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Abstract

This paper gives an analysis of surfaces generated by subdividing control
nets of arbitrary topology. We assume that the underlying subdivision al-
gorithm is stationary on the regular parts of the control nets and described
by a matrix iteration around an extraordinary point. For these subdivision
schemes we derive conditions on the spectrum of the matrix and its gener-
alized eigenvectors such that surfaces are produced which are regular and
k-times differentiable at their extraordinary points.
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1 Introduction

This paper gives an analysis of surfaces generated by subdividing control nets
of arbitrary topology. While first order differentiability has been studied by
several authors [Doo & Sabin '78], [Ball & Storry ’88], [Loop '87], [Reif "95]
with different detailness and completeness, no results are available, so far, on
higher order smoothness except for the degree estimate by Reif [1994].

It is the intent of this paper to fill this gap. I was intrigued by the
work of Ulrich Reif [1994] which helped me substantially to begin developing
the ideas of this paper. Different from the aforementioned works, here, a
canonical parametrization is used which eases the analysis considerably. In
fact the approach taken in this paper can also be used to analyze subdivision
surfaces of arbitrary dimensions. In the sequel, however, I will restrict myself
to two-dimensional surfaces.
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Figure 1: Subdivision by the Catmull/Clark algorithm.

The subdivision schemes covered in this paper are generalizations of local
stationary schemes. Examples are the algorithms by Doo [1978], Catmull and
Clark [1978], Loop [1978], and Dyn et al. [1990]. Typically, these algorithms
are described as actions on a control net: They can be applied to control nets
of arbitrary topology and connectedness and produce sequences of control



nets such that the number of meshes is roughly quadrupled at each iteration.
Except for a fixed number of irregularities these nets consist of only triangular
or only quadrilateral meshes where each interior vertex is adjacent to exactly
six of four meshes respectively. Figure 1 shows the begin of such a sequence
generated by the Catmull/Clark algorithm.

2 Describing the problem

Rather than dealing with control nets it is more advantageous for our purpose
here to consider the underlying surfaces. Namely a sequence of control nets
generated by one of the above mentioned algorithms defines a sequence of
C'*-surfaces S, such that every S,, contains all preceding surfaces S;, j < m.
Locally the limiting surface consists of quadrilateral patches g, : [0,1]* —
R?, i € Zs,, m € N, where g’ belongs to S,, but not to S,,_;. The adjacency
of these patches is shown schematically in Figure 2 for n = 5.

Figure 2: Subdivision surface around an extraordinary point.

Formally this means for all ¢ € 3Z, all m € N, and all w € [0, 1] that
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and

G(Lw) = g (0,w) g (w,0) = g, % (w, 1), g7 (w,0) = q,77(0,w) |
where q', = q'F?",

In the case of triangular nets the patches g', are triangular as shown in
Figure 3. Note that the patches ¢, are in general macro patches which are
composed of smaller triangular or quadrilateral patches as indicated for qf
in Figures 2 and 3. Obviously, we can repartition the surface if the ¢ are
triangular so as to obtain the tesselation of Figure 2. Hence we may assume
in the sequel that the g', are quadrilateral patches.
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Figure 3: Subdivision surface with triangular control net around an extraor-
dinary point.



Further, we suppose that the patches g', converge uniformly to a point
g, as m tends to infinity and that the surface q formed by all ¢ is k-times
continuously differentiable everywhere possibly except at q... Moreover the
surface layers q,, : Zs, x [0,1]> — R® formed by the patches a, (i,u,v) =
g (u,v) are defined by a certain number of control points ¢/, ...,c™. This
means

Qp, = ZBj(i7u7v) : (D;n 3
7=1

where the B; are the cardinal functions defined by the underlying stationary
subdivision scheme. Note that the B; need not be linearly independent. We
will use a matrix notation and write

q,=[B1...Bs| | =BC, ,

m

CS

where the ¢7" and q,, are row vectors. Moreover, throughout the entire
paper small hollow letters will denote row vectors, while their transposes are
denoted by small boldface letters, i.e., v = v'.

Now we are ready to state the problem: Assuming an s X s-matrix A
such that AC,, = (.41 for all m we wish to derive conditions on A which
guarantee that the layers g,, form a regular C'*-surface in a neighborhood of

Qoo -

3 Solving the problem

Let V™' AV be the Jordan normal form of A and let v;;, i = 1, ...,r and
7 =1, ...,d;, where >_d; = s, be the possibly complex columns of V in
any arbitrary order, but such that v, ..., v, span a (largest) irreducible
invariant subspace of A. Hence this invariant subspace corresponds to a
Jordan block. The associated eigenvalue is denoted by A;.

