

�

if �i����� �

branch�count���

if 	Thread generation predicate
 �

newthreads�foo�branch�count��� � Thread�foo	profile�depth�foo��� i��
�

� else �

foo�i�	�

�

branch�count���

if 	Thread generation predicate
 �

newthreads�foo�branch�count��� � Thread�foo	profile�depth�foo��� i����
�

� else �

foo�i�	���

�

Join threads generated using Join�foo	newthreads�foo�i�

ProfileAddStat	profile�stat� ���� profile�depth�foo� branch�count� �
�

return

�

���

Figure ��
� Sample code after parallelization �	�

�	

���

if �i���� �

branch�count���

if 	Thread generation predicate
 �

newthreads�foo�branch�count��� � Thread�foo	profile�depth�foo��� i���
�

� else �

foo�i���

�

�

Join threads generated using Join�foo	newthreads�foo�i�

ProfileAddStat	profile�stat� ���� profile�depth�foo� branch�count� �
�

�

int do�thread�init	
 �

Init LWPs� set atexit	
 calls� print thread predicate information etc

�

int do�profile�init	
 �

Init Pro�le information� set atexit	
 calls

�

main�int argc� char ��argv� �

int dummy�profile�init � do�profile�init	
�

int dummy�thread�init � do�thread�init	
�

foo� �� atoi�argv�����

�

Figure ���� Sample code after parallelization ���

��� Parallelization Strategies

After parallelization� the program runs concurrently� generating threads in place of recursive
calls�

The program�s performance depends critically on good runtime decisions when to create
a new thread and when to perform a sequential recursive call instead� These decisions are
called �parallelization strategies�� A strategy that creates too few threads leads to bad
performance� since the parallelism potential is not used � creating just two threads at all
on a 	��processor machine is no good idea� On the other hand� generating too many threads
will swamp the machine which a lot of tiny tasks whose pure computation time may be
smaller than the cost of creating and managing a thread itself� resulting in large operating
system overhead for thread handling and slowing the program down�

Obviously� di�erent programs have di�erent characteristics that require di�erent strate�
gies� For coarse grained programs where one recursive call takes minutes to complete� it
may even be a good decision to perform all recursive calls in parallel� On the other hand�
very �ne grained programs whose overall execution time is just one second and the compu�
tation performed in each recursion step is minimal are probably not worth parallelizing at
all� since thread overhead is too high� Chapter � shows how an appropriate strategy can be
automatically selected�

��

The REAPAR system employs the following strategies for thread generation� As men�
tioned� a strategy is a predicate that tells the system if it should use a new thread for the
current recursive call�

General Strategies � These use the number of currently active threads as well as the over�
all number of threads generated� The locking necessary on these two global variables
incurs some overhead" the variables do hardly represent a bottleneck� though� as the
number of processors on SMP machines is small� All parameters N are multiplied
with the number P of processors used� e�g�� �Keep
� on � processors means �� active
threads� Typical values of N lie in the range from 	 to ���

First N � Take exactly the �rst N � P opportunities to generate a thread� Given the
Solaris scheduling strategy� this corresponds to the parallelization of the upper
calls in the recursion tree�

Keep N � Generate a thread i� the number of currently active threads is less than
N � P � distributing work over the tree of recursive calls�

Active N � Same as Keep N � but the thread counter is already decremented after
the procedure�s call within the thread returns� not after the thread is joined�
thus allowing for a larger number of concurrent computations but increasing the
number of unjoined threads�

Always� Start a thread whenever it is possible �Keep ��� This is useful for coarse
grained problems�

Never� Do not start any threads at all �Keep ��� which is sensible if the thread creation
cost is higher than the cost of the computation itself�

Neverever� Like Never� but even without thread constructs and thus less overhead�

Problem�speci�c Strategies � Make use of available program�speci�c parameters �cur�
rently only the recursion depth�� The range of values considered can be read from the
runtime pro�le�

Depth D� Generate threads in the �rstD levels of the recursive call tree but not below
that� This strategy avoids creating threads for small subproblems near the leafs
that are better solved sequentially� Since no thread count is needed here� there is
no locking overhead� so this strategy is better suited for �ne�grained programs�

Combined Strategies � Combine general and problem�speci�c parameters�

Keep N until Depth D� Create threads if both the current depth is less than D and
the current number of threads is less than N�P � Reduces the number of threads
generated while avoiding small subproblems� but uses locking�

Active N until Depth D� Ditto using the Active N strategy�

The default strategy used by the system after Parallelization �without Strategy Selection�
is Active
� which is a good general�purpose strategy� For �ne�grained programs� a Depth
strategy is more appropriate� Combined strategies are conceptually elegant for several prob�
lems� but no combined strategy yielded better speedups than a General or Depth strategy
for the REAPAR benchmarks� so combined strategies are given no further consideration�

�

����� Two Examples

Figure �� shows the speedup and user�system time measured for the strategies Neverever�
Never� Always� First� Keep� Active and Depth� each with parameters ranging from 	� � � �
�First� resp� 	� � � ��� The benchmark used is the coarse grained Eigenvalue benchmark with
geometrical input distribution which results in an unbalanced recursion tree� Therefore�
both Keep and Active strategies reach a perfect speedup while the Depth strategy performs
worse� In this case� a high enough Depth parameter would do the job� too� as the good
performance of the Always strategy shows�
On the other hand� �gure ��� shows the corresponding curves for the very �ne grained

Bitonic Sort benchmark� Any parallelization strategy class but Depth performs very badly
since the locking overhead of the General strategies is too high in comparison to the small
computation involved� This is also evident from the system time �i�e� thread overhead� that
increases dramatically with the Keep and especially Active strategies� From Depth 	
 on�
the Depth strategy generates more unjoined threads than Solaris can handle �around
 �����
resulting in aborted runs which are shown with speedup ��

��

0

1

2

3

4

5

 NE N A 1 2 4 7 1 2 3 4 5 6 7 8 91011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 91011121314151617181920

S
pe

ed
up

Strategy

Speedup: eigenvalue (g-1500, 4 CPUs)

NE N AL FIRST KEEP ACTIVE DEPTH

0

5

10

15

20

 NE N A 1 2 4 7 1 2 3 4 5 6 7 8 91011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 91011121314151617181920

T
im

e
(s

)

Strategy

User/System Time: eigenvalue (g-1500, 4 CPUs)

NE N AL FIRST KEEP ACTIVE DEPTH
utime
stime

Figure ��� Speedups and cumulative user�system time on all CPUs for the Eigenvalue
benchmark� input size �g 	����

�

0

1

2

3

4

5

 NE N A 1 2 4 7 1 2 3 4 5 6 7 8 91011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 91011121314151617181920

S
pe

ed
up

Strategy

Speedup: bitonic (131072, 4 CPUs)

NE N AL FIRST KEEP ACTIVE DEPTH

0

500

1000

1500

2000

2500

3000

3500

4000

 NE N A 1 2 4 7 1 2 3 4 5 6 7 8 91011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 91011121314151617181920

T
im

e
(s

)

Strategy

User/System Time: bitonic (131072, 4 CPUs)

NE N AL FIRST KEEP ACTIVE DEPTH
utime
stime

Figure ���� Speedups and cumulative user�system time on all CPUs for the Bitonic Sort
benchmark� input size 	
	 ����

��

Chapter �

Automatic Selection of Parallelization

Strategies

This chapter explains how the automatic strategy selection works and what the considera�
tions behind it are�

	�� Coarse and �ne grained programs

A suitable parallelization strategy for a given program and input data set is chosen as shown
in the following picture�

profile
table

 instrumented
program

profiling run

coarse grained
program?

