THIS PAPER APPEARED IN: 7TTH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM, PROC. OF 2ND WORK-
SHOP ON HETEROGENEOUS PROCESSING, PAGES 65-70, NEWPORT BEACH, CA, ApRrIL 13-16, 1993.

Triton/1:
A Massively-Parallel Mixed-Mode Computer
Designed to Support High Level Languages

Christian G. Herter, Thomas M. Warschko, Walter F. Tichy, and Michael Philippsen
University of Karlsruhe, Dept. of Informatics

Posttach 6980, D-7500 Karlsruhe 1, Germany

Abstract

We present the architecture of Triton/1, a scalable,
mized-mode (SIMD/MIMD) parallel computer. The
novel features of Triton/1 are:

e Support for high-level, machine-independent pro-
gramming languages;

o Fast SIMD/MIMD mode swilching;

e Special hardware for barrier synchronization of
maultiple process groups;

o A self-routing, dead-lock-free perfect shuffle inter-
connect with latency hiding.

The architecture is the outcome of an integrated de-
sign, i which a machine-independent programming
language, optimizing compiler, and parallel computer
were designed hand-in-hand.

1 Introduction

The goal of adequate programmability of parallel ma-
chines can best be achieved by tightly coupling the de-
sign of machine-independent programming languages,
compilers, and parallel hardware. In the past, the de-
velopment of parallel computers has been mainly driv-
en by hardware considerations, without regard to the
law of the weakest link:

The overall performance of a parallel computer is de-
termined by the performance of its slowest part with
respect to the requirements of the software.

Ignoring software requirements has resulted in unsat-
isfactory performance of these machines on machine-
independent parallel programs. To avoid these short-
comings and to show that high-level parallel program-
ming does not necessarily lead to poor performance,
we specifically analyzed the requirements of program-
ming languages and compilers before designing the
hardware.

The following section outlines the parallel program-
ming language Modula-2* and derives general require-
ments for parallel computers. In section 3 we describe
the architecture of Triton/1. We emphasize those fea-
tures which arose from software requirements.

2 Modula-2*

Modula-2* (pronounced Modula-2-star) is a small ex-
tension of Modula-2 for massively parallel program-
ming. The programming model of Modula-2* incor-
porates both data and control parallelism and allows
mixed synchronous and asynchronous execution.

Modula-2* is problem-oriented in the sense that the
programmer can choose the degree of parallelism and
mix the control mode (SIMD- or MIMD-like) as need-
ed by the intended algorithm. Parallelism may be
nested to arbitrary depth. Procedures may be called
from sequential or parallel contexts and can them-
selves generate parallel activity without any restric-
tions. Most Modula-2* programs can be translated
into efficient code for both SIMD and MIMD archi-
tectures.

2.1 Overview of language extensions
Modula-2* extends Modula-2 with the following two
language constructs.

1. Parallelism can be created in Modula-2* pro-
grams only by means of the FORALL statement.
There are two versions of this statement, a syn-
chronous and an asynchronous one.

2. The distribution of array data may be optional-
ly specified by so-called allocators in a machine-
independent way. Allocators do not have any se-
mantic meaning; they are hints for the compiler.

Because of the compactness and simplicity of the ex-
tensions, they could easily be incorporated in other
imperative programming languages, such as Fortran,
C, or Ada.

A synchronous FORALL statement creates a set of
synchronously running processes. The number of the
processes is determined by the FORALL statement and
is not limited to the number of the PEs of the ma-
chine. As long as there is no branch in the control
flow of the statements inside a FORALL statement the
semantics of the execution is equivalent to a SIMD ma-
chine executing those statements. If there are branch-
es in the control flow that define alternatives, like IF
THEN ELSE or CASE, the processes are partitioned
into several groups. Each of those groups is executing
one branch in the control flow. The processes belong-
ing to one group execute synchronously in SIMD style,

but groups are allowed to execute concurrently with
respect to each other. There is no assumption about
the relative speeds of two processes in different groups.
In contrast to the synchronous FORALL statement,
an asynchronous FORALL statement creates a set of in-
dependent processes running at an unspecified relative
speed. Common to both variants is that the termi-
nation of a FORALL statement is determined by the
termination of the last process created by the FORALL
statement. The end of a FORALL statement always
defines a synchronization barrier. For further details
about the language, see [7], for detailed discussion of
compilation techniques and optimization, see [5].

