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Abstract

Today’s implementations of structural optimization lack the capability to consider load
changes caused by the structural optimization itself. The loads and boundary conditions
maintain the same during the entire optimization.

This article describes a new approach of an automated coupling of ADAMS and the
MSC.CONSTRUCT structural optimization package. A batch-oriented closed-loop scheme
was set up which allows ADAMS system-simulation with the body-shapes determined by the
optimization and loads export during every iteration of the optimization procedure. After
geometry modifications by MSC.CONSTRUCT the new body shape is imported into the
ADAMS model for a new system simulation.

This approach enables the automated determination of complex loading-conditions for
bodies in mechanical systems and the use of dynamically updated, i.e. iteration-dependent
boundary-conditions for the structural optimization. When the dynamic analysis of ADAMS is
used, even complex loads due to rotation and acceleration which depend on the mass
distribution can be considered within the optimization.

This new and batch-oriented process is explained in this article and first optimization results
will be presented. The results encourage further developments and offer major new
opportunities for both the users of MBS as well as the optimization community.
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1 Introduction

In the last years both, Finite Element Analysis (FEA) and Multi Body System Simulation
(MBS) have evolved to powerful tools supporting engineers in various fields of product
development and research. In addition programs for structural optimization are available from
many vendors of FEA packages. With the continuous increasing computational capabilities
these optimization techniques become more and more important for the effective
development of competitive products. In this field the authors contribute to the development
of the optimization code CAOSS (Computer Aided Optimization System Sauter) which is
behind MSC.CONSTRUCT.

The formulation of realistic boundary and loading-conditions is of vital interest for structural
optimizations as these give the physical structural loading and therefore determine the best
shape. To find the correct loadings can be a challenging task when dealing with complex
dynamical systems. Since mechanical system simulation programs, integrating flexible
bodies, came to market, their use for determining loading-condition provide new possibilities
for both FEA and structural optimization. MDI offers the ADAMS/Flex package which allows
the integration of flexible bodies in mechanical systems, e.g. by interfacing with
MSC.NASTRAN.

2 Basic Methods

Within this work a couple of standard simulation tools were used: Finite Element Analysis to
describe the components flexibility and other FEA results, MBS to simulate the mechanical
system behavior, incorporating the flexible component. Finally the optimization software
which modifies the component shape and therefore modifies the mechanical behavior which
is analyzed in both, the FEA and the MBS software.

Following some notes which should help the reader to get some insights into the wide field of
structural optimization.

2.1 Structural Optimization

The field of structural optimization techniques can be seen in different ways depending on
the background of the reader. In general there are three views: The one is separating the
structural optimization types from the application field where it might be used for: Then we
speak from sizing, shape or topology optimization. This is visualized in Figure 1.
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Figure 1: Optimization Types

The second one is emphasizing the difference among the approaches solving the
optimization problem: mathematical approaches or optimum criteria approaches. The third
one is separating parametric from nonparametric optimization. All of the above introduced
views may be mixed in reality.
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For the work described in this article the FEA based optimization package
MSC.CONSTRUCT is used. With this package both, parameter free shape and topology
optimization is possible [1] [3] based on optimum criteria. The authors contribute to the
development of CAOSS which is the core behind MSC.CONSTRUCT.

2.1.1 Classification by Application

The following gives an overview of the main differences among sizing, shape and topology
optimization. Both the numerical and the user-specific characteristics are discussed shortly.

2.1.1.1 Sizing Optimization

For optimization purposes using ,Sizing Variables* i.e. the cross section and thickness of
finite elements, many mathematical programming approaches were tested and implemented
into finite element programs (e.g. MSC/NASTRAN, PERMAS, COSMOS/M) and special
optimization programs (e.g. MBB-LAGRANGE, STARS, ADS). During the optimization, the
element properties are modified on the FE level. Due to the easy calculation of the sensi-
tivities for sizing optimization purposes even realistic problems can be handled. Today these
approaches can be considered as state-of-the-art.

2.1.1.2 Shape Optimization

Compared with the sizing optimization the shape optimization is more complex. For the
shape optimization two approaches are used:

Shape optimization based on FE models

The coordinates of the surface nodes are regarded as design variables which will be
modified during the optimization. This usually leads to a large number of design variables
which might cause considerable mathematical difficulties. Using suitable couplings of node
displacements to define basis vectors, complex geometry changes can be described in the
Solution 200 of MSC/NASTRAN with only few design variables.