heuristics
for depth
selection for
fine grained
programs

thread simulation
for coarse grained
programs

recursion
tree

parameter for
depth strategy

general or depth
strategy and
parameter

strategy setting
in program

The program is classi�ed as either coarse grained or �ne grained according to the average
time it takes to compute a leaf of the program�s recursion tree� Fine grained programs only
reach good speedups with a Depth strategy� so for them a good strategy parameter is chosen
according to the program�s pro�le table� For coarse grained programs� the recursion tree
is recorded and a thread simulation is performed for all reasonably possible parallelization
strategies and parameters and the best performing strategy is chosen�

With the 	��MHz HyperSparc system REAPAR was developed on� any problem whose

��

leafs take less than one millisecond are considered �ne grained� On other systems� this
threshold has to be set empirically once at system installation time�

	�� Pro�le evaluation

For �ne grained programs� REAPAR evaluates the pro�le resulting from the instrumentation�

����� Heuristics

Using the Depth strategy with parameter D� the number of threads generated is equal to the
number of nodes and leafs of all parallelized procedures in the recursion tree�� Therefore�
we can derive a good value for D on C CPUs if we estimate the maximum size of a subtree
at depth D and then apply the following heuristics�

� The largest sequentially executed subtree must be smaller than 	�C of the complete
tree� Otherwise� the problem cannot be divided equally among the C processors�

� The number of nodes up to and including depth D must be at least C to o�er enough
parallelism�

� The number of threads generated �i�e�� nodes and leafs up to D� must be smaller than

 ���� since Solaris only manages about that many unjoined threads and aborts if more
are created�

����� Subtree size estimation algorithms

There are two ways of estimating the size of a subtree�

LPS �Largest Possible Subtree�� The LPS�D� describes how many nodes�leafs can be
contained at maximum in a subtree starting at depth D� It is derived from the pro�le
table by starting at depth D and picking a node with highest possible branching degree
m� then examining depth D � � and picking m nodes with highest possible branching
degree� then picking the corresponding number of nodes from depth D � � and so on�
Its size� i�e�� the number of nodes LPSnodes in the LPS� is implictily constructed by
the following algorithm� where p�D� g� is the number of branches of degree g� Dmax is
the maximum recursion depth� and gmax the maximum branching degree�

LPSnodes � �� getnodes � �

for d � D to Dmax

getnextnodes � � �� How many nodes to get on the next layer ��

�� Get maximum number of nodes with maximum branching degree ��

for g � Gmax downto �

n � min	getnodes� p�d� g�

getnodes � getnodes � n

LPSnodes � LPSnodes � n

getnextnodes � getnextnodes � g � n

end for

getnodes � getnextnodes

end for

�If a Nothread annotation is in e�ect� there are less threads generated� but for the worst case estimate
used here� this does not make much of a di�erence�

��

After the loop� the percentage of nodes in the LPS relative to the complete tree can
be compared to ��C�

AS �Average Subtree�� The AS describes how large a tree at depth D is on average� i�e��
always using the average branching degree instead of the maximum degree available as
in the LPS�

ASnodes � �� getnodes � �

for d � D to Dmax

�� Compute average branching degree� weighted by number of nodes ��

layernodes � �

avgdegree � �

for v � Vmax downto �

avgdegree � avgdegree � g � p�d� g�

layernodes � layernodes � p�d� g�

end for

avgdegree � avgdegree � layernodes

n � min	getnodes� layernodes

nodes � nodes � n

�� Calculate average number of nodes to get in next layer ��

getnodes � avgdegree � n

end for

To visualize these subtrees� the following picture shows an actual recursion tree with a typical
subtree highlighted� compared to the corresponding LPS� The tree containing the LPS was
derived from the original tree by the LPS algorithm �maximim branching degree �rst��

Actual recursion tree with typical subtree at depth 2

LPS−conforming tree generated from actual tree, with corresponding LPS at depth 2

����� Example and prerequisites

Pro�le evaluation is performed by the program evaluate�profile�c which reads a given
pro�le and analyzes it for each depth� The following sample output gives a further impression
of the program� running on a pro�le of the Fractal benchmark for CPUs�

��

profiled procedure �compute�area� at source line ���

maximum degree
 �� maximum depth
 �

profile covers � iterations

recommend using the NOTHREAD annotation for branching degree �

since degree is always 	 or ��

performing Average Subtree analysis for � CPUs

analyzing depth ��

all in all� the average subtree has ������	 nodes�

that�s ���		 of the tree�s nodes

�� not recommended for � CPUs� average subtree not smaller than ��� �	�		 �

analyzing depth ��

all in all� the average subtree has �����	 nodes�

that�s ���� of the tree�s nodes

�� RECOMMENDED� depth � for � CPUs� average subtree is only ����

One level above this evaluation� the wrapper script choose�strategy�by�heuristics takes
a pro�le and a cpu number� calls the evaulation� and outputs the �rst depth recommended
resp� the fact that no depth could be recommended�

The evaluation also works for pro�les that contain several iterations over a recursive
procedure� i�e�� whose �rst line has more than one entry� In this case� each entry in the
pro�le is divided by the number of iterations before analysis� By default� AS analyis is used
since the LPS heuristic tends to be too pessimistic and recommends higher depths than the
AS heuristic�

Evaluation always takes the �rst pro�le in the pro�le output as source for its data� You
have to make sure the �rst pro�le is the pro�le of the procedure you want to parallelize�
More than one procedure can be taken into account by merging pro�les� thus creating a
larger pro�le that is the sum of both procedures� pro�les� You can manually force pro�le
merging by removing the ������� separator between pro�le tables in the pro�le output and
using the edited output as input for the analysis�

	�� Thread simulation

For coarse grained programs� the whole recursion tree can be used to simulate the progress
of virtual threads on virtual CPUs working on the recursion tree�

����� Abstractions and measures

The simulation relies on the following abstractions�

� Executing one node or leaf takes a single time step�

� Generating� switching� joining and terminating threads occur at once in zero zime
steps�

�

� A processor works on a thread until the thread is out of work or waits for its children�
No thread switch by process time slice expiry is simulated�

� Since the tree shows no points where computation was joined� a node�s thread waits
for the return of each child thread after the node�s work has been done�

The result of a simulation is the recursion tree with annotations about which thread executed
which node and the number of simulation steps� Further statistics about the maximum
number of nodes a single thread worked on �as a measure of sequentiality� and the simulated
load on the CPUs can be derived easily from this�

����� Algorithm used

A simulated thread T in the array of threads threads�� is in one of the states NONE
�inactive�� ACTIVEly computing� WAITING for child threads� DONE with its computation
or JOINED by its parent thread� The simulated thread contains data on its state� the number
of nodes�leafs it has worked on� the number of non�parallel nodes�leafs it has worked on� its
starting and maximum depth� its start node and its current node�
A simulated CPU C has a thread running on it �array cputhreads�C�� or is marked

�idle�� Non�idle CPUs contribute to the simulated load of the machine�
Nodes n in the tree know about their children� their parent node� the number of nodes

in their subtree� the procedure that generated them� the thread working on them and their
depth in the tree� Additionally� boolean variables show if the nodes is DONE and if all
its subnodes were generated by procedures that were not parallelized� i�e�� if the node is a
�parallel leaf��
Furthermode� for all procedures P that built up the recursion tree� information is kept

stating if they were parallelized� if there was a Nothread annotation �and its degree�� how
many nodes they generated and how many non�parallel subnodes they generated indirectly�
Based upon this background� �gure ��	 shows the algorithm of the simulation without

going into details such as activity counters or leaf counters�
After simulation� the suitability of the parallelization strategy used for C CPUs is eval�

uated by the following heuristics�

� At least C threads were generated�

� The percentage of nodes worked on by the largest thread is less than ��C of the
complete tree�

� The same has to be valid for the number of nodes and leafs from sequential procedures
�e�g�� if just the upper recursion layer was parallelized��

� Each simulated CPU is busy at least �� of the time�

����� Example

The simulation is performed by the simulation�c program� In the following output shows
we see its results for the Keep � strategy on � CPUs based on the Barnes Hut program�s
recursion tree�

	