2.2 Software requirements for parallel
computers

On distributed memory machines, the distribution of
array data over the available processors i1s a central
problem. Two conflicting goals, (1) data locality and
(2) maximum degree of parallelism, must be recon-
ciled. Data locality means that data elements should
be stored local to the processors that need them to
minimize communication costs. Perfect data locali-
ty could be achieved by employing a single proces-
sor. Parallelism, which reduces runtime, may unfor-
tunately reduce locality and increase communication
costs. Additional goals for data distribution are: (3)
exploiting special communication patterns supported
by hardware and (4) generating simple address calcu-
lations to prevent addressing from becoming a domi-
nant cost.

Even with optimal layout of the data, there will
still be communication in the general case. In fact, in
most massively parallel applications that are not triv-
ially parallel, communication is almost as frequent as
computation. Therefore,

the network MIPS measure must approach the CPU
MIPS measure

A second performance-oriented recommendation is an

independently operating network with asynchronous
message delivery

since it allows the delivery of packets concurrently
with computation. That would enable the compiler to
interleave computation and communication and thus
to hide some of the communication latency.

On the other hand we recommend a
shared address space

A shared address space does not imply shared memo-
ry; it only means that every processor can generate ad-
dresses for the entire memory in the system. System-
wide addresses are especially important for pointers,
because otherwise they would have to be simulated
quite inefficiently in software. Even the memory of
the control processor, e.g., the frontend of a SIMD
machine, should be part of the shared address space.

Furthermore and similar to the above, we call for a

uniform memory access instructions

Many parallel machines today provide a set of instruc-
tions for accessing local memory, a second one for ac-
cessing memory in neighbors, and a third set for ac-
cessing distant memory units. The differences in speed

are significant and, therefore, require that the compil-
er detect the faster cases. However, it is often impossi-
ble to know statically for which case to optimize. For
instance, we found that in many cases it was impossi-
ble to determine in the compiler whether a procedure
would access local or non-local memory. The generat-
ed code thus has to check all three cases at run-time.
Such simple, frequent, and dynamic analyses could be
done more efficiently in hardware.

Barrier synchronization is extremely frequent. Basi-
cally, every communication requires a barrier synchro-
nization. The reasoning is as follows. Communication
sends or receives data. Unless communication is re-
dundant, there must be a write between two succes-
sive communication calls to the same cell. It follows
that a synchronization operation must be placed some-
where between one of the communication calls and the
write in order to avoid race conditions. If many pro-
cesses communicate at once, as in massively parallel
machines, this type of synchronization amounts to a
barrier: No process may proceed until all processes
have completed either their write or communication
operation. Because of its frequency, we need

‘fast barrier synchronization.

In principle, the communication network could be used
for barrier synchronization. However, communication
networks usually have high latency which make them
too slow for fast barrier synchronization. These nets
are optimized for transporting data, while barrier syn-
chronization requires the transport of only one or two
bits but must also implement a reduction or scan op-
eration on these bits.

An additional complication is that there are usu-
ally several groups of processes that need to com-
municate among themselves, necessitating multiple,
non-overlapping barriers. Consider, for instance, a
pipelined architecture in which one set of processes
passes data to another set. FEach set may have to
synchronize internally, independent of the other. Sim-
ilarly, an IF-statement within a FORALL divides a
set of processes into two subsets which may have to
synchronize independently. Thus, we need

barrier synchronization for multiple, independent
sets of processes.

3 Triton/1

The poor programmability of today’s parallel ma-
chines 1s a consequence of the fact that the design
of these machines has been driven mostly by hard-
ware considerations. Programmability seems to have
been a secondary issue, resulting in languages designed
specifically for a particular machine model. Such lan-
guages do not satisfy the needs of programmers who
need to write machine-independent applications.

Triton/1 matches most of the recommendations of
the previous section. Looking from a general point of
view, Triton/1 is determined by the following state-
ments.