Shape optimization based on geometry models

Using the shape optimization method based on geometry models, the linkage of an FE
model and a geometry model is maintained. As in this case the parameters of the geometry
model are the design variables, the geometry model has to be fully parametric. Therefore the
use of an efficient solid modeler is necessary. Each parameter modification of the geometry
model also results in changes of the FE model. Within each optimization loop the entire FE
model has to be set up anew according to the modifications of the geometry model
parameters considering the boundary conditions. This method is used e.g. in the programs
ANSYS, COSMOS/M and IDEAS. Many interfaces are put on the integration of an FE solver
and a CAD system (e.g. Pro/ENGINEER). The selection of the design variables is left to the
user. In general they differ due to his experiences and creativity. The results of the
optimization essentially depend on the number and selection of the design variables. If free
form surfaces are allowed, the selection of the design variables is very difficult. Using
mathematical programming methods, the number of design variables must not be to large
too, because this causes the numerical efforts to increase drastically.

The main difficulty with shape optimization is to transfer the surface changes to the FE mesh.
Most programs avoid this transfer by an automatic remeshing in each optimization loop.
Hence the original element topology (meshing) is destroyed and often models with only
tetrahedral elements are created. Only few programs are capable of such a transfer in a way
that the mesh modification is analyzed starting from the modification of the surface while
maintaining the element topology. To avoid the difficulties with remeshing some programs
use p-elements for the shape optimization. Still there is the problem of selecting suitable
design variables. For large models the numerical efforts are extremely high.
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2.1.1.3 Topology Optimization

Both for sizing and shape optimization a first design proposal, which is used as the start
design, exists. The objective of general structural optimization methods is to compute even
this first design proposal. Therefore an area (2D or 3D) with a homogeneous material
distribution is used. Subsequently the functionally required boundary conditions (e.g. node
constraints, nodal loads) are applied. The efforts for the modeling and preparation is
extremely low. The optimum structural shape with the appropriate topology is issued as
design proposal. The originally homogeneous material distribution becomes highly
inhomogeneous. Areas arise with no more mass at all (openings and holes) and areas which
contain high density mass (bars and struts).

Compared with the sizing and shape optimization the numerical efforts strongly increases.
The number of design variables is typically far beyond 200.000. Therefore large efforts are
necessary for the sensitivity analysis. So far no method can be considered as a standard for
calculating the optimum topology due to the above mentioned difficulties regarding the
mathematical approaches. Essentially because of the expensive calculation efforts these
approaches only can handle extremely simplified models. Commercially only few programs
are available. Many FE developers work in this field. Because of the development of powerful
iterative solvers and the more and more increasing computer capacities, topology
optimization will be state-of-the-art very soon.

2.1.2 Classification by the Underlying Approach

Two approaches to the solution of a problem predominate over optimization. On the one
hand these are the mathematical programming methods. They replace the mechanical model
by a parametric mathematical substitute model which will then be studied with strictly
mathematical methods. The other approach is based on the optimum criteria methods. For
that reason requirements are formulated which are valid for the optimum design. If the
optimum criteria can be applied to the certain task, the solution converges rapidly.

2.1.2.1 Mathematical Programming Methods

The structural optimization problem will be opened to the mathematical programming
methods by formulating a substitute problem. The problem formulation looks as follows:

min f (X)
0,(x)=0j=1...m
xOIR"

X S X< X,
In this case f(X)is the target function (e.g. structural weight, deformation, stress, etc.). The
function g, (X) represents mostly nonlinear boundary conditions, which constrain the solution.

The calculation of the solution is done in two steps, the calculation of the search direction
and the increment y. With this the vector yd, is determined, which leads from the current
vector x, to the next solution x,.1=x,+,d,. For the calculation of the search direction and the
increment many approaches exist, according to the various types of target functions and
boundary conditions. Finally the solution produced by the analysis program must be verified.
If the start values are ,disadvantageous®, it might occur that the optimizer only identifies a
local minimum as the solution. Therefore it is always recommendable to modify the start
values. As the initial problem is transformed into a substitute model, the mathematical
programming methods can generally be used. But they require an enormous amount of
computing time which will even increase if the number of design variables and active restric-
tions is increased.
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2.1.2.2 Optimum Criteria

In contrast to the mathematical programming methods, the optimum criteria methods take
advantage of the knowledge on the physics and mechanics of the respective problem set.
Theses will be postulated describing the optimum.