INPUT� Recursion tree and parameters to the simulation
OUTPUT� Recursion tree� nodes marked with the thread number that executed them� and thread statistics
such as the size of the largest thread
read the recursion tree and parse it� noting which procedures executed which nodes
parse command line parameters� e
g
 strategy and number of processors
initialize the virtual threads and the thread queue
for all C in CPUs

cputhreads�C� � NONE

end for

thread����node � rootnode� cputhreads��� � �� simsteps � �

while rootnode�state !� DONE Simulate until whole tree done
for all C in CPUs

childrendone � False Are all the node�s children done	
T � cputhreads�C� Get current thread for this CPU
if T is NONE

T � dequeue�thread	C
 CPU has no current thread� dequeue one
if T is NONE then

Mark CPU idle and skip to next CPU
end if

end if

N � T�node

if all of N s children are DONE� JOINing them while checking
N�state � DONE All children done � node done
if T�startnode �� N At thread�s start node	 Thread done

cputhreads�C� � NONE Remove thread from CPU
T�state � DONE� break for

else Otherwise� Proceed upwards in tree
T�state � ACTIVE

T�node � N�parent

end if

childrendone � True

end if

switch 	T�state

case WAITING�

if not childrendone Still waiting for children� thread sleeps
cputhreads�C� � NONE Remove thread from CPU� � �
enqueue�thread	T
 � � � and put it in Q for later use