Moreover, we will also use the notation A = A\; and g = Ay and assume in
this section that A and p are real. Complex eigenvalues are discussed later
in Section 4.

Further let U = [v11va1] be such that the surface layer z = [z,y] = BU :
Zian % [0,1]2 — R? is regular, one-to-one, and has no overlap with », = BAU
(except for the common boundary).



If |A] > 1, every line segment of g, parallel to the second coordinate
axis would be mapped onto a line segment not shorter than the original one.
Therefore, since every sequence q,, = BA”(Cj is supposed to converge to a
point g, we can assume 1 > |A| > |u|. Under these conditions we can prove
the following theorem where we will use the abbreviation

o _ ] spaniy} ifw=p#\
“ 7] span{z®yP|la, B € Ny and \pP = w} otherwise

Theorem 1 The layers q,, = BA™Cy form a regular C*-surface q for all
sufficiently large m and almost all g if for allt = 1,...,r one of the following
conditions is satisfied:

o if N\ = AP # —p and | M| < |pl or |N| > |)|, then Bvy € Sy, and
Bv;; =0 forall j > 2,

o or [A;] <|ul,
o or Bv;; =0 forall j > 1.

Proof
Composing the maps z and %; with the linear invertible map o : ({,7) —
(A&, w™n) shows that %z, = BA™U = oz and #%,,41 = ox are also one-to-
one maps without overlaps. Furthermore, %y lies closer to the origin than z.
Thus all layers %, together form a parametrization of some neighborhood W
of the origin o which does not contain the origin.

We will parametrize the subdivision surface q over U, i.e. we will analyze
the surface p: U U {o} — R defined piecewise by

B wu,v) i (6 n) = zm(u,v) = (N2, p™y)
”O“””—{ o itEn = (0.0) Y

Now we show that the coordinates of p are differentiable: Each coordinate

QO:Zai‘I‘b

where the sum " a; extends over all i satisfying |\;| > |¢*| and where

go of gy can be written as

the a; are of the form a; = X qup2®y®, A°u® = X;, and where b €
span{Bv;;|j =1, ..., d;, where |\;| < |¢*|}. Thus it suffices to consider
a component a; and the component b:



(1) Let go = a;, then
G = AT qapr”y”
> tap(A"2)" (u"y)"
Thus in this case p(&,7) = 3 ¢apé®n” is a polynomial.
(2) Let go = b, then we have ||¢,,|| = o(|u|*") and thus
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moz ')l =o(lul"") . a8 €N,

since composition with z~! and differentiation are linear operators
which do not slow down the contraction rate of a sequence.

Now on using x!'(&,n) = =z~ (A™™&, u=™n), we obtain for a + 8 < k
o« 9
— A|—om (k—B)m
e 6 77)‘ oA 47)

of || =) (1)
o€ *==)

Hence if ¢o = b, all derivatives of p(£,n) up to order k converge to 0 as
(&£,m) — o which shows that p is k-times differentiable.
In order to prove that p is regular, we write

gp=a+ bz +cy+ BR
where ||[BA™R|| = o(|g|™). Then as shown above we have

p&n) =a+bl+ent+r&n), el =o(l(&n)l) .

which is regular for small ¢ and 5 if b and ¢ are linearly independent, i.e. q
formed by the layers q,,, where m is sufficiently large, is regular for almost

all qg. |

The proof of the theorem above gives more than stated. Namely the
estimates in (1) still apply if |A|7%|u|*=? < 4, ie. if 8 < k — ca, where
_ log|A|
log ||’

see igure 4.
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Figure 4: The sets M and N.

Thus the mixed partial derivatives
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exist continuously for all (a,8) € M = {(a, B)|a, f € Ny and |\*pP| >

|t}
In this general form one can also show a converse of the theorem:

Proposition 1 Let N := {(a,B)]a,3 € Ny and p* > |XpP| > pF}.
Then if all derivatives D*Pp, (a,3) € M UN, exist continuously for all
Uy, we have for allt =1, ...,r one of the following conditions:

o Bv; €5, where \; = AP and Bv;; =0 forall j > 2,
o or |\] < [plf,

o or Bv;; =0 forall j > 1.