General Architecture. Triton/1 is a SAMD
(synchronous/asynchronous instruction streams, mut-
liple data streams) machine: it runs in SIMD mode
where strict synchrony is necessary; it can switch to

MIMD mode where concurrent execution of different
tasks is beneficial. It is even possible to run a subset
of the processors in SIMD mode, the other in MIMD.
Thus, Triton/1 is truly SAMD, i.e, mixed-mode, not
just switched-mode. Only a few research prototypes
of mixed-mode machines have been built: OPSILA,
TRAC, and PASM [1, 6]. Triton/1 provides support
for switching rapidly between the two modes and a
high-level language to control both modes effectively.

Fast barrier synchronization is supported by
special hardware. The usage of synchronization hard-
ware 1s possible in both operating modes. Synchro-
nization with hardware support overcomes the neces-
sity of coarse grained parallelism.

Network. We chose the De Bruijn network for Tri-
ton/1, because it has several desirable properties (log-
arithmic diameter, fixed degree, etc.), is cost-effective
to build, and can be made to operate extremely fast
and reliable. In section 3.3 we present performance
figures.

Scalability and balance. Parallel machines
should scale in performance by varying the number of
processors; furthermore, the performance of the indi-
vidual components (processor, memory, network, and
I/0) should harmonize. Scalability is mainly a proper-
ty of the network. The most popular networks today,
hypercubes and grids, do not scale well: hypercubes
are too expensive because they have variable degree,
while grids cause high latency because of large diame-
ter. Triton/1’s De Bruijn net has none of these prob-
lems and scales well. Tt is also well matched to the
speed of the processors.

I/0 capabilities. 1/O must also scale with the
number of processors. Few parallel machines today
provide for scalable I/O. Triton/1 implements a mas-
sively parallel I/O architecture: one disk per proces-
sor. For large sets of disks, we have extended the
traditional notion of a file to what we call a vector
file. Massively parallel I/O also provides the basis for
research in parallel operating systems, such as virtu-
al memory, parallel paging strategies, and true multi-
user environments. Results in these areas are required
to bring parallel machines into wide-spread and gen-
eral purpose use.

3.1 Architecture of Triton/1

Triton/1 is divided in a frontend and a backend por-
tion. The frontend typically consists of a UNIX work-
station with a memory-mapped interface to connect
via the instruction and the control bus to the backend
portion. The backend portion consists of the process-
ing elements, the network, and the I/O system.

The Triton/1 prototype will be built up of a Intel
486 based PC running BSD UNIX as frontend. The
prototype will contain 256 4+ 4 PEs of which 72 are
supplied with a disk. 256 of the PEs are provided for
computation and 4 PEs are for hot stand by. These
PEs can be configured under software control into the
network, if other PEs fail. The reconfiguration in-
volves changing the PE numbers consistently and re-
computing the routing tables in the network proces-
sors. The 72 disks are logically organized in 8 groups
of 9 disks, where each group contains 8 data and one

parity disk. RATD level 3 [4] is used for error handling.
Figure 1 gives an overview on the logical organization
of Triton/1.

FE Ethernet

Instruction Bus

Control Bus

+ Network
Figure 1: Triton/1 Architecture

In SIMD mode the frontend produces the instruc-
tion stream and controls the backend portion at in-
struction level. In MIMD mode the frontend is re-
sponsible for downloading the code and the initiation
of the program. The instruction bus is 16 bits wide.
For reasons of decoupling frontend and backend in or-
der to reduce the time of the frontend waiting for the
backend to become ready, or vice versa, the instruction
stream 1s sent through a fifo. The handshake signals
necessary to control the instruction stream are part of
the control bus.

For reasons of debugging it is a good idea to have
direct access from the frontend to all parts of the
machine, especially to the main memory distributed
among the processing elements. As a direct conse-
quence of the common address space of Triton/1 this
is possible via the so called analyze mode. To sup-
port the analyze mode the control bus includes 40 ad-
dress lines and several dedicated control signals, the
instruction bus is used for data transport. While be-
ing in analyze mode, all PEs release their local busses,
to enable frontend access via direct memory access.

The processing elements are designed as universal
computing elements,; capable of performing computa-
tion as well as service functions. FEach PE consists
of a Motorola MC68010 micro-processor, a memory
management unit (MC68541), a numeric co-processor
(MC68881 or MC68882) , 2 MBytes of main memory,
a SCSI interface, and a network-processor. Figure 2
gives an overview. No extra controllers for mass stor-
age access or any other I/O are necessary.

