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Figure �
� Each point in the shaded area carries a continuum of lines such
that the associated a�ne standard cut produces C��curves without line seg�
ments	

Hence for each contact point �line	 one can 
nd a continuum of contact lines
�points	 such that either the associated projective or a�ne standard cutting
procedure produces a C��curve without line segments�

Remark ���� Dual to Remark ��� one has that the a�ne standard cut
produces parabolas if it lies on the parabola through a and b with tangents ac
and bc�

Addendum After writing the paper we became aware of unpublished
notes by Bernd Mulansky with similar ideas as in the proof of Theorem �	�	
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Since A� and A� map lines onto lines� they also describe maps on ��	 These
are the inverse dual maps B� � �A�

��
�� and B� � �A�

��
�� which map the

ideal line onto itself and the lines � �� points of ��� ca� ab� bc onto da� ag�
de and de� gb� be� respectively	 Thus the envelope of the standard curve
is obtained by successive applications of B� and B� to ca and bc	 In other
words� the polar scheme is given by the standard triangle ca� ab� bc in ���
the contact line g and the contact point de while the ideal line of � assumes
the role of m	

Next we use the coordinates of Section �� and the polarity with respect
to the circle around m through a and b	 Then the ideal line and the lines
ca� ab� bc are mapped onto the points m� a� c� b	 Further� the points on
the cubic given in Remark ��	� correspond to the tangents of the curve�

x�t�
y�t�

�
�

�

�t� � t� ���

�
��� t���� � t�

t��� � t�

�
�

while the points in the interior of the shaded area shown in Figure � cor�
respond to cuts which do not intersect this curve	 This is illustrated in
Figure ��� If the a�ne standard cut intersects the standard triangle only in
the shaded area� then there is a continuum of contact points on the cut such
that the associated standard curve has no corners and line segments	

Figure ��� Each line intersecting the standard triangle only in the shaded
area carries a continuum of contact points such that the associated a�ne
standard cut produces C��curves without line segments	

Next consider the parabola of Figure ��	 Its envelope corresponds to the
ellipse through m� a� b with tangents ac and cb	 It is shown in Figure �

and in analogy to above we obtain the following� If the contact point lies in
the shaded area of Figure �
 there is a continuum of contact lines through
it such that a�ne applications of this standard cut produces no corners and
line segments	 Figure �
 also shows the cubic of Figure ��	

Remark ���� The union of the shaded areas in Figures �� and �� as well as
the union of the shaded areas in Figures �� and �� 
lls the standard triangle�
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Figure ��� Each line meeting the shaded area but not the line segment ab
carries a continuum of contact points such that the associated standard ccut
produces C��curves without line segments	

�� A�ne standard cuts

The interpolation scheme in Section �� could also be based on a standard cut
which is mapped a�nely onto the corners of P�	 Then the extra points mi

and m are not needed and one can apply the Gregory�Qu result	 However�
such a scheme applied to the standard triangle falls under the Gregory�Qu
condition� see Figure �� only if the standard cut with the notation de�ned
by Figure �� is such that � � � � � and

� � �� � � and �� � � � � � where � �
�a

a� b
� � �

�b

a� b
�

i	e	 the standard cut must be parallel to the line ab while the contact point
can only lie in the interior of the dotted area shown in Figure ��� right	

Figure ��� Standard cut with notation �left� and the set of all feasible contact
elements based on the Gregory�Qu condition �right�	

However� as we will show in the sequel there are many more a�ne stan�
dard cuts producing C��curves	 Hence the Gregory�Qu condition is too re�
strictive	

Consider the scheme given by the algorithm in Section��� where A� and
A� are a�ne maps mapping a� c� b onto a� d� g and g� e� b respectively	
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Thus for any given contact point �x� y� there exists a continuum of slopes
���� such that the standard cut produces curves without line segments if
and only if

x� � x�y � xy� � y� � �x� � �xy � �y� � �x� �y � � � � 	

The region of all contact points satisfying this cubic inequality is shaded in
Figure ��right�	

Figure �� Each point in the shaded area carries a continuum of lines such
that the associated standard cut produces C��curves without line segments	

Remark ���� For later use we observe that the cubic boundary has the
parametrization �

x
y

�
�

�

��� � ��� �

�
��

��� ���
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In order to get the region of all contact lines having a contact point such
that the standard cut does not produce line segments� we transform the �rst
two inequalities above into

�� � ���

�� �� � ��
� x

�
� �� ��� ���

�� � � � ��
	

Note that these inequalities imply � � x�� � �	 Hence we drop the term
x�� and transform the remaining inequality into �� � � �	 Thus whenever
�� � � �� one can �nd a continuum of contact points on the corresponding
contact line such that the standard cut produces no line segments	 The lines
whose intercepts � and � sum to � envelope the parabola

x� � y� � �xy � �x� �y � � � � 	

This parabola forms the boundary of the shaded region shown in Figure ��	
It means that exactly all contact lines which touch or go through the shaded
area of Figure �� but not through the line segment ab have a contact point
c leading to a standard curve without line segments	

Remark ���� The parabola above lies in the shaded area of Figure ���
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Figure ��� Fixed points in the standard triangle	

�� Computing the �xed points

In order to compute the �xed points of A� and A� as given by the standard
triangle shown in Figure �� one may choose any suitable coordinate system�
Let c� a� b and m be represented by the homogeneous coordinates��� ��

�

��� �

��� ��
�

��� �
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�

��� � and

��� ��
�

��� �

then the endpoints d and e of the cutting edge and the contact point g are
represented by ��� �

�
�

��� �

��� �
�
�

��� � and

��� �
x
y

���
where �� �� x� y � ��� �� and x��� y�� � �� and the projective maps A� and
A� have the matrix representations

A� b�
��� � � �
� � x
� � y

���
��� ��xy�x��y��

���

���
��� � � �
� � �
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��� � � �
� � x
� � y
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With the aid of a computer algebra system one can now easily show that
A� and A� have no �xed points in the standard triangle except for a and b

if and only if

� � y

x
� z

� � z
� �

�
� y

�� x
� � � z

z
� where z � � � x� y 	
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Figure ��� The standard left right corner and some projective image of it

respect to a and b and let x�� y�� z� be the a�ne scales of the projections
of a�x � ����n�� c� and a�x � ��n� with respect to the projections of a�x�
and a�x � ���n�	 Since the x� 	 	 	 xn���corner is a projective image of the
���corner under the map Ax� 	 	 	 Axn��� one has

� �� cr�x� yj�� �� � cr�x�� y�j�� �� � x� � �

x�
y�

y� � �
�


 �� cr�z� yj�� �� � cr�z�� y�j�� �� �

where cr�a� bjc� d� denotes the cross ratio of a� b with respect to c� d	 These
two identities imply for y� � y �or y� � y�

x� �
y�

y���� �� � �
� ���

y

y��� �� � �
� x

and analogously z� � �or ��z	 Hence z� � x� � maxf� � x� z � �g	
Therefore the central projection of any x� 	 	 	 xn���corner onto the line

ab is shorter than the projection of the x� 	 	 	 xn�corner by some uniform
factor q � �	 This means that the end points of the corner sequence above
converge to the same point	

Further assume that A� has a �xed point f besides a in the standard
triangle illustrated in Figure ��	 Then the line mf is �xed under A� but not
pointwise since the intersection d with the line ab is mapped onto a di�erent
point e	 Hence A� restricted onto mf can have at most two �xed points�
namelym and the intersection with the �xed line ac	 Thus if A� has a �xed
point besides a in the standard triangle� it lies between on the edge ac	 The
analogous result holds for A�	
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�� Standard curves without line segments

Theorem �	 guarantees that the standard curve is C� but not necessarily
the absence of line segments	 In the following� we will investigate when a
standard cut leads to a curve with or without line segments	 A �rst result is
the following theorem	

Theorem ���� The standard curve S has no line segments if and only if
the projective maps A� and A� as given by the standard cut� see Section ��
have no 
xed points in the standard triangle besides a and b� respectively�

Proof

Assume that the map A� has a �xed point f �� a in the standard triangle	
Then each � 	 	 	 ��corner contains a and f 	 As already mentioned in Sec�
tion �� the standard curve has no corners because of Theorem �		 Hence
it follows from Corollary �	� that the � 	 	 	 ��corners become arbitrarily �at
after su�ciently many iterations	 Thus S contains the line segment af 	 Sim�
ilarly the standard curve has a line segment ending at b if A� has a second
�xed point besides b in the standard triangle	

In order to prove the converse we observe �rst that the construction of
the standard curve implies� since the cuts are local� that no three contact
points � denoted by a�

P
xi��i� in Section �� � are collinear	 Therefore if we

can show that the set of all contact points is dense in S� then S has no line
segment	

Now assume that A� and A� possess no �xed points besides a or b� in
the standard triangle� respectively� and let q be an arbitrary point on S	 We
need to show that q is a limit point of the contact points on the left and also
of the contact points on the right side of q�
��� Let q � a� then the � 	 	 	 ��corners form a strictly monotone sequence of
triangles a� An

�c� A
n
�b	 Hence the sequence An

�b cannot have two accumula�
tion points and converges to a point f in the standard triangle	 Since f must
be a �xed point of A�� it follows that a � f 	 ��� One can proceed similarly
if q � b	 ��� Let q � a�

Pm
i�� xi�

�i� �� a be a contact point of S where
xm � �	 Then the right endpoints of the x� 	 	 	 xm� 	 	 	 ��corners and the
left endpoints of the x� 	 	 	 xm���� 	 	 	 ��corners converge to q�

lim
n��

Ax� 	 	 	 AxmA
n
�
b � Ax� 	 	 	 Axma � q �

lim
n��

Ax� 	 	 	 Axm��A�A
n
�a � Ax� 	 	 	 Axm��A�b � Ax� 	 	 	 Axm��A�a � q 	

�� In all other cases there is a sequence xn containing in�nitely many pairs
xnxn�� � �� such that the x� 	 	 	 xn�corners contain q	

Figure �� shows on the right side in bold the left right corner of some
x� 	 	 	 xn���corner a�x�� c��a�x� ���n� where x �

Pn��
i�� xi�

�i	 It is the pro�
jective image of the ���corner also shown in bold on the left side	

Consider the central projection with m as center onto the line ab	 Let
x� y� z be the a�ne scales of the projections of a����� c and a����� with
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Then� from what is said above� we can derive the following algorithm to
compute all corner end points after some n iterations	

Algorithm

Given� Standard corner as in Figure ��� number of iterations n
�� a��� �� a� a��� �� b

�� For l � �� �� 	 	 	 � n
For i � �� �� �� 	 	 	 � �l � �

a�
i

�l
� ��

	


�


�
A�a�

�i

�l
� if �i � �l

A�a�
�i

�l
� �� if �i � �l

Figures 
 and �� were obtained by this algorithm and subsequent projective
maps	 The �gures show the starting sequence of contact elements and the
standard cut which de�nes the �ll�in scheme used to generate the interpo�
lating curve which is also shown	 Further we used mi � ai � ai�� � ai���
for i � �� �� � 	 	 	 �m � �	 These points are suppressed in the �gures	 In
Section �� we present an explicit matrix representation for the maps A� and
A�	

Remark ���� The algorithm above is formally identically to the matrix
subdivision algorithm introduced and studied in �Micchelli � Prautzsch ����
Prautzsch ���� However� here A�� A� are not a�ne� but projective maps�
Hence� the analysis there does not apply to our scheme here�

Figure ��� Interpolant produced by the algorithm	

Remark ���� If the standard cut with its contact point is a contact element
of the conic through the points a� b� m with the tangents ac and bc� then
the projective maps A� and A� map this conic onto itself since any conic
is determined by three points and two tangents� Thus the cutting scheme
above generalizes Haase�s alias de Casteljau�s rational algorithm for conics�
see e�g� �Boehm � Prautzsch ��� p ����
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vertex c� and the two contact points a� b of the standard corner and their
images	 Hence for each corner of Pn formed by two successive contact points
and the vertex between one needs to specify the image of m	 We choose
for all corners of Pn between ai and ai�� the same image for m and denote
it by mi	 Since cross ratios are invariant under projective maps� the �ll�in
scheme above satis�es the conditions of Theorem �	 provided that m does
not meet a supporting line of the polygon ab with end tangents ac and bc

and similarly mi does not meet a supporting line aiai�� with end tangents
aici and ai��ci	 Hence the limiting curve is a C��interpolant	

Figure ��� Applying a standard cut	

If one applies the �ll�in scheme above to the standard corner itself� one
obtains the standard curve	 Mapping the standard curve to each corner
of P� gives the same result as if P� is cut iteratively by the standard cut
since every corner aiciai��mi is a projective image of the standard corner	
Another option is to map the standard curve onto each corner of P� by an
a�ne map which would yield a di�erent curve but eliminate the need for the
extra points mi	 This is discussed in Section ��	

In the following we describe a very simple algorithm to produce the stan�
dard curve� Applying the standard cut to the standard corner itself generates
a left and a right corner	 Further applications of the standard cut produce
a left left� a left right� etc	� corner	 We will label these corners by sequences
x� 	 	 	 xn of binary digits xi � f�� �g where � stands for  left! and � for
 right!	

Let A� and A� be the projective maps which map the standard corner
onto the left and right corner� respectively� i	e	 A� and A� map a� c�b�m
onto a�d�g�m and g� e�b�m respectively	 Since the cutting scheme under
consideration is projectively invariant� the standard curve restricted to the
left or right corner is a projective image of the entire curve under A� and A��
respectively	 HenceAx� 	 	 	 Axn maps the standard corner onto the x� 	 	 	 xn�
corner	 Note� e	g	� that A�A� maps the standard corner via the right corner
onto the left right corner	

Let a�x� be the straightforward ��� correspondence between the dyadics
x �

Pn
i�� xi�

�i in ��� �� and the contact points on the standard curve� i	e	
let a��� � b and a�

Pn
i�� xi�

�i� be the left end point of the x� 	 	 	 xn�corner	
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by construction in ��� ��	 Thus we need to show that g�h � constant � � for
��� ��� ��� ��	 With the law of sine it follows

g

h
�

sin �� � sin �
sin��
� � ��� ��

sin��
� � � � ��

sin� � sin�
�

sin�� � sin �
sin� � sin�

sin��� ��

sin���� ��
	

Hence if ��� �� � ��� �� the inferior and superior limits of the ratio g�h are
�positive� values between � and  	 This concludes the proof	

�� A convexity preserving interpolation

scheme

As an application of Theorem �	 we describe a convexity preserving inter�
polation scheme where the shape of the curve can be modi�ed by a very
direct shape handle	 The input for the scheme is a sequence of contact ele�
ments in the a�ne plane� i	e	 line segments with one distinguished point ai
on each segment� i � �� 	 	 	 �m� as illustrated in Figure ��	 Let ci be the
point where the lines through ai and ai�� intersect	 Then a�c�c� 	 	 	 cm��am
and a�a� 	 	 	 am are two polygons P� and Q� as needed for a �ll�in scheme
where P� circumscribes Q�	

Figure ��� Polygon to be interpolated	

Note that the tangent at ai has to be chosen such that it intersects the
tangents at ai�� and ai�� on opposite sides of ai	 Thus if the tangents are not
given properly� one must explicitly introduce in�ection points with tangents
"	" as further contact elements� see Figure ��	

The �ll�in scheme is speci�ed by a standard cut in a standard corner acb
as illustrated in Figure ��	 A user can choose the cutting line de and the
contact point g arbitrarily inside the standard triangle	 The standard cut
is then mapped by projectivities onto each corner of P� and further iterates
Pn	 The images of the standard cut determine all cuts on every Pn	 The
underlying projective maps are determined by the four points m� the corner
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Here m is the ideal point of the vertical axis	 Thus if one views the ideal
point of the vertical axis as the ideal line of ��� the projective scales � � ��G�
and � � ��S� become a�ne scales on the line q of �� with respect to the
a�ne systems F �R�F and R�F �R	 Hence the envelopes Q�

n determine
a Gregory�Qu scheme and are covered by Theorem �	� �compare Figures �
and ���	

In particular� one may run the scheme by Le M�ehaut�e and Utreras with
� � ��� and � � � � �� �xed for the entire algorithm	 Then one still obtains
a C��interpolant	 This particular scheme which is excluded by Le M�ehaut�e
Utreras and was proposed in �Carnicer ����	 The polar scheme is Chaikin�s
construction of piecewise quadratic splines �Chaikin ���	 Hence it follows
from Remark ��	� and ��	� that Carnicer�s interpolant consists of segments
of hyperbolas and parabolas	

� Choosing a good contact line

Using the terminology of Theorem �	� a �ll�in scheme in a Euclidean plane is
completely de�ned by a sequence of numbers � and  and the choices of the
tangents	 If the ��s and  �s satisfy the conditions of Theorem �	�� the limiting
curve P� has no corners but it can have line segments	 We show that for
any sequence of ��s and  �s satisfying the conditions in Theorem �	� one can
�nd tangents such that the cuts also satisfy the conditions of Theorem �	�	

Figure �
 shows the triangle of Figures � and �� again with further nota�
tion	 It is the corner of some Pn	 We will see that there is some � � � such
that for every Pn and any of its corners � � g�h � � � � where g and h are
given by Figure �
	 Thus if the tangent at the new contact point 	 is chosen
to be parallel to the base of the triangle� the condition of Theorem �	� is
satis�ed	 Other� although less simple choices� are also possible	

Figure �
� Choosing a tangent	

The ratio g�h depends continuously on �� �� � and  	 Since corner cutting
does not create corners which are sharper than the ones being cut� we have
�
� � �� � � � � � where � is the interior angle de�ned by the two edges
of P� shown in Figure ��	 Hence we consider g�h only over the compact
domain � � ��  � � � �� � � �� � � �
� � �	 For �� � � � the ratio g�h is

��



Figure ��� Construction by Le M�ehaut�e and Utreras	

This scheme is polar to a Gregory�Qu scheme in ��� Consider two con�
secutive edges F and R of Qn and two consecutive edges G and S of Qn��

with a common point q as illustrated in Figure ��	 Let � � � � � � � � �
denote the ratios in which the slopes of G and S divide the slopes of R and
F 	 Then� obviously � � � � � � � � ��� ���� which means that ��� �� lies in
the region shaded in Figure ��	

Figure ��� New formulation of the construction by Le M�ehaut�e and Utreras	

Figure ��� The Le M�ehaut�e�Utreras region	

Figures �� and �� show a special case of the situation shown in Figure �	
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greater than ��� produces a curve with corners� see �Gregory � Qu ����� but
without line segments since Theorem �	� applies	 Thus� the polar scheme sat�
is�es the premises of Theorems �	 and �	� but not the Gregory�Qu condition
in ��	 Moreover one has�

Theorem ��� Any local corner cutting scheme in an a�ne plane where all
corners are cut simultaneously by local cuts produces a limiting curve without
line segments if the accumulation points of the ��� �� lie in the closure of the
triangle shaded in Figure � without its three vertices�

Remark ��� In particular� if � and � � � and ��� � �� then the conditions
of Theorem �� are satis
ed�

Proof

We introduce any scalar product in the a�ne plane� consider all pairs of two
consecutive edges of Pn and denote the maximum length of these pairs by
mn	 Then proceeding similarly as in the proof of Theorem �	� one shows that
there is some q � � such that mn�� � q �mn for all n	 Hence the theorem
follows from Lemma �	�	

Figure �� The region of Theorem �	�	

	 The interpolation schemes by Carnicer

and Le M
ehaut
e � Utreras

Very recently Le M�ehaut�e and Utreras ����� presented an interpolatory re�
�nement scheme which produces a sequence of polygons Qn in a Euclidean
plane converging to a C��interpolant of Q�	 Le M�ehaut�e and Utreras assume
that the Qn are graphs of piecewise linear functions	 In order to construct
Qn�� from Qn they choose at each vertex of Qn a supporting line	 Then they
determine a new contact point 	 between each pair of consecutive vertices

 indirectly by the ratio � � �� � as illustrated in Figure ��	 For the entire
scheme � is a �xed number in ����� ��� while the supporting lines at any �xed
vertex can be di�erent for all Qn with this vertex	

�



p� q and the vertex r between them	 This triangle with a next cut st is
illustrated in Figure ��	

Figure ��� Cutting a corner of Pn	

Corner cutting under the Gregory�Qu condition means that for each edge
one has

contact point � �� � c� � left end point � c � right end point

where c � � �� minf�� �g	 Hence the ratio k � l of the distance k of p to
r and the distance l of q to r lies between ��R and R��	 Furthermore� let
s and t be such that s � �� � s�p � sr and t � �� � t�q � tr	 Then the
Gregory�Qu conditions imply

s � ��� s� � � � ��� � �� � ��� � ��� � �� ���

s � ��� s� � �� � ���� � ���� � �� � �� � � �

and analogous inequalitites for t	 Thus s and t lie between ��� and � � �	
Now we can write the new contact point c on st as

c � �� � c�s� ct � pp � ��� p���� � q�r� qq� �

where ���q� � q � �s�cs�ct� � �c�ct� �� x� which shows that q � �����x�
lies in a closed interval of ��� �� depending only on �	 Further one has

sin��

sin�
�

sin c�

sin �
� sin �
sin�

�
��� q�l

f
� k
l
�

cf	 Figure ��	 Since corner cutting under the Gregory�Qu condition pro�
duces C��curves� we can� without loss of generality� assume � � ���� see
Corollary �	�	 Then we have f � k� ql � k�� � qR���	 Thus sin��� sin� is
bounded away from � and � for all possible q	 Therefore� � must lie in some
compact subinterval of ��� �� and the result of Gregory and Qu follows from
Theorem �	�	