Proof
The Taylor expansion of p(&,7n) around (n,0) reads

B(E,1) = Y = DYp(E, 0y + ofInl*)

j=0J"

where of|n|*) stands for a term r(n) with |[r(n)|| = o(|n|¥). Using Taylor
expansions again, we obtain a sum of the form

p&,n) = Y &n°das+ D o[ .

MUN N

Thus we have

BA"Co = p(\"x, p"y) = >0 (A7) ey dag + o)
MUN

This asymptotic behaviour can only be observed for all g, under the claimed
spectral properties. [ |

4 Complex eigenvalues

It is rather straightforward to extend the above analysis to the case where
A and p, vi; and vyy, and = and y are complex conjugate pairs. We use the
invertible transformation 7' : ¢ — R* z — (Re z,Im z) and assume that
the surface layer Tx = T Bvy, : Zs, x [0,1]* — R? is one-to-one and has no
overlap with TBAvy; = T'Az. Then on using S, = span{z°z%|a, B € Ny
and A*\? = w} Theorem 1 is still valid:

Proof

We can use the proof of Theorem 1 above with slight modifications: Obvi-
ously, TA™x and TA\™*'z are also one-to-one maps without overlaps. Fur-
thermore, T'Ax lies closer to the origin o than T'z. Thus all layers TA™x to-
gether form a parametrization of some neighborhood W of the origin which
does not contain the origin. Again we will parametrize the subdivision sur-
face g over W, i.e. we will analyze the surface p : W U {0} — R? defined



piecewise by

q,,(u,v) , if & +inp=A"a
PO = g = lim g, , ifE+in=0 .

Now we show that the coordinates of p are differentiable: Each coordinate

QO:Zai‘I‘b

where b lies in the invariant subspace of A associated with all A; such that
INi| < |MF, @ = ang:nafﬁ, where all a, 3 in this sum satisfy A*A% = );, and
a; = a; for \; = A;. Thus it suffices to consider the following two cases:

go of gy can be written as

(1) Let go = a; + a;, then we get

G = AT qapr®2” + AN qupaa’
= > qas(N" @) (A" 2)" + > qup(A"T)* (A 2)?

= a polynomial in ¢ and n with real coefficients.

(2) Let if go = b, then we have ||¢,|| = o(|A[*™) and thus
D% (g o (T) ")l = o|AI"™)

since composition with (T'z)~! and differentiation are linear operators
which do not slow down the contraction rate of a sequence.

Now on using the rotation R({, 1) = (£ cos ¢ —nsin @, 7 cos ¢+ sin ¢) by the
angle ¢ = arc A™™ we obtain

(TA" )" (& m) = (T2) " (I R(E )
and thus

Daﬁ(qm o (T/\m:n)_l)

AT N A DY (g o (Ti2) ™)
yHé=a+p8

D*’p(&,n)

where all |d.s| depend on ¢ and are bounded. Hence we have

|D*"p(&,m)] = ol[|(&,m)|*=*=7)
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as before. The rest of the proof can now be copied word for word from the
proof of Theorem 1. Note that here b = ¢. [ |

Since |A| = ||, it is even simpler than in Section 3 to state and to prove
the converse fact:

Proposition 2 If p as defined in the last proof is k-times continuously dif-
ferentiable for all q,, then A has the spectral properties required in Theorem 1.

Proof
Let a(é,n) be the Taylor polynomial of degree k£ of p around o. Then we

have

p(&n) = a(&n) +o([[(&n)llF)
and for (&£,n) = A"z

BA™Cy = a(&,n) + o([| (&, n)]F)

which can be written as

BA™C, = 37 cas(A"a)*(A"2)" +o[(&m)]*)
a+0<k

= 2 eap(NA) "2+ o||(€ 1))

where ¢,5 = €g,. This asymptotic behaviour can only be observed for all g,
under the claimed spectral properties. [ |

5 Concluding remark

In a forthcoming paper we will show how one can construct subdivision
algorithms for the generation of C*-surfaces. These surfaces are piecewise
polynomial of tensorproduct degree (rk 4+ r,rk + r) where r > 0 can be
arbitrarily chosen. The number r denotes the total degree of the surface
around an extraordinary point if the surface is viewed as a function over the
tangent plane.

In another forthcoming paper together with U. Reif we will show that the
above degree (rk + r,rk + r) is in general best possible.
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