A well-known and ascertained physical law relating to structural mechanics is for instance the
Fully Stressed Design which can actually only be applied to statically determined structures.
An important mathematical optimum criterion is the Kuhn-Tucker condition which is for
convex optimization purposes fulfilled necessarily and adequate in the optimum. The theses
on stress homogenization and stress minimization are optimum criteria, too.

Regarding the optimum criteria methods, these criteria and the response behavior of
modifications of the physical model are implemented into the algorithm. With suitable
redesign rules, a convergence behavior is achieved which cannot be attained with
mathematical optimizers. Applying this particular physical and mechanical knowledge, the
optimum criteria methods remain limited to the certain application areas. Applying this
knowledge makes the individual optimization steps comprehensible. The remaining potential
to the optimum, which is known from the optimum criteria, can easily and exactly be
estimated.

The optimum criteria are particularly well proven for shape and topology optimization where a
large number of design variables is required. The convergence speed is independent of the
number of design variables.

2.2 Multi Body System Simulation

The simulation of multi body systems is successfully applied for many years in a great variety
of fields. The most of these systems are systems of rigid bodies connected by different kinds
of joint and force elements.

In recent days general purpose multi body simulations packages came to market, that are
able to deal with complex flexible bodies. The typical approach is to interface with an FEA
package where the bodies are represented in so called modal coordinates. It is therefore
necessary to perform a normal mode analysis in the FEA package. The theory behind this
technique is the component mode synthesis [4] and is also used by ADAMS/Flex [5]. The
incorporation of such general flexible bodies gives way to major new possibilities for both the
simulation of multi body systems as well as the FE analysis of structural components.
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3 New Approach for System Based Optimization
Today’'s FEA based structural optimization suffer from different bottlenecks. These are:

* The formulation of the correct loadings can be a challenging task when dealing with
complex dynamical systems

* Limitation to component based optimization due to the lack of the inclusion of system
responses

e Optimization techniques are based on “static” loading conditions i.e. loading
conditions that are not updated during the iterations of the optimization procedure

= System response can not be considered during the optimization. The body mass as
well as the normal mode frequencies change during the optimization process. This
influences the systems dynamic behavior and therefore the loading conditions of the
body

With the possibility to incorporate flexible bodies into the multi body system simulation and
export loading conditions for different FEA packages it is a natural next step to extend the
procedure to the optimization of structural components.

3.1 Setup

To achieve an automated optimization of a system embedded flexible structural part the
authors coupled MSC.CONSTRUCT and ADAMS in a way that ADAMS performs system
simulation and acts as a load set “generator” for MSC.NASTRAN. MSC.NASTRAN was used
as the FEA engine behind MSC.CONSTRUCT.

3.1.1 MSC.CONSTRUCT Optimization

For a better understanding of the coupling it is necessary to first get familiar with the
“traditional” optimization procedure of MSC.CONSTRUCT.

The optimization modules of MSC.CONSTRUCT make use of an external FE solver such as
MSC.NASTRAN which was also used by the authors. The body to be optimized was
modeled for a FE analysis and a parameter file describing the optimization problem was
written. This preprocessing is fully supported from within MSC.PATRAN. When using
MSC.NASTRAN the model describing the whole FE model of the body is stored in a so
called bulk data file (.bdf) which is also used by MSC.CONSTRUCT. This file includes
geometrical information as well as boundary and loading conditions. The iterative
optimization procedure is stated in the following diagram:

bulk data file
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Figure 2: "Traditional” optimization with MSC.CONSTRUCT
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In each iteration of the optimization the bulk data file is read by MSC.CONSTRUCT together
with the stress results from the prior MSC.NASTRAN run (XDB database). The optimization
module changes the bulk data file (containing the model) for the next analysis with
MSC.NASTRAN. After the process has converged (the user can define a variety of different
target functions) the resulting body with resulting stress distributions can be post processed.