end if

case ACTIVE�

if not childrendone Children left to work on	
if all of N s children are busy

T�state � WAITING

else Start work on child as new thread� � �
if parallelization strategy says so

spawn�and�enqueue�new�thread	N�child

else � � � or compute child sequentially
T�node � N�child

end if

end if

end if

end switch

end for

simsteps��

end while

Figure ��	� Algorithm� Simulation of thread process in the recursion tree�

�

� simulation �k � �c � � recorded�recorded�barnes��

Thread �� start �� max �� � nodes� � leafs� � subnodes� � subleafs

Thread �� start �� max � � nodes� � leafs� � subnodes� � subleafs

Thread �� start �� max �� � nodes� � leafs� � subnodes� � subleafs

Thread �� start �� max �� � nodes� � leafs� � subnodes� � subleafs

�����

Thread ��� start �� max �� � nodes� � leafs� � subnodes� � subleafs

Thread ��� start �� max �� � nodes� � leafs� � subnodes� � subleafs

Simulation for KEEP � on � CPUs done� �� threads generated over all

� simulation steps elapsed� CPU utilization � ����

All procedures simulated as parallelized

Procedure B� �� nodes� � leafs� �� parnodes� � parleafs

Procedure C� �� nodes� �� leafs� �� parnodes� �� parleafs

Thread statistics for �� threads�

nodes� � min� � med� � max� ���� avg� ���� dev 	 ����

leafs� � min� � med� � max� ���� avg� ���� dev 	 �����

subnodes� � min� � med� � max� ���� avg� ���� dev 	 ����

subleafs� � min� � med� � max� ���� avg� ���� dev 	 �����

Largest values� � nodes 	 �����
� � leafs 	 �����
�

� subnodes 	 �����
� � subleafs 	 �����

Heuristics�

Not less threads than CPUs � OK

Node percentage of largest �� � CPU percentage � OK

Leaf percentage of largest �� � CPU percentage � OK

Subnode percentage of largest �� � CPU percentage � OK

Subleaf percentage of largest �� � CPU percentage � OK

Each CPU used at least �� of the time � OK

The simulation program itself takes the following options�

simulation � simulate effects of thread generation strategies for

recursion tree read from stdin

Program options�

�s A Simulate always strategy 	also ��A�

�s a �n� Simulate active�n strategy 	also ��a �n��

�s d �n� Simulate depth�n strategy 	also ��d �n��

�s f �n� Simulate first�n strategy 	also ��f �n��

�s k �n� Simulate keep�n strategy 	also ��k �n��� default

�s n Simulate never strategy 	also ��n�

�c C Simulate C CPUs 	default � �

�p N Strategy parameter� N�C threads with keep�active

resp� depth N 	default � �

�t ABCD�� Only execute procedure type A�B���� in parallel

	A��st recursive procedure etc� default�all

�b Ax Don�t create thread for branch "x of proc� A

	A as above� branches count starting from �

�e Execute non�parallel parts in one single step

�q Quiet output� don�t print final tree with threads

�v Verbose output

Output format for one node� PDTTTS

P � Node�s procedure 	A�B����

D � Node�s state 	��� incomplete � �d� done

TTT � Thread ID working on that node 	����� �� none

S � Thread�s status 	None� Active� Waiting� Done� Joined

����� Strategy selection

A single simulation just tells us how well a single strategy will perform� To select the best
strategy� the wrapper script choose�strategy�by�simulation starts the simulation with
each reasonable strategy and parameter �Keep� Active� and Depth with parameter values
	� � � ��� and chooses the strategy that takes the minimum number of simulation steps� This
is a very good indicator of the strategy that performs best in reality� as the scienti�c work
�H�n��� shows�
Since the simulation runs just a few seconds even for large recursion trees� it is much

faster than actually executing the program with each parallelization strategy and �nding the
optimum strategy by trial and error�
An example output of the strategy selection script for the Eigenvalue benchmark follows�

� choose�strategy�by�simulation � recorded�eigenvalue�g���		 ��b A��

Overall ranking�

Rank �� Active � �	� steps�

Rank �� Keep �� ��� steps�

Rank �� �Depth not recommended�

The �nal parameter gets passed to the simulation and tells it that a Nothread annotation
for the second branch of procedure A is in e�ect� Active
 ranks �rst� followed by Keep
	�� No depth strategy is recommended since the geometric Eigenvalue recursion tree is very
imbalanced and performs bad with Depth strategies�
As with the pro�le� the user has to make sure that the �rst recursion tree in the program�s

output is the one to be parallelized� In the case of several iterations� only the �rst tree is
taken into account�

	�� reapar Script

The script reapar performs the automatic strategy selection and parallelization as shown
in the diagram at the beginning of this chapter� Its underlying algorithm is shown in �gure
����
The script�s limitations and ways to handle them are described in detail in section
�
�

Its current implementation is a prototype that handles all the benchmarks used for the de�
sign and validation of the REAPAR system and should have no problems with programs
containing just one recursive procedure� This proof�of�concept script demonstrates that the
REAPAR methods ful�l their promises and do indeed parallelize C programs fully automat�
ically�
An industrial strength implementation of the reapar script could overcome the restric�

tions mentioned� e�g� automatically supply information about annotations to the simulation
component� but this would exceed the time frame for a PhD work� The existing system
shows that the concepts employed are powerful enough to support the nontrivial range of
applications covered by the benchmarks� and the validation set of benchmarks proved that
the methods are general enough to handle completely new programs� Thus� the current
system is a solid base for further developments�

�

parse and interpret program parameters� check if the input can be read etc

instrument the source code for pro�le generation using instrument�program

compile the resulting source code
run the resulting executable using the parameters given
analyze the instrumtations output
if granularity is �ne then

choose a Depth parallelization strategy parameter using choose�strategy�by�heuristics

else

instrument the source code for recursion tree recording using instrument�program

compile the resulting source code
run the resulting executable using the parameters given
choose a parallelization strategy and parameter using choose�strategy�by�simulation

fi

parallelize the source code using parallelize�program

set the chosen parallelization strategy and parameter using set�strategy�parameters

compile the resulting source code� yielding the �nal parallel executable

Figure ���� Algorithm� Automatic strategy selection and parallelization in the reapar script�

Chapter 	

Summary
 REAPAR Results

This brief chapter summarizes the results of the REAPAR research without going into details�
A closer discussion can be found in the corresponding PhD thesis �H�n����

�� Speedups in comparison to related systems

REAPAR yields the following speedups on ��processor benchmark runs� compared to the
related Cilk �Sup��� and Olden �Car��� systems�

Bench� Barnes Bitonic Eigen� Fractal Heat Knap� Magic Power Queens

mark Hut Sort � value � sack � �

Olden ��� ��� � � � � � ��	 �

Cilk ��
 � � � ��� ��� � � ���

REAPAR �� �� �� ��	 �� ��
 ��� ��� ���

Benchmarks marked as ��� are part of the validation set which was only examined after the
work on the REAPAR system was completed� The speedups prove that the system was not
�ne tuned for the benchmarks used in its construction� Thus� the methods developed are
generally useful�

�� Quality of automatic strategy selection

The following table shows how large a percentage of the optimum parallelization strategy�s
speedup the automatically chosen strategy typically obtains�

Bench� Barnes Bitonic Eigen� Fractal Heat Knap� Magic Power Queens

mark Hut Sort value sack

Performance
���
���
���
��� ��� ���
���
���
���

REAPAR chooses a parallelization strategy that performs best in reality� too� with just two
exceptions that still obtain at least ��� of the optimum�

�

�� Speedups on more processors

After the REAPAR work was �nished� an opportunity arose to measure the speedups of
several programs parallelized by REAPAR on machines with �� 	� and
� processors�� The
table lists the speedups reached and the strategy selection�s quality�

Benchmark Barnes Hut Eigenvalue Fractal Power Queens

Speedup 	 CPUs ��� 	�� ��� ��� ��

Strategy performance
���
��� ��� �
���

Speedup
� CPUs ���
���
��� ��� ��

Strategy performance
���
��� ��� �
���

Speedup �� CPUs 	�� ���� ���� ��	 ��	

Strategy performance

�
���
��� � ���

The excellent Eigenvalue results show that the speedup of coarse grained programs can scale
perfectly� Despite problems with too short run times �Fractal�� too little parallelism potential
�Power�� and too �ne granularity �Queens�� most of these results are more than adequate
and underline that REAPARs methods are valid also for much higher numbers of processors
than four CPUs�

�Many thanks to P�Hausdorf and U�Graef at the Sun Benchmark Center Germany� to P�M�ller� and
F�Haberhauer at sun and to H�Herrmann for his successful lobbying

�

Bibliography

�BH��� Joshua Edward Barnes and Piet Hut� A hierarchical O�N logN� force calculation
algorithm� Nature�
������� 	����

�Car��� Martin C� Carlisle� Olden� Parallelizing Programs with Dynamic Data Structures
on Distributed	Memory Machines� PhD thesis� Princeton University Department
of Computer Science� June 	����

�CRY��� Soumen Chakrabarti� Abhiram Ranade� and Katherine Yelick� Randomized load
balancing for tree�structured computation� In Scalable High Performance Com	
puting Conference� pages ���&��
� Knoxville� USA� 	���� IEEE�

�H�n��� Stefan U� H�n'gen� E
ziente parallel Ausf�hrung irregul�rer rekursiver Pro	
gramme� PhD thesis� Universit�t Karlsruhe� Fakult�t f(r Informatik� Karlsruhe�
Germany� April 	����

�KR��� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Language
ANSI C�� Prentice Hall� �nd edition� 	����

�LML��� Steven S� Lumetta� L� Murphy� X� Li� D� Culler� and I� Khalil� Decentralized
optimal power pricing� The development of a parallel program� Technical report�
Department of Computer Science� UCSB� Berkeley� 	���

�Sun��� SunSoft� Mountain View� CA� USA� Solaris ��� Multithreaded Programming
Guide� August 	����

�Sup��� Supercomputing Technologies Group� MIT Laboratory for Computer Science�
Cambridge� MS� USA� Cilk ��� Beta �� Reference Manual� March 	����

�WC��� Larry Wall and Tom Christiansen� The Perl Language Home Page�
http	��www�perl�com�perl�index�html� 	����

�Wol��� Michael J� Wolfe� High Performance Compilers for Parallel Computers� Addison�
Wesley� Redwood City� CA� USA� 	����

�

