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Abstract
In this paper we show how one can construct a regularly parametrized
(?-spline surface of arbitrary topology from one control net. The surface is
piecewise bisextic around extraordinary points and bicubic elsewhere. Fur-
thermore, the bisextic representation of the surface allows for subdivision
algorithms. The underlying ideas can also be used to construct subdividable
G*-splines of bidegree 2k+2.
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1 Introduction

Constructing C*-spline surfaces of arbitrary shape by existing methods is
quite cumbersome. Moreover, the degree of such surfaces is relatively high,
namely O(k?) [Mogerle 92, Hahn ’89], and it is not clear how to present such
surfaces by a single spline control net as one can do it with tensor product
or box spline surfaces.

The purpose of this paper is to introduce a new methodology enabling
us to construct G*-surfaces with regular parametrizations of low degree
from one single spline control net. In order to make the underlying ideas
more easily accessible, I restrict myself here, exemplary, to the currently
most interesting case of G*-splines. The general case plus further results and
details will be described in a second paper.

2 The control net

To start with consider a control net in R® with quadrilateral meshes such
that extraordinary vertices o are sufficiently isolated by regular vertices o.
We will view each regular subnet of at least 4 x 4 points as the control net of
a uniform bicubic C? tensor product spline surface. Hence, the total control
net defines a C%-surface where each extraordinary vertex corresponds to a
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non-four sided hole as illustrated in Figure 1. Note that an n-sided hole is
surrounded by a ring r of 3n patches ry, ..., T3,, where r;(u,v) : [0,1]*> — R?.

Our idea is to represent these bicubic rings as bisextic splines and to
change the inner boundary such that these rings can be filled smoothly with
a surface of total degree 2.

Figure 1: Control net with corresponding piecewise bicubic tensor product
spline.

3 The construction

Let r be a ring surrounding an n-sided hole as considered above and let x be a
similar, but planar surface ring having as many patches x;(u,v) : [0,1]? — R?
with the same connectivity as the spatial ring r. Figure 2 shows the bicubic
B-spline control and the Bézier-net of one possible, planar ring x, for n = 5,
cf. also Remark 3.

The n-sided hole surrounded by x can be filled by a planar surface y
consisting of n bicubic patches having C?%-joints with x. Figure 2, right,
shows the Bézier nets of some pair x and y. The Bézier points of y marked
by o are determined by the C*-conditions while the inner Bezier point e is
determined by some suitable averaging.

It should be mentioned that the n patches of y have C2-joints only if all
Bézier points marked by o happen to coincide with the inner point e. But,
since it 1s planar, y is a G*-surface, in any case.

Now, let q : R?> — R® be any suitable polynomial of total degree < 2.
Then q o x and q oy together form a bisextic spline surface with C?- and
(G*°-joints, respectively.

We return to the bicubic surface ring r from above and represent it also as
a bisextic C*-spline. Then r is described by 7 rings of spline control points.



Figure 2: Control nets of a (here piecewise translational) planar ring x.

Hence, if we substitute the three inner control rings of r by those of q o x,
we obtain a C?-surface whose hole associated with r can be filled smoothly

by qoy.

4 Concluding remarks

1 Least squares fit: Let x = [z,y] and m = [1,z,y, 2% zy, 4% : R? — R".
Then the bisextic surface ring m o x has 84n spline control points in R®
forming a 84n x 6 spline control matrix M,. Similarly, r has a 84n x 3 spline
control matrix R. Further, we can represent q in monomial form by a 6 x 3
matrix () such that q = m(). Hence, q o x has the 84n x 3 spline control
matrix M,Q). Using a least square fit to minimize (the square sum of the
entries) in M,Q) — R we obtain

QQ =UR, whereU = (M;aMo:)_lMog .

The piecewise bisextic surface ring moy is described by 42n+1 Bézier points
in RE. They form a 42n+41 x 6 Bézier control matrix M,g. Thus the Bézier
points of q oy are given by the rows of the 42n+1 x 3 matrix M,5Q).