The converse� however� is not true since the Gregory�Qu condition re�
stricts the cut� i	e	 the choice of the new contact line st� while there is no such
restriction in Theorems �	 and �	�	 Furthermore� a cutting scheme where
all corners are cut simultaneously and where all ��s and all ��s are equal and
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Figure ��� Cutting a corner of Pn	

Figure ��� The �ll�in region of Dyn et al	

A special case of Theorem �	� was also studied in �Hejna �

�	 There the
lines S� T are given by the bisectors of P and R� and Q and R� respectively	
The new contact line is given by the bisector of the lines S and T as just
described	

� The GregoryQu result

The Gregory�Qu corner cutting scheme also satis�es the conditions of Theo�
rems �	 and �	�	 In order to show this� we need a property �rst derived by
Gregory and Qu	 Let Pn be a sequence of polygons in the Euclidean plane	
If� for all n� Pn�� arises from Pn by cutting all corners simultaneously such
that ��� �� and ��� �� lie in the Gregory�Qu region shown in Figure �� then
there is a positive constant R not depending on n such that the lengths �
and � of any two successive edges of any Pn satisfy ��R � ��� � R	

Now consider a triangle on Pn formed by two consecutive contact points
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Remark ��	 The new contact line st in Figure � can be any line which does
not intersect the secant pq�

Remark ��� The limiting curve P� is tangent to P� at the endpoints and
has no corners there�

As described before Corollary �	� we can take Theorem �	� to the elliptic
plane� Theorem �	� constrains the ratios � and  � i	e	 we have conditions
of the form a � b � � � � for certain lengths a and b	 Now let � and �
be the corresponding lengths on the sphere	 Then there are� as we already
observed� two positive constants k and K independent of a and b such that
� � ka and � � Kb	 Hence we obtain � � � � ka � Kb � �k�K� i	e	 if we
replace Euclidean by spherical distances� Theorem �	� is also valid on the
elliptic plane	

Again we can use the polarity which maps points onto lines with the same
coordinates	 Then the conditions of Theorem �	� constrain ratios of angles
for a �ll�in scheme in the dual plane	 As before Theorem �	 we express
these conditions in terms of the polar��ll�in scheme in the primal �point�
plane and bring them back to a Euclidean plane in the same way as we
took the conditions for ratios of lengths to the elliptic plane	 Then� �nally�
Theorem �	� assumes the following form�

Theorem ��� Consider a sequence of polygon pairs Pn� Qn obtained by a

ll�in scheme from acb� Assume that Q� is a polygon in a Euclidean plane
and let m be a point which does not meet any supporting line of Q�� Further
suppose that


 all corners of every Pn are cut away eventually


 there is some � � � such that all corners of Qn�� with end tangents
S and T which replace an edge R of Qn between two contact lines
P� Q satisfy ��  � ��� � � �� where � � angleRS � angleRP and
 � angleRT � angleRQ as illustrated in Figure �

Then the limiting curve is C��

A weaker form of Theorem �	� was �rst proved in �Dyn et al	 ����	 Fig�
ure �� shows successive contact points 
 of Qn connected by secants and a
newly introduced contact point 	 which lies on Qn��	 The interpolatory re�
�nement scheme of Dyn et al allows to build only sequences of polygons such
that the interior angle � is �atter than a certain average of � and �	 Their
conditions imply that the maximum interior angle formed by the secants of
each Qn�� is �atter than some constant in ��� �� times the maximum interior
angle of Qn	

This is not the case under the assumptions of Theorem �	�	 Consequently
the �ll�in region of the scheme by Dyn et al is smaller than the one presented
here	 Figure �� shows their �ll�in region� the shaded area� for this example	
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which implies that the maximum distance between successive contact points
becomes arbitrarily small for n��	

Figure ��� P� and a corner of Pn with two further cuts	

Note that � represents s with respect to the a�ne system r�p� r	 It is
called the a
ne scale with respect to r� p	 Moreover� s has the projective
coordinates �� � with respect to the frame r� x# p where x is the ideal point
of the line and p is chosen as the unit point	 Thus � is the projective scale
with respect to r�x#p or equivalently the cross ratio of s�p with respect to
r�x� see e	g	 �Boehm � Prautzsch ��� pp ��� and ����	

Next let the envelopes Q�
n and P�

n satisfy the premises of Theorem �	�
where Q�

n circumscribes P�
n	 Then the limit of these envelopes has no line

segments in �� which implies that P� � Q� � limQn has no corners	 Recall
from Section � that Q�

� lies in an a�ne space of �� where the ideal line is a
point m of � which does not lie on any line of Q�

�	 Using Lemma �	�� the
conditions of Theorem �	� for the polar scheme can be expressed in terms of
Pn and Qn	 Then Theorem �	� takes on the following form�

Theorem ��� Consider a sequence of polygon pairs Pn� Qn obtained by a

ll�in scheme from acb� Assume that Q� is a polygon in the projective plane
and let m be a point which does not meet any supporting line of Q�� Further
suppose that


 all corners of every Pn are cut away eventually


 there is some � � � such that all corners of Qn�� with end tangents S
and T which replace an edge R of Qn between two contact lines P� Q
satisfy ��  � ��� �� �� where � and  are the projective scales of S and
T with respect to R� X � P or R� Y� Q� respectively� and X and Y are
the lines through m� cf� Figure � for an illustration�

Then the limiting curve P� has no corners�
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Figure �� Cutting a corner of Pn and Q�
n	

Remark ��� The contact points can lie anywhere in the interior of the cor�
responding edge�

Remark ��� The limiting curve P� interpolates P� at the endpoints and
has no line segments there�

Proof

Without loss of generality� assume that a� c� b are the points ���� ��� ��� ���
and ��� �� of the Euclidean plane IR�� respectively� as illustrated in Figure ��	
Because of Lemma �	� it su�ces to show that the longest edge of the polygons
Pn shrinks to zero	 Note that for all n the slope of any edge of Pn lies between
the slopes of the two edges of P�	 Thus the length of any edge is bounded
by the length of its orthogonal projection onto the line ab multiplied by

p
�	

Furthermore� if the projections of all contact points become dense in ab

for n��� then the projections of the edges and thus the edges themselves
become arbitrarily small	 Hence we just need to consider two successive
contact points of some Pn	 Figure �� shows P� and an arbitrary corner with
two further cuts where a� b� 	 	 	 � f denote lengths of certain edges after their
projections onto ab	 Because of symmetry reasons we can restrict ourselves
to the case a � b	 Under this provision it is easy to see that

c � d � ��a � ��

�
�a� b�

and that

c � e� ��� ��f

� e� ��� ���a� e� b�

� �e� ��� ���a� b�

� ��� � ��a� ��� ���a� b�

� �� � ����a� b� �

�



Figure �� Central projection from E onto the unit sphere	

Figure 
� C��interpolation on the sphere	

� Main results

In this section we will apply Lemma �	� to derive simple �ll�in strategies
which produce curves without corners or line segments	 A major result is
the following	

Theorem ��� Consider a sequence of polygon pairs Pn� Qn obtained by a

ll�in scheme from acb� Assume that P� is a polygon in an a�ne plane�
Further suppose that


 all corners of every Pn are cut away eventually


 there is some � � � such that all edges of Pn�� with endpoints s and t
which cut a corner between two contact points p� q and a vertex r of
Pn satisfy ��  � ��� �� �� where s � r� ��p� r� and t � r�  �q� r��
cf� Figure � for an illustration�

Then the limiting curve P� has no line segments�






For the converse assume that there are arbitrarily large indices n such
that Pn has an edge which is longer than some positive �	 Then there is a
sequence of long edges in the convex hull of P� if the sequence is decreasing
or in the convex hull of limPn in case the sequence is increasing	 Since under
our de�nition the convex hull of a convex curve is compact� a subsequence
of these long edges converges to a line segment of P�	

Remark 	�� If the maximum edge length of the Pn goes to zero� then the
maximum edge length of the Qn also goes to zero� Hence� in this case the
polygons Pn and Qn converge to the same curve�

The pairs of antipodal points on the unit sphere in a Euclidean ��
space form a model of the projective plane	 If one introduces angles be�
tween and distances on �geodesic� lines� one has the elliptic plane� see
�Hilbert � Cohn�Vossen ���� pp ��
����	 Under the correlation �actually it
is even a polarity� which relates points and lines with the same coordinates
the angle of a corner equals the length of the dual line segment	 Moreover�
projecting a plane E which does not contain the origin onto the sphere with
the origin as center of projection as illustrated in Figure � one has that every
angle and length in E corresponds to an angle or length on the sphere� respec�
tively	 Comparing all angles or lengths in a compact subset of E with their
images on the sphere� we obtain ratios which are bounded from above and
below by positive constants	 Hence we can take Lemma �	� to the elliptic
plane� by polarization further to the dual plane� then by the polarity above
to the elliptic point plane again� and �nally back to a Euclidean plane	 Then
Lemma �	� assumes the following form�

Corollary 	�� �de Boor ���� Let Pn� Qn be a sequence of polygon pairs in a
Euclidean plane obtained by a 
ll�in scheme from acb� If the sharpest corner
of the polygons Qn �attens out completely as n � �� then Q� � limQn

has no corners �and no endcorners	� The converse holds for any mono�
tone sequence of convex polygons Qn converging to a convex curve without
corners and end corners �Example �� shows that end corners must not be
disregarded	�

In particular� one should note that besides the above all results of this
paper hold for spherical cutting schemes which produce a sequence of geodesic
polygons on a sphere	 For example the C��interpolant shown in Figure 
 was
produced by the scheme presented in Section ��	

Remark 	�� The corners of the Qn �atten out if and only if the corners of
the Pn �atten out�
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and every new edge and restrict further cuts such that the already chosen
contact points are not cut away	 Then it follows that one can describe any
local corner cutting scheme in this way	

The chosen contact points also form a polygon	 Thus with the above
extension a local corner cutting algorithm generates a sequence of polygon
pairs Pn� Qn where Qn connects the contact points on the edges of Pn	 We
will call this extended procedure where we obtain a sequence of polygon pairs
Pn� Qn as described above� a �llin scheme� see Figure � for an illustration	
Further we will say that Pn circumscribes Qn	

Let a and b be two contact points on successive edges of P� as illustrated
in Figure �	 In order to investigate the di�erentiability of the limiting curve
between a and b one may truncate all Pn at a and b and assume that P�

consists of just the three vertices a� c� b� see Figure �	 Thus without loss of
generality we will always assume in the sequel that


 the starting polygons P� and Q� for a �ll�in scheme form a non�
degenerate triangle acb and


 ac and cb determine the end tangents for all Pn and Qn	

Then the enveloping curves Q�
n and Pn

� are again polygons which determine
a �ll�in scheme	 We will call it the polar �llinscheme	 Note that under
polarization Pn and Qn change their roles� Q�

n circumscribes Pn
�	 However�

note that under a correlation Pn and Qn do not change their roles	

Remark ��� In general Pn and Qn converge to di�erent curves� However�
the conditions under which we study 
ll�in schemes in the sequel will always
guarantee that the Pn and Qn have the same limiting curve�

� The basic lemma

From Lemma �	�� it follows that a �ll�in scheme produces a C��curve if the
polar scheme produces a curve without line segments and vice versa	 The
following simple lemma provides a su�cient and necessary condition	

Lemma 	�� Let Pn� Qn be a sequence of polygon pairs in a Euclidean plane
obtained by a 
ll�in scheme from acb� If the maximum edge length of the
polygons Pn goes to zero as n � �� then P� � limPn has no line seg�
ments� The converse holds for any monotone sequence of convex polygons
Pn converging to a convex curve without line segments�

Proof

Assume that P� has a line segment S	 Under local corner cutting any three
vertices of any Pn are not collinear and therefore for any n the line segment
S lies in some triangle formed by two successive edges of Pn	 Hence not all
edges become arbitrarily small	
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monotonely decreasing� H� � H� � 	 	 	 � such that
T
�

n��Hn has a non�empty
interior	 Then we de�ne limCn as the boundary of

T
�

n��Hn without D	
If the setsHn are monotonely increasing such that

S
�

n��Hn is bounded� we
de�ne limCn analogously as the boundary of

S
�

n��Hn without D	 Under po�
larization we obtain then monotonely decreasing sets� Hp

� � Hp
� � Hp

� � 	 	 	 	
From Section � it follows that Hn is the polar set of �Hp

n	 Thus� Lemma �	�
implies �limCn�p � limCpn	 In both cases for in� and decreasing sequences
�Hn� we de�ne the end tangents of limCn also by D	

Example ��� Even if all Cn do not start with a corner� the limiting curve
may do so� Consider three a�nely independent points a� c� b and the open
polygons Cn with vertices a� � n

n��
c� �

n��
a�� � �

n��
c� n

n��
b��b without end cor�

ners� Then limCn is the line segment ab with end tangents ac and cb as
illustrated in Figure ��

Figure �� An example	

Let the sets Hn from above be monotonely increasing	

� Fillin schemes

Let Pn be a sequence of polygons such that Pn is obtained from Pn�� by one
or several successive local cuts	 Then there is at least one point on each edge
of every Pn which is never cut away	 Here we will call such points contact
points	 They are marked by solid dots 
 in all the �gures	

Figure �� Contact points on P� and P� and the polygons Q� and Q�	

A local corner cutting algorithm is completely described by a sequence
of cuts	 Here� however� we will also choose one contact point on each initial
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Remark ��� Consider a correlation �i�e� a projective map	 between � and
��� On viewing the image of the ideal line as the ideal line in ��� the corre�
lation is an extended a�ne map� Hence the image of C under a correlation
is again a convex curve� Moreover� the image of a corner or line segment is
also a corner or line segment respectively�

� Open curves

So far we considered only closed curves	 But it is easy to include also open
curves� An open curve C in an a�ne plane A is called convex if there is a
second curve D such that the union of C and D forms a closed convex curve	

Let C be an open convex curve and C D be a closed convex curve	 Then
the supporting lines of C  D contacting C form an open convex curve C� in
the dual plane	 Let a and b be the end points of C	 If C  D has a corner
at a �or b�� then the envelope C� starts �or ends� with a line segment whose
length depends on D	 We will say that C starts or ends with a corner if
C  D has a corner at a or b	

Let F and L be the �rst and last point of C� in ��� then C� is completely
determined by C and the lines F and L in � �without need of D�	 We will call
the lines F and L the end tangents of C	 Moreover� C is the envelope of C�
with end tangents a and b in ��	 Figure  gives an illustration� where C with
end tangents F and L has no end corners while C� with end tangents a and
b does	 The right side of Figure  is a dual image of the left side obtained by
the polarity with respect to the circle D� cf	 e	g	 �Brieskorn � Kn�orrer �
��
pp �
���
�� for a description of this construction	

Figure � An open convex curve and its envelope	

Further we recall� e	g	 from �Schneider ���� Corollary �		��� that a com�
pact convex set is the convex hull of its boundary	 We employ this rela�
tionship to de�ne the limit of a sequence of open convex curves Cn
with the same end points and end tangents� Assume that the end tangents
are speci�ed by some common arc D as described above where D is disjoint
with all Cn	 Further let the convex hulls Hn of the convex curves Cn  D be





closed cone which is complementary to the cone x � IR�x� �M�	 If there is
more than one supporting line at x� we say that M and �M have a corner
at x	

Further� let � be the projective extension of A	 Then the polar setMp

is de�ned as the subset of the dual plane �� formed by all lines in � which do
not intersectM� see �Schneider ���� Section �	��	 Since every point p �AnM
carries a line which does not meet M �cf	 Schneider ���� Thm	 �	�	�� M
consists of all points � b�lines in ��� which do not meetMp	 HenceM is the
polar set ofMp �Schneider ���� Thm	 �	�	�� andMp lies in an�y� a�ne plane
�of �� whose ideal line is a point of M�	