The network of Triton/1 is built up of the network-
processors included in the PEs, the interconnection
lines, realized with flat cables, and fifo buffers for in-
termediate buffering of data packets. The network is
able to route data packets from their source to their
destination without interfering with the PEs. Non-
interference permits latency hiding techniques to be
applied. Again for reasons of decoupling, the interface
between a PE and its respective network processor is
implemented with fifos.

Parity checking of main memory, network links, and
mass storage implements error detection. Periodic sig-
nature tests locate malfunctioning elements.

Address Bus
| R

Data Bus

MMU NET
|
—f -
cpul 'scs1
RAM

Figure 2: Triton/1 Processing Element

3.2 Detailed discussion of selected hard-
ware aspects

In order to get a better idea on the architectural fea-
tures of Triton/1 it is necessary to look into some im-
plementation details of the hardware.

The implementation of the instruction bus and
the control bus i1s quite naturally done by a hier-
archy of bus drivers, for signals from the frontend to
the backend For the opposite direction, global-wired-
or lines are emulated by explicit OR-combining the
signals from the single PEs. In SIMD mode all PEs
execute the same instruction at a time (or idle), in-
cluding reading the instruction at the same time. The
reading of instructions by the PEs is controlled via
three control signals: Instruction strobe signals the
frontend that all PEs currently listening to the in-
struction stream are ready to read an instruction. The
frontend then asserts the instruction and answers with
instruction transfer acknowledge. If all PEs current-
ly listening accepted the instruction instruction fetch
done 1s asserted, which signals the end of an instruc-
tion transfer. The three-way handshake introduces
a non-negligible amount of delay due to the signals
traversing the complete bus hierarchy several times.
To reduce that delay we introduced an instruction
buffer at each driver level in the bus hierarchy, re-
ducing the delay for the instruction fetch by two clock
cycles in the normal case. Thus the handshake de-
scribed above is executed in between every two hier-
archy levels, rather than between the frontend and the
PEs.

As mentioned above the global address space
constists of a 40 bit address. The least significant 23
bits are used to select the memory and the memory
mapped I/O in the PEs. Another 16 bits are used to
identify the PE to be accessed, and one bit 1s used to
distinguish frontend and backend. The identification
of the PEs is twofold. Each PE has a hardware iden-
tification, which is selected by a switch setting. The
hardware identification is used to select the PE in the
analyze mode for debugging. Additionally, each PE
has a software identification, which is used while com-
puting. The software 1d is initially set to the same
value as the hardware id, but can alter for reasons
of hardware error handling. However, implementing

a concept with a 40 bit address space does not auto-
matically imply computing with 40 bit addresses all
the time. In the majority of the cases computing with
32 bit addresses suffices, reducing the time spent with
address calculation.

Another point of interest is mode-switching.
Though the MIMD mode is more natural to the pro-
cessor the system is started in SIMD mode. This is
done to save additional hardware for the startup code.
In SIMD mode, the function codes of the processor
are used to determine whether the processor intends
a data or a program access. According to that, the
processor bus is connected to the local memory or the
instruction bus, respectively. If a PE is selected not
to execute an instruction, the local signal listen to
instruction stream is turned off and the processor of
that PE is not notified of instructions, except if the in-
struction is unconditional. The value of the processors
program counter is completely ignored in SIMD mode.
In order to switch to MIMD mode the program to be
executed has to be downloaded to the memory of the
PEs. This is done via the instruction stream in SIMD
mode. Thus, the distribution of code is, in contrast to
many other MIMD machines, done in a time propor-
tional to the length of the code, independent of the
size of the machine. The switch from SIMD to MIMD
mode is performed by two instructions: With the first
instruction, the program counter is set according to
the location of the program to be executed in MIMD
mode by a JMP instruction. With the second instruc-
tion, the SIMD request bit in the command register
local to the PE is deactivated. The PE then switches
to MIMD mode at the end of the current cycle and
commences execution of the local code without de-
lay. To switch from MIMD to SIMD mode, the SIMD
request bit in the local command register simply is ac-
tivated, which causes the PE to switch to SIMD mode
at the end of the current cycle. The next instruction
1s then expected form the instruction stream.