3.1.2 Incorporating ADAMS

To use ADAMS in the above described way it has to be placed prior to the FE analysis in
order to generate the loading conditions of the body (see Figure 3). Therefore the loading
conditions need not to be modeled in advance with a preprocessor.
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Figure 3: Coupled approach with ADAMS

Notice the additional MSC.NASTRAN run (normal mode analysis) before ADAMS. It is
needed to produce a modal neutral file (.mnf) for the ADAMS simulation with the latest shape
of the body. After each run of the optimization module the flexible body data is updated by
this way.

3.2 mkl/SYSSHAPE

To realize the above described process it is necessary to automate the complete interfacing
and data management. For this purpose the script package mkl/SYSSHAPE was developed
by the authors to allow a fully batch oriented optimization. The user has to accommodate a
template initialization file for mkl/SYSSHAPE with information about the model and job such
as ADAMS database name as well as FE model information.

Afterwards mkl/SYSSHAPE can be used in several different so called run modes. One mode
prepares the bulk data file for normal mode analysis, runs MSC.NASTRAN and the translator
program to generate a modal neutral file. This file can be imported into ADAMS for the multi
body system model.

The other run modes are intended to be called by the control program of MSC.CONSTRUCT
during different steps of the optimization process.

Despite of the data management and interfacing mkl/SYSSHAPE performs some essential
tasks to the FE model of the body. One of these tasks is the formulation of boundary
conditions in order to perform a successful FE analysis. These boundary conditions are not
supplied by ADAMS. What seemed to be a challenging task exposed to be very simple since
the nature of the dynamic load sets generated from ADAMS. ADAMS writes a load set
containing bearing forces on the one hand and a set of statements covering the inertia loads
on the other. Typically (Newton’s law) these forces balance each other in such a way that the
resulting force is zero. The body should not move at all (and therefore one could assume that
a constraint is not necessary) but the limited numerical accuracy of FE solvers gives rise to a
weak resulting force. Because of the presence of this force a constraining mechanism has to
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be applied to the body. A very simple technique is to add spring elements to three arbitrary
nodes of the FE model to prevent the body from rigid body motions. The resulting force is
easily compensated without constraining possible body deformations.

3.3 Verification

Due to the nature of the MSC.NASTRAN load sets written by ADAMS it is difficult to estimate
whether the formulation of the loadings is correct since ADAMS writes a combination of
MSC.NASTRAN statements (set of RFORCEs and GRAVs). These include several
statements that together form the inertia loads; this is also the case if the body performs a
simple motion (e.g. a rotational motion along one axis).

To verify these load sets two test models were set up and compared. One with a simple
linear accelerated beam and one with a beam rotating around an axis. Both motions can be
easily modeled with MSC.NASTRAN manually. One expects that the “pure” MSC.NASTRAN
models lead to the same results as the models with load sets generated by ADAMS.

3.3.1 Beam FEM Model

As test model we used a simple cantilever beam with an RBE2 element at one end (right
side in Figure 4) connecting the surface grid points to one node:

Figure 4: Cantilever beam FE model with interface point

This node is the only exterior point of the superelement and is used in ADAMS as interface
point. Furthermore an evaluation path was defined along one side of the beam. “Path” means
a set of nodes in line. The stress results at these nodes were exported during FE analysis to
be evaluated in diagrams (see below).
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3.3.2 Linear Acceleration

A single, body fixed constant force F was applied to the interface point (see above) leading

to an linear acceleration a = F /m of the beam (with the beam mass m). In MSC.NASTRAN
the linear acceleration is modeled with one GRAYV statement.

Stress results for the linear accelerated beam (von Mises):

Figure 5: Loads from ADAMS Figure 6: Single GRAV statement

The stress distribution as well as the minimum and maximum values of the two models
coincide. The same is true for the nodal stress results along the analysis path. For this
reason we only present one chart:

Linear accelerated Beam, F = 50N, Loads from MDI/ADAMS
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Figure 7: Nodal stress along path (von Mises)
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3.3.3 Rotational Motion

To apply a rotational motion to the beam it was necessary to incorporate a second body
since motion generators can not be applied to flexible bodies directly. Therefore a rigid
cylinder was included and fixed to the interface point of the beam. The rotational motion with

a constant angular velocity w then was applied to the cylinder forcing the beam to a
centrifugal motion. In MSC.NASTRAN the rotational motion was modeled with one RFORCE
statement.