2 Smaller masks: One can use less than 84n control points to determine a
projection q. For example, let M, be the 36n x 6 matrix whose rows present
the 36n spline control points of the four inner control rings of mox. Similarly
let R4 be the 36 x 3 spline control matrix determined by the four inner control
rings of the bisextic representation of r. Then one obtains a projection g by

Q=UsRs , Us= (MMM, ,



i.e. qox has the spline control matrix M,() and q oy has the Bézier control
matrix M,50Q).

3 Good parametrizations: First implementations showed that it is best
to use a planar surface ring x = [z, y] such that z and y are two independent
eigenvectors of the Catmull/Clark scheme [1978] associated with the second
largest eigenvalue A € (0, 1).

4 Subdivision: Let x and A be as in Remark 3. Then x fits smoothly around
the scaled surface ring Ax and both rings together form a regular C'*-spline
without self-intersections, cf. [Prautzsch '95]. Hence, together the surfaces
qoX'x, 1 € N, form the surface qoy. Note that if the monomial representation
of q(x) is given by the 6 x 3 matrix ), then the monomial representation of
q(\'x) is given by the matrix DQ where D = diag[1, X, X, A2, A2, \%]. Thus if
q is computed as in Remark 2, then the four inner control rings of qo A'x
are given by MyD'U,R4. Since U, is the pseudoinverse of M,, one has that
UsMy is the 6 x 6 identity matrix and moreover MyD'Uy = (M4DU,)".

Together with the subdivision algorithm for bisextic C*?-splines the ma-
trices S = M4DU,, for n = 3,5,6,..., define a stationary (GZ-subdivision
algorithm as considered in [Prautzsch ’95]: One subdivides the bisextic B-
spline representation of r and takes the three inner control rings of the refined
representation as the three outer control rings of a bisextic surface ring r!,
i.e. r and r' have a C*-joint. The four inner control rings of r' are then
determined by SR, or, which is the same, by q o Ax. Similarly, one can
compute a next surface ring ry from r; and successively further surface rings
r', ¢ > 3. The four inner control rings of r', ¢ > 1, are given by S'R, or
equivalently by q o A'x. Since the three outer control rings of r; come from
r'"! or qo Ai7'x, one has r' = q o A'x. Thus the surface rings r,r', r?, ...
form a GG*-surface.

5 Unique nets: Rather than changing the control points of r, we may
change the three outmost control rings of qo Ax such that qo Ax and qo Ay
fill the hole of the original bicubic surface smoothly. Then each control point
of the original “bicubic net” corresponds to a basis function for the surface
after the holes are filled.

6 Convex hull property: The matrix M,U has negative entries in general.
However, if we worked only with constant polynomials q, we would have
obtained a positive matrix P such that PR represents the control net of the
least squares fit q ox. Hence, for any sufficiently small positive o the matrix
A =aM,U+ (1 —a)P is positive and the control net AR lies in the convex



hull of the net R.

7 Projective invariance: A freeform spline in R* represents a rational
freeform spline in projective 3-space. The control and weight points on the
edges of a tree spanning the initial control net form a projective invariant
representation of the entire surface.

8 Singular C*-parametrization: Independently Ulrich Reif [1995] con-
structed singularly parametrized C*-splines with quasi control nets. In our
set up we obtain these special splines by choosing y (and then x so as to fit
smoothly around y) such that all interior Bézier points, o, of y coincide.

Figure 3: The spline control net of a freeform spline (left) and of the
parametrization x (right).

9 Example: The method described above can also be used to obtain G*-
freeform splines for any k. Figure 3, left side, shows the control net of a
biquartic G*-freeform spline. The right side shows the spline control net of
the parametrizing surface ring x = [z, y]. Here, x and y are the eigen vectors
of Doo’s algorithm, see [Catmull et al. '78]. Figure 4, right side, shows the
surface ring r together with the surface q o y. Here, only the 15 control
points marked by hollow dots in Figure 3 were used to determine the least
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Figure 4: The surface ring r with least squares fit qoy (left) and the corre-
sponding C''-freeform spline (right).



squares fit q, cf. Remark 2. On the right side of Figure 4 one sees the re-
sulting G1-freeform spline. It was determined in a slightly different way than
described above. Namely, only the 15 control points of r marked in Figure 3
were replaced by the corresponding control points of q o x. The two outer
control rings of q oy were then changed such that the changed surfaces r
and q oy have C'-joint along their common boundary.
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