While some PEs are executing in MIMD mode, the
rest of the PEs may execute in SIMD mode. This is
achieved by activating the instruction transfer hand-
shake in the case of MIMD operation. If there isno PE
left to execute in SIMD mode but still some instruc-
tions remain in the instruction fifo, the handshake sig-
nals automatically empty the buffer.

Data transfer is an important point in every par-
allel computer. There are several different data paths
to consider. The most important point is the data
transport between the PEs. That task is performed
by the network which is described later in detail. An-
other important point is the transport of data from
the frontend to the backend and vice versa. There are
different possibilities for each direction: To transport
data from the frontend to the backend, the easiest way
is to send the data as immediate data via the instruc-
tion stream in SIMD mode. With that possibility, any
subset of the PEs can be the destination of the data.
Unfortunately only unidirectional access is possible.
The second possibility of transferring data is the di-
rect memory access within the analyze mode. Herein
data can be transferred in both directions. The draw-
back of the analyze mode is that no computation can

take place and not more than one PE can be accessed
concurrently. The third possibility of data transport is
via the network. There 1s one dedicated network node
which is connected to the frontend. This is especial-
ly useful in the case that more than a few bytes have
to be transported from different PEs to the frontend,
e.g. picture data. Another advantage of a network
node included in the frontend is that computation can
commence while data is transported.

3.2.1 Fast barrier synchronization in MIMD
mode

An important problem is the realization of barrier syn-
chronization in the case that several different sets of
processes are distributed randomly over the PEs. A
set or group of processes is defined as executing the
same part of code (e.g. procedure) and therefore shar-
ing common variables. If there is only one set of pro-
cesses requesting synchronization, the barrier synchro-
nization is easily done by the usage of a global-wired-or
line. Each PE sets its ready bit on the line to true as
soon as it reaches the synchronization point. Approx-
imately one clock cycle after the last PE sets its bit,
the frontend is able to recognize the result and the
PEs are notified by the result line.

The problem of using synchronization with a single
global-wired-or line in MIMD mode is that a global-
wired-or line cannot be partitioned randomly. In the
general case, more than one group of processes exists.
Each of these groups share common variables to which
accesses have to be regulated. In most cases the groups
of processes are distributed randomly over the set of
PEs so that they cannot be partitioned by partitioning
the backend.

To enable the usage of hardware supported syn-
chronization with several groups of processes running
in MIMD mode, the global-wired-or line is adminis-
trated by the frontend as a synchronization resource
in the following way. Fach group of processes is iden-
tified by a unique process group number. Initially, the
synchronization line is not used, and each PE is al-
lowed to request it on behalf of a group. The request
is performed by the first PE reaching a barrier. That
PE signals the frontend by the service request line and
sends the group identification via the analyze circuits.
If more than one PE reaches a barrier at once, the an-
alyze circuits will select one randomly. The frontend
then knows which group demands the synchronization
line. Next, the frontend interrupts all PEs and forces
them into SIMD mode to perform a barrier setup. The
PEs not belonging to the requesting group are pro-
hibited to request the sync line themselves. They also
turn on their ready bits. The PEs belonging to the
requesting group set their ready bit to true if they
already reached the sync point, otherwise to false.

After this setup phase, the PEs return to MIMD
mode. All PEs continue computation, independent of
their group membership. As soon as the last ready
bit is turned on, the group owning the global-wired-or
line synchronizes and then releases the sync line. The
frontend then releases the request prohibition in order
to enable other groups to synchronize.

This discussion glossed over the difficulties that
arise if a PE virtualizes, i.e., executes several threads
or processes which may belong to different groups.
In this case, the ready bits have to be virtualized as
well. The details depend on the virtualization strat-
egy, which may be a mixture of looping and context
switching.

3.3 Communications Network

The Triton/1 network is based on the generalized De
Bruijn Net [2, 3]. The number N of nodes in the net-
work is not limited to powers of two. The (maximum)
diameter is [log; N]. The average diameter is well
below log; N and in practice quite close to the theo-
retical lower bound, the average diameter of directed
Moore graphs.

In our implementation we use degree d = 2, which
makes our net a perfect shuffle (see figure 3). In com-
parison with other frequently used networks, this de-
sign has the benefit of a constant degree per node and
a small average diameter. Data transport is done via
a table-based, self-routing packet switching method,
which allows wormhole-routing and load dependent
detouring of packets. Every node is equipped with its
own routing table and with four buffers: two for in-
termediate storage of data packets coming from other
nodes and two to communicate with its associated pro-
cessing element. The buffering temporally decouples
the network from local processing.

