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Abstract
Subdivision surfaces are considered which consist of tri- or quadrilateral patches
in a mostly regular arrangement with finitely many irregularities. A sharp esti-
mate on the lowest possible degree of the patches is given. It depends on the
smoothness and flexibility of the underlying subdivision scheme.
Keywords
Subdivision, piecewise polynomial surface, arbitrary topology, extraordinary
point.

1 Introduction

This paper deals with subdivision algorithms acting on arbitrary 2D control nets as the
schemes described in [Doo78, DS78, CC78, Loo87, Qu90, DGLI0, Kob94, PRI6]. Here
we will generalize the degree estimate in [Rei94].

A surface S generated by one of the above mentioned algorithms consists of infinitely
many either tri- or quadrilateral patches which are locally arranged as illustrated in Fig-
ure 1 schematically. Note that these patches may consist of smaller patches themselves
as indicated by the broken lines.

For our analysis it suffices to consider such a local patch configuration. Note that
it has one extraordinary point which does not belong to any of its surrounding patches.
Further we assume that the patches are piecewise polynomial of degree d where d denotes
the total or bidegree in case of tri- or quadrilateral patches, respectively.

If certain patches have simple C*-joints and if the subdivision surface S viewed as
the graph of a function has a Taylor polynomial at its extraordinary point of genuine
degree r, then we are able to show that d is greater than or equal to rk 4 7, in general.

Moreover, in case of triangular patches and if the subdivision scheme can be described
by finite masks, we can even show, that, in general d must be greater than or equal to
r[3k + 1]/2 where [z] denotes the largest integer not exceeding z.

*Supported by BMBF Projekt 03-HO7STU-2.



Figure 1: Subdivision surfaces with extraordinary point.

2 (C*-properties of the subdivision surface

To state the continuity properties of the surface S precisely, let e; := (1,0), e :=
(cosm/3,sinm/3), €3 := (0,1), and

Q:={ae; +be]l <a+0b<2}

or
Q= {ae; + bey|1 < max{a,b} <2}

in case of tri- or quadrilateral patches. These domains €2 are depicted in Figure 2.
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Figure 2: The domains 2



Then we assume that the surface S can be parametrized by a map
s:Zy x Ng x Q2 — R?

consisting of piecewise polynomial patches st (u) = s(i,m,u) of degree < d.
Further let R be the rotation of R? around the origin with angle 7/3 in the tri- and
7/2 in the quadrilateral case, respectively. Then the double patches
siitl(u) 1= s, (1) for u € Q
m | st (R7'u) for u € RQ
defined on 2 U RS2, see Figure 3, are assumed to be k-times differentiable. Note that
these double patches have overlaps according to

st (Ru) =s-b(u) , ueq . (2.1)

€ €

Figure 3: The domains of the double patches s&*!.

For fixed i € Z, the patches s¢ form segments
s i Umen,27™Q — R* | where s'(u) = s (2™u) forue2™"Q .

Figure 4 shows the domain of these segments.
The map s is assumed to satisfy standard smoothness conditions, i.e. for all : € Z,
the segments s’ and the double patches st are k-times continuously differentiable.
For any fixed m, the patches s!, form layers s,,(i,u) = s(i,m,u). Evidently the
space of layers complying with the above smoothness requirements is linear and finite
dimensional. For later use, we denote the underlying space of the coordinate functions

by L4 and endow it with the maximum norm || ||q-

3 A necessary C*-condition

In order to prepare us for the degree estimate let us assume, in this section that there
is a linear map U : L4 — L4y such that for all initial layers s

m
Sm:u So ,
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Figure 4: The domains of the segments s°.

where U™ is applied to each coordinate of sy separately. Hence we assume that the
underlying subdivision scheme acts stationary on the surface layers.

Now, let 1, A\, 1, ..

. be the eigenvalues of U listed with all algebraic multiples and

ordered by their modulus. For simplicity we suppose A = p € (0,1) and assume that
there are two eigenvectors z and y in Ly, associated with A such that x = (z,y) is a
regular parametrization of a surface in R? without self-intersections. Following [Rei95b]
we call x the characteristic map of the underlying subdivision scheme. Figure 5 shows
an example of such a characteristic map.
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Figure 5: Characteristic map of the butterfly scheme for n = 5.

Applying the subdivision scheme to the characteristic map as initial surface ring we
obtain the subdivision surface

x(i,m,a) : Z, x Ny x Q — R?

where x(i,m,u) = A™x(,0,u). This surface can be used to reparametrize the given

subdivision surface S:



Let r(x) : R? — R? be this new parametrization. Then we have
r(x(i,m,u)) = s(i,m,u) .

This parametrization r can easily be analyzed. Specializing the results in [Prad5] we
obtain, e.g., the following theorem.

Theorem 3.1 The map r is k-times differentiable if and only if all eigenvalues v of U
whose modulus lies in the closed interval [\*, )]

e have equal geometric and algebraic multiplicites
o and there exists a j € {1, ..., k} such that v = N
e and Uv = vv implies v € span{z®y’|a + B = j}.

Remark The situation is similar for subdivision schemes acting stationary on control
nets and if A and g are distinct or complex conjugate [Prad5, Rei95a].

For the following discussion we point out that the smoothness of the subdivision
surfaces generated by U implies according to Theorem 3.1 a certain polynomial precision
of the subdivision scheme Y. The situation is similar for non-stationary subdivision
schemes. This polynomial precision then will lead to the anounced degree estimate.

4 General subdivision schemes

A subdivision scheme can be viewed very generally as an operator S mapping initial
data ¢ from some space C to subdivision surfaces s = S(c). A subdivision scheme § is
called

e convergent, if for all s := S(c), c € C, there exists a unique limit point

= i g € Ly -
p ll_1{(1)170)5(u), i €7,

o r-flexible, if for any choice of Taylor coefficients a, , there exists a ¢ such that the
limit point is the origin, and the coordinate functions z,y, z of s = S(c) satisfy

2= 2. ey +o((lzl+y))") as (z,y) = (0,0) . (4.1)
2<ptq<r



Let us briefly discuss the concept of r-flexibility. First, note that the particular form
(4.1) causes no loss of generality. If S is a C''-scheme, then s can always be parametrized
explicitly over the tangent plane at p, locally. Choosing coordinates so that p is the
origin and the zy-plane is the tangent plane there yields (4.1). Flexibility is a measure
for the variety of shapes which can be modeled by a subdivision scheme. For instance,
it is well known that the Catmull-Clark algorithm can be modified to be a C?-scheme.
Then, however, p is enforced to be a flat spot, i.e. a, , = 0 for p+¢ = 2, and the scheme
is not 2-flexible. Or think of a C3-scheme which is only 2-flexible. If ag0002—a11/4#0
then the surface is locally either elliptic or hyperbolic, and the third order coefficients
will not change the shape of the surface essentially. However, the lack of 3-flexibility
will become apparent if a monkey saddle like 2 = x(z? — y?) is to be modeled, since its
shape is substantially distinct from any quadratically parametrized surface.

5 Characteristic maps for general schemes

Definition 5.1 Let s be a reqular surface generated by an r-flexible subdivision scheme
such that the limit point is the origin and the xy-plane is the tangent plane, there. With
Om = ||22, + Y2 |l2ax define the sequence

Xm = (xm/\/ Om, ym/\/ Um) .
Then x 1s a characteristic map of s if there exists a subsequence X, such that

X = 0 Xem) -
Note that each subdivision surface s has at least one characteristic map x € (Lgx)?
since the coordinates of x,, are bounded in Lgy, which is finite dimensional and closed
with respect to || - ||qx. Further, x # 0 since the sum of the squares of its components
has norm 1.

Lemma 5.1 Let s be a regular surface, then x is v-periodic, i.e.
x(+,1) = x(-,i +v) foralli € Z, ,

if and only if v =0 mod n.

Proof Let x be v-periodic. Since x is n-periodic by definition, it is also u-periodic
with p the greatest common divisor of n and p. Let 7,, and 7 := lim,,_,o Tx(m) be the
outer boundaries of x,, and x, respectively. Then 7 is u-periodic and consequently its
winding number is #7 = n/u. Hence, #7.(m) = n/u for m large enough by continuity.