File Edit View Build Simulate Review Settings Tools Help

beam

Figure 8: ADAMS model with flexible beam

With this model we also performed a shape optimization to investigate optimizer behavior.
The surface nodes at both sides of the beam where defined as design nodes. Notice that
these are the nodes that can be moved by the optimization module in a direction
perpendicular to the beam surface. The first three layers of elements on the left side of the
beam did not belong to the design. Stress results for the rotating beam (von Mises) after six
optimization iterations of MSC.CONSTRUCT:
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Figure 9: Stress distribution after Path
optimization

Figure 10: Path results
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The stress homogenization of the design area can be seen clearly on both pictures. The
comparison of these results with an optimization on loadings from a manually written
RFORCE statement again led to precise coincidence.

The two test models demonstrated that the batch oriented optimization process with
automatically updated load sets from ADAMS was successfully realized. Together with the
reasonable results this encourages the consideration of more complex models.

4 First Results
4.1 Model

As a natural next step investigated a body subjected to a combination of the two principal
motions of our test model: linear acceleration and rotational motion. For this reason we
modeled a simple crank mechanism with a flexible connection rod. All additional bodies were
modeled rigid.

Figure 11: Conrod FE model with two interface
points

Figure 12: ADAMS model

To keep the model simple for a first experiment we again used a rotational motion generator.
The design nodes are the surface nodes along the shaft of the con-rod (on the upper and
lower side in the figure above). Again we additionally defined an analysis path along one side
of the shaft to investigate nodal stress results on the design area.



4.2 Simulation

Load sets for MSC.NASTRAN were exported at nine time steps during one cycle of the crank
mechanism. The corresponding conrod position at these nine times is shown in Figure 13:

I
I I
i
I I
Figure 13: Load case generation time steps

Each of these export times produces one MSC.NASTRAN subcase. For a better
understanding of the actually applied loads the following picture shows the force distribution
applied to the conrod:

Figure 14: Applied loads (forces on nodes)

Bearing forces (red and blue arrow at the bearing centers) are balanced by the sum of the
inertia loads distributed over all the nodes of the entire model. The picture above shows the
dynamically loaded conrod in “static equilibrium”.
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4.3 Results

After nine iterations the optimization process reached it's target (the homogenization of the
stresses at the level of a given stress maximum in the design area). The stress results before
and after optimization (von Mises) are shown in Figure 15:

Figure 15: Stress distribution before (left) and
after (right) optimization

The reduced stress maximum can clearly be seen. The maximum was reduced from 1.020
N/mm? to 591 N/mm?, which is a reduction of 42 %. For a more detailed quantitative study we
put the analysis path results together into one x-y plot:

Stress distribution along path (von Mises)

—e—(start)
1100 —=— SIGV(opti) 1
—&— SIGV(opti) 2
1000 A ‘\\N\ SIGV(opti) 3
T~ —*— SIGV(opti) 4
%0 SIGV(opti) 5
—o—
/././;—J—H-..\.*.\.‘ \\ (op !)
800 4 ’\-\.\l —— SIGV(opti) 6
700 ™ —A\‘\ \\ SIGV(opt?) 7
SIGV(opti) 8
/3 L e KKK KKK —K—K— .
> 600 ai e b o o o o o o A - | SIGV(opti) 9
o N
9 500 + \g\
400 4 .
300
200 ¢
100
0 T T T
0 15 30 45 60 75 90 105 120 135 150
path

Figure 16: Nodal stress along path (von Mises)

The decrease of the stress maximum at the evaluation path for each iteration can easily be
seen in the above Figure 16. At the end of the optimization process a homogeneous stress
distribution on the design area can be determined.
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5 Conclusion

In the presented paper it was shown that the coupling of Multi Body System Simulation
Software and Finite Element Technology can be successfully applied to the structural
optimization of systems of flexible bodies. For the realization the commercial available
software tools MDI/ADAMS, MSC.CONSTRUCT and MSC.NASTRAN were used.

At the Institute of Machine Design of the University of Karlsruhe, a fully automated procedure
was developed which handles the data management and the management of the various
tools. Verification examples showed that the load export from ADAMS as well as the routines
work properly.

To demonstrate the capability of the new procedure a shape optimization of a conrod which
is part of a crank mechanism was successfully performed. This example showed the
challenging opportunities which are now opened for the structural shape and topology
optimization of entire mechanical systems.
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