Figure 3: De Bruijn Net with 8 nodes

The communications processor is able to route the
packets without interfering with the local processing
element. Optimal routes are stored in a routing ta-
ble per communications processor. The network can
thus transport data in parallel with the operation of
the processing elements. This feature can be used by
the compiler to overlap communication and processing
time by rearranging code.

In order to analyze the behavior of the network, we

built a simulator based on the measured performance
of a single communications processor. We simulat-
ed the overall performance of the network in various
modes. The number of nodes ranged from 32 to 8192.
Figure 4 presents the results of a series of experiments
with a random communication pattern (random H-
permutations).
Both the sender and the receiver were chosen random-
ly, with the restriction that the number of data packets
to be transported is the same as the number of nodes
in the network. The simulation shows that the net-
work scales well: the delay introduced by the network
is within O(log N), with N denoting the number of
nodes and messages.

40 _ 440
] P
.-
30 Phd ~ 30
— [
] e L
20 — e - 20
- ’o/ -
o7
10 4;4/,/‘/‘_ 10
0 | | | | | | | 0
32 64 128 256 512 1024 2048 4096 8192

Number of nodes
- -0- - transfer time in network cycles
—s*— maximum diameter
—e— average diameter

Figure 4: Performance on random communication

The robustness against overload is surprisingly
good. Even if all processing elements send a great
number of packets simultaneously, the overall through-
put of the network does not decrease. Irregular per-
mutations are performed especially fast. All “hard”
patterns known from literature, e.g., transposition of
a matrix, butterfly, and bit reversal perform well too.
The delivery time for those is equal to or lower than
the delivery time for random permutaitions.

4 Conclusion

The integrated approach of designing language, com-
piler, and hardware together has lead to a parallel
architecture that supports higher-level languages ad-
equately. Fast barrier synchronization for multiple
process groups, SAMD mode, shared address space,
and a fast, independently operating network should
make parallel computers run efficiently even when pro-
grammed in a machine-independent fashion.

Status and schedule of Triton/1

The fully functional prototype of a PE board was
completed in October 1992. The individual compo-
nents (communication processor, processing element
and control processor interface) are tested and are run-
ning according to specifications. The manufacturing
of the printed circuit boards is in progress. The final
assembly of Triton/1 will be completed early in 1993.

References
[1] M. Auguin and F. Boeri. The OPSILA computer.
In M. Consard, editor, Parallel Languages and Ar-

chitectures, pages 143-153. Elsivier Science Pub-
lishers, Holland, 1986.

[2] N. G. De Bruijn. A combinatorial problem. In
Proc. of the Sect. of Science Akademie van Weten-
schappen, pages TH58-764, Amsterdam, June 29
1946.

[3] Makoto Tmase and Masaki Ttoh. Design to min-
imize diameter on building-block network. [EFEE
Transactions on Computers, 30(6):439-442, June
1981.

[4] David A. Patterson, Garth Gibons, and Randy H.
Katz. A case for redundant arrays of inexpensive
disks (RAID). In Proc. of the 1988 ACM-SIGMOD
Conference on Managenment of Data, pages 109—
116, Chicago, 1-3 June 1988.

[5] Michael Philippsen, Walter F. Tichy, and Chris-
tian G. Herter. Modula-2* and its compilation.
In First International Conference of the Austrian
Center for Parallel Computation, pages 169-183,
Salzburg, Austria, September 1991. Springer Ver-
lag, Lecture Notes in Computer Science 591.

[6] H.J. Siegel, T. Schwederski, J.T. Kuehn, and N.J.
Davis. An overview of the PASM parallel process-
ing system. In D.D. Gajski, V.M .Milutinovic, and
H.J.Siegel and B.P. Furht, editors, Computer Ar-
chitecture, pages 387-407. IEEE Computer Society
Press, Washington, DC, 1987.

[7] Walter F. Tichy and Christian G. Herter. Modula-
2*: An Extension of Modula-2 for Highly Parallel,
Portable Programs. Technical Report No. 4/90
(Interner Bericht), University of Karlsruhe, De-
partment of Informatics, January 1990.