Now assume that v # 0 mod n, then p < n and #7,,) > 2. This implies that 7.
has self-intersections, i.e. there exist sequences si(m) # si(m) such that

and consequently

This implies that the projection of s to the tangent plane is not injective near the origin
contradicting the regularity assumption on s. a

The following theorem relates the minimal possible degree and the smoothness order of
a characteristic map.

Theorem 5.1 Let x be a characteristic map of a reqular subdivision surface s and d
be the degree of x. Then d > (k+ 1) if n ¢ {3,6} in the triangular or n # 4 in the
quadrilateral case.

Proof Assume that the degree d' is less than the specified bounds. Then, evidently the
double patches x**! of x are not piecewise polynomial but in fact simply polynomial.

Identify the double patches x***! with their polynomial extensions to R?. Then
iterating (2.1) yields

Xz,z+1 o Ru —_ Xzfu,z7u+1 ’ = N .

In the triangular case, R® = Id. Hence, x is 6-periodic contradicting Lemma 5.1 for
n & {3,6}. In the quadrilateral case, R* = Id. Hence, x is 4-periodic contradicting
Lemma 5.1 for n # 4. O

In the triangular case we can improve the estimate under further conditions which
are met by all subdivision schemes described by finite masks.

Let A be the triangle Oe;e and Dy, D5, D3 be the directional derivatives with respect
to e}, e — ey, and e, respectively. Then consider the space B{ of all C*-functions with
compact support in R? which are polynomial of degree d over each triangle a;e; +aze;+A
and aje; + aze; + RA, where a;,a, € 72.

Since B{ has no constants besides the zero function the composed operators

D\Dy:Bf — B and D,D.Dy: B — B{~}

are one-to-one. As a consequence of this and the fact BY = {0} we obtain the following
lemma



Lemma 5.2 For d < (3k+1)/2 one has B{ = {0}.
Hence Theorem 5.1 can be extended as follows:

Theorem 5.2 Let x be a characteristic map of a regular subdivision surface with tri-
angular patches. If each patch of x lies on a function in (B{)?, then

degree x > 3k/2+ 1 .

6 The degree estimate

Now we are prepared for the announced degree estimate.
Theorem 6.1 If S is a convergent r-flexible subdivision scheme and r is even, then
i) d > r(3[k]/2+1) if all surfaces S(c) consist only of patches in (B{)® andn & {3,6},

it) d>r(k+1) if n & {3,6} in the triangular or n # 4 in the quadrilateral case.

Proof Let the initial data ¢ be chosen such that s := S(c) satisfies
z= (2" +y") +o((|z[+]y))") .
With o, as in (5.1) let
Tm = Tim/\/Om
Um = Ym//Tm
Zm = Zm/ 07’;{2 )
Then
Zm = (2, +Ur)+0(1) as o, —0.
Since lim,,, .o, 0,, = 0, the latter equation is equivalent to
Zn=(Z0 +7')+o(l) as m— oo .
Choose a convergent subsequence
T 0 Bam) Y= L Ui

then x = (Z,9) is a characteristic map of s. By continuity, we obtain from (6)
2= lim Zym) = (@ +7")
Denote the degree of 7,9, 2 by d,,d,, d., respectively, then
d > d, = rmax(d,,d,) ,

and a comparison with Theorem 5.1 completes the proof. O



Clearly, Theorem 6.1 gives also an estimate if r is odd since r-flexibility implies
(r —1)-flexibility. A sharper estimate for odd r can be obtained for subdivision schemes
with an r-flexible z-coordinate, i.e. schemes which can for all Taylor coefficients generate
surfaces satisfying (4.1) with a common characteristic map.

Theorem 6.2 If S is a convergent subdivision scheme with an r-flexible z-coordinate,
then

i) d > r(3[k]/2+1) if all surfaces S(c) consist only of patches in (BE)® andn & {3,6},

i) d>r(k+1) if n € {3,6} in the triangular or n # 4 in the quadrilateral case.

Proof Let z,y,2 and ¢ be as in the proof of Theorem 6.1. Without loss of generality
we assume that & is of equal or higher degree than ¢. (In the triangular case we consider
the total degree and in the quadrilateral case the degree in one variable.) Now we choose
z=21z"+ o((|z| + |y|)") and define

Zm = Zm/ 0;{ 2
Zm = n%lgréo Ze(m) = 2"
as before. Then the proof can be completed as for Theorem 6.1 O
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