Note that the above polarization reverses set operations	 Namely if
M is a subset of another convex set N in A� then Mp contains N p and if
the union of some convex sets Mi in A with non�empty interior is convex�
then this union is polar to the intersection of the polar sets Mp

i � cf	 also
�Schneider ���� Theorem �	�	��	

Next we observe thatMp is also convex	 Namely every line in �� ��pencil
of lines in ��� which intersectsMp� does so in a connected line segment	 This
line segment forms a cone in P complementary to some cone p�IR�M�p�	
Further� ifM is bounded�Mp has a non�empty interior and is also bounded	
This follows from the fact that the polar set of an open �closed� triangle of A
is a closed �open� triangle in some a�ne plane of �� and since a bounded set
with non�empty interior is contained in a triangle and contains a triangle	

Let M be bounded	 Then the closure of M can be obtained by inter�
secting all closed triangles ��intersection of three half spaces� containing
M� while the interior of M is formed by the union of all open triangles con�
tained inM	 Hence the closure �interior� ofM is the polar set of the interior
�closure� of Mp	 This enables us to prove the following lemma	

Lemma ��� Let M be a bounded convex set of the a�ne plane with non�
empty interior� Then the supporting lines of M form the boundary of Mp�

Proof

A line L in � supports M i� it meets the closure but not the interior of M
or i� L as a point of �� does not lie in the interior but in the closure of Mp

which proves the lemma	

The lemma shows that the supporting lines of a convex curve C form a
convex curve C� in the dual plane	 It is the envelope of C	 Note that with
the usual identi�cation of � and ��� we further obtain that C is the envelope
of C�	

There is another crucial consequence of the lemma above� Namely� the
supporting lines U at some point x of C are the points U of a line segment of
C� which lies on the line x in ��	 Similarly� a line segment of C corresponds
to a corner of C�	
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the sequence �Pn� converges to a C��curve� if the points ��� �� and ��� �� lie
in the interior of the shaded region shown in Figure �	

Figure �� The Gregory�Qu region	

Not every corner cutting algorithm which produces C��curves satis�es
the Gregory�Qu condition	 In this paper we will present a necessary and
su�cient condition for a local corner cutting scheme to produce C��curves	
Our result also leads to a new proof of the result by Gregory and Qu	 While
the proofs in �Gregory � Qu ���� and �de Boor ���� are analytic� our proofs
are geometric	

Furthermore we will consider the dual statement of our result	 A corner
cutting process is dual to an interpolatory re�nement scheme� i	e	 a
scheme which produces a sequence of polygons Qn such that for all n the
vertices of Qn are also vertices of Qn�� as illustrated in Figure �	

Finally we present a convexity preserving local interpolation scheme with
geometric shape handles well suited for interactive geometric design	 The
method is very much related to the matrix subdivision scheme studied in�
e	g	� �Prautzsch ����	

� Preliminaries

Here we recall some simple well�known geometric facts which are crucial for
the entire paper	

Throughout we will work in an a�ne plane A over IR equipped with the
standard topology and extend A if needed by the ideal line	 Often we will
need a scalar product in A and thus consider a Euclidean plane instead	

In this paper we de�ne a closed convex curve in an a�ne plane as the
boundary of a bounded convex subset with non�empty interior	 Note that a
convex set without interior points is either a point� line� or a line segment�
see e	g	 �Limaye �
�� p ���� Lemma �	

For the rest of this section letM be an open or closed convex subset of A

with non�empty interior
�M and let x be some boundary point of M	 Then

the lines through x which do not intersect
�M are the supporting lines of

M and its boundary �M at x	 Note that the supporting lines at x form a
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� Introduction

Many algorithms in Computer Aided Geometric Design are corner cutting
algorithms like de Casteljau�s� degree elevation� or knot insertion	 Corner cut�
ting is attractive since it provides simple geometric constructions of curves	 It
means to produce a sequence �Pn� of polygons� i	e	 piecewise linear curves�
such that Pn�� is obtained from Pn by one or several cuts as illustrated in
Figure �	

Figure �� Corner cuts	

In this paper we assume that any three consecutive vertices of a polygon
are distinct and consider only local cuts	 Following de Boor ������ Section ��
we will call a cut local if it removes exactly one vertex and adds two new
ones	 Thus if Pn�� is obtained from Pn by m local cuts� then Pn�� has m
more vertices than Pn and each edge of Pn contains an edge of Pn��	

Local corner cutting has been studied by de Rham ����� ������ Gregory �
Qu ������� and de Boor ������� Let �Pn� be a sequence of polygons generated
by local cuts such that all corners of Pn are cut simultaneously� i	e	 Pn��

divides each edge of Pn into three segments as illustrated in Figure �	 Let
the lengths of these � segments have the ratios � � �� � � � � � where � and
� may be di�erent for each n and each edge of Pn	

Figure �� The Gregory�Qu scheme	

Further� let �� �� �� � be the supremum and in�mum of all ��s and ��s	
Then Gregory � Qu and later de Boor� with a di�erent proof� showed that
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Abstract

In this paper we consider corner cutting and convexity preserving interpola�
tory re�nement schemes in the plane and on the sphere	 Using well�known
facts from projective geometry we present a uni�ed approach to such schemes
and geometric derivations of simple conditions which guarantee that a scheme
generates C��curves	 Our results generalize all of the results known so far and
provide the ground for a new convexity preserving C��interpolation scheme
with a simple direct shape handle	
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Spherical and planar corner cutting� interpolatory re�nement� convex curves�
duality� matrix subdivision� C��interpolation� conics� Haase�s algorithm
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