
Triton���
A Massively�Parallel Mixed�Mode Computer
Designed to Support High Level Languages

Christian G� Herter� Thomas M� Warschko� Walter F� Tichy� and Michael Philippsen

University of Karlsruhe� Dept� of Informatics

Postfach ����� D�	
�� Karlsruhe �� Germany

This paper appeared in� �th International Parallel Processing Symposium� Proc� of �nd Work�
shop on Heterogeneous Processing� pages �	
��� Newport Beach� CA� April �
��� ����

Abstract
We present the architecture of Triton��� a scalable�
mixed�mode �SIMD�MIMD� parallel computer� The
novel features of Triton�� are	

� Support for high�level� machine�independent pro�
gramming languages


� Fast SIMD�MIMD mode switching


� Special hardware for barrier synchronization of
multiple process groups


� A self�routing� dead�lock�free perfect shu�e inter�
connect with latency hiding�

The architecture is the outcome of an integrated de�
sign� in which a machine�independent programming
language� optimizing compiler� and parallel computer
were designed hand�in�hand�

� Introduction
The goal of adequate programmability of parallel ma�
chines can best be achieved by tightly coupling the de�
sign of machine�independent programming languages�
compilers� and parallel hardware� In the past� the de�
velopment of parallel computers has been mainly driv�
en by hardware considerations� without regard to the
law of the weakest link�
The overall performance of a parallel computer is de�
termined by the performance of its slowest part with
respect to the requirements of the software�
Ignoring software requirements has resulted in unsat�
isfactory performance of these machines on machine�
independent parallel programs� To avoid these short�
comings and to show that high�level parallel program�
ming does not necessarily lead to poor performance�
we speci�cally analyzed the requirements of program�
ming languages and compilers before designing the
hardware�

The following section outlines the parallel program�
ming language Modula��� and derives general require�
ments for parallel computers� In section 	 we describe
the architecture of Triton
�� We emphasize those fea�
tures which arose from software requirements�

� Modula���
Modula��� �pronounced Modula���star is a small ex�
tension of Modula�� for massively parallel program�
ming� The programming model of Modula��� incor�
porates both data and control parallelism and allows
mixed synchronous and asynchronous execution�

Modula��� is problem�oriented in the sense that the
programmer can choose the degree of parallelism and
mix the control mode �SIMD� or MIMD�like as need�
ed by the intended algorithm� Parallelism may be
nested to arbitrary depth� Procedures may be called
from sequential or parallel contexts and can them�
selves generate parallel activity without any restric�
tions� Most Modula��� programs can be translated
into e�cient code for both SIMD and MIMD archi�
tectures�

��� Overview of language extensions
Modula��� extends Modula�� with the following two
language constructs�

�� Parallelism can be created in Modula��� pro�
grams only by means of the FORALL statement�
There are two versions of this statement� a syn�
chronous and an asynchronous one�

�� The distribution of array data may be optional�
ly speci�ed by so�called allocators in a machine�
independent way� Allocators do not have any se�
mantic meaning� they are hints for the compiler�

Because of the compactness and simplicity of the ex�
tensions� they could easily be incorporated in other
imperative programming languages� such as Fortran�
C� or Ada�

A synchronous FORALL statement creates a set of
synchronously running processes� The number of the
processes is determined by the FORALL statement and
is not limited to the number of the PEs of the ma�
chine� As long as there is no branch in the control
�ow of the statements inside a FORALL statement the
semantics of the execution is equivalent to a SIMD ma�
chine executing those statements� If there are branch�
es in the control �ow that de�ne alternatives� like IF
THEN ELSE or CASE� the processes are partitioned
into several groups� Each of those groups is executing
one branch in the control �ow� The processes belong�
ing to one group execute synchronously in SIMD style�



but groups are allowed to execute concurrently with
respect to each other� There is no assumption about
the relative speeds of two processes in di�erent groups�

In contrast to the synchronous FORALL statement�
an asynchronous FORALL statement creates a set of in�
dependent processes running at an unspeci�ed relative
speed� Common to both variants is that the termi�
nation of a FORALL statement is determined by the
termination of the last process created by the FORALL
statement� The end of a FORALL statement always
de�nes a synchronization barrier� For further details
about the language� see ���� for detailed discussion of
compilation techniques and optimization� see ����

��� Software requirements for parallel
computers

On distributed memory machines� the distribution of
array data over the available processors is a central
problem� Two con�icting goals� �� data locality and
�� maximum degree of parallelism� must be recon�
ciled� Data locality means that data elements should
be stored local to the processors that need them to
minimize communication costs� Perfect data locali�
ty could be achieved by employing a single proces�
sor� Parallelism� which reduces runtime� may unfor�
tunately reduce locality and increase communication
costs� Additional goals for data distribution are� �	
exploiting special communication patterns supported
by hardware and �� generating simple address calcu�
lations to prevent addressing from becoming a domi�
nant cost�

Even with optimal layout of the data� there will
still be communication in the general case� In fact� in
most massively parallel applications that are not triv�
ially parallel� communication is almost as frequent as
computation� Therefore�

the network MIPS measure must approach the CPU
MIPS measure
A second performance�oriented recommendation is an

independently operating network with asynchronous
message delivery

since it allows the delivery of packets concurrently
with computation� That would enable the compiler to
interleave computation and communication and thus
to hide some of the communication latency�

On the other hand we recommend a
shared address space

A shared address space does not imply shared memo�
ry� it only means that every processor can generate ad�
dresses for the entire memory in the system� System�
wide addresses are especially important for pointers�
because otherwise they would have to be simulated
quite ine�ciently in software� Even the memory of
the control processor� e�g�� the frontend of a SIMD
machine� should be part of the shared address space�

Furthermore and similar to the above� we call for a

uniform memory access instructions

Many parallel machines today provide a set of instruc�
tions for accessing local memory� a second one for ac�
cessing memory in neighbors� and a third set for ac�
cessing distant memory units� The di�erences in speed

are signi�cant and� therefore� require that the compil�
er detect the faster cases� However� it is often impossi�
ble to know statically for which case to optimize� For
instance� we found that in many cases it was impossi�
ble to determine in the compiler whether a procedure
would access local or non�local memory� The generat�
ed code thus has to check all three cases at run�time�
Such simple� frequent� and dynamic analyses could be
done more e�ciently in hardware�
Barrier synchronization is extremely frequent� Basi�
cally� every communication requires a barrier synchro�
nization� The reasoning is as follows� Communication
sends or receives data� Unless communication is re�
dundant� there must be a write between two succes�
sive communication calls to the same cell� It follows
that a synchronization operation must be placed some�
where between one of the communication calls and the
write in order to avoid race conditions� If many pro�
cesses communicate at once� as in massively parallel
machines� this type of synchronization amounts to a
barrier� No process may proceed until all processes
have completed either their write or communication
operation� Because of its frequency� we need

fast barrier synchronization�

In principle� the communication network could be used
for barrier synchronization� However� communication
networks usually have high latency which make them
too slow for fast barrier synchronization� These nets
are optimized for transporting data� while barrier syn�
chronization requires the transport of only one or two
bits but must also implement a reduction or scan op�
eration on these bits�

An additional complication is that there are usu�
ally several groups of processes that need to com�
municate among themselves� necessitating multiple�
non�overlapping barriers� Consider� for instance� a
pipelined architecture in which one set of processes
passes data to another set� Each set may have to
synchronize internally� independent of the other� Sim�
ilarly� an IF�statement within a FORALL divides a
set of processes into two subsets which may have to
synchronize independently� Thus� we need

barrier synchronization for multiple� independent
sets of processes�

� Triton��
The poor programmability of today�s parallel ma�
chines is a consequence of the fact that the design
of these machines has been driven mostly by hard�
ware considerations� Programmability seems to have
been a secondary issue� resulting in languages designed
speci�cally for a particular machine model� Such lan�
guages do not satisfy the needs of programmers who
need to write machine�independent applications�

Triton
� matches most of the recommendations of
the previous section� Looking from a general point of
view� Triton
� is determined by the following state�
ments�
General Architecture� Triton
� is a SAMD

�synchronous
asynchronous instruction streams� mut�
liple data streams machine� it runs in SIMD mode
where strict synchrony is necessary� it can switch to



MIMD mode where concurrent execution of di�erent
tasks is bene�cial� It is even possible to run a subset
of the processors in SIMD mode� the other in MIMD�
Thus� Triton
� is truly SAMD� i�e� mixed�mode� not
just switched�mode� Only a few research prototypes
of mixed�mode machines have been built� OPSILA�
TRAC� and PASM ��� ��� Triton
� provides support
for switching rapidly between the two modes and a
high�level language to control both modes e�ectively�
Fast barrier synchronization is supported by

special hardware� The usage of synchronization hard�
ware is possible in both operating modes� Synchro�
nization with hardware support overcomes the neces�
sity of coarse grained parallelism�
Network� We chose the De Bruijn network for Tri�

ton
�� because it has several desirable properties �log�
arithmic diameter� �xed degree� etc�� is cost�e�ective
to build� and can be made to operate extremely fast
and reliable� In section 	�	 we present performance
�gures�
Scalability and balance� Parallel machines

should scale in performance by varying the number of
processors� furthermore� the performance of the indi�
vidual components �processor� memory� network� and
I
O should harmonize� Scalability is mainly a proper�
ty of the network� The most popular networks today�
hypercubes and grids� do not scale well� hypercubes
are too expensive because they have variable degree�
while grids cause high latency because of large diame�
ter� Triton
��s De Bruijn net has none of these prob�
lems and scales well� It is also well matched to the
speed of the processors�
I�O capabilities� I
O must also scale with the

number of processors� Few parallel machines today
provide for scalable I
O� Triton
� implements a mas�
sively parallel I
O architecture� one disk per proces�
sor� For large sets of disks� we have extended the
traditional notion of a �le to what we call a vector
�le� Massively parallel I
O also provides the basis for
research in parallel operating systems� such as virtu�
al memory� parallel paging strategies� and true multi�
user environments� Results in these areas are required
to bring parallel machines into wide�spread and gen�
eral purpose use�

��� Architecture of Triton��
Triton
� is divided in a frontend and a backend por�
tion� The frontend typically consists of a UNIX work�
station with a memory�mapped interface to connect
via the instruction and the control bus to the backend
portion� The backend portion consists of the process�
ing elements� the network� and the I
O system�

The Triton
� prototype will be built up of a Intel
��� based PC running BSD UNIX as frontend� The
prototype will contain ��� � � PEs of which �� are
supplied with a disk� ��� of the PEs are provided for
computation and � PEs are for hot stand by� These
PEs can be con�gured under software control into the
network� if other PEs fail� The recon�guration in�
volves changing the PE numbers consistently and re�
computing the routing tables in the network proces�
sors� The �� disks are logically organized in � groups
of � disks� where each group contains � data and one

parity disk� RAID level 	 ��� is used for error handling�
Figure � gives an overview on the logical organization
of Triton
��

Network

PE PE PE PE� � � � � � � � � � �

Instruction Bus

Control Bus

FE Ethernet

Figure �� Triton
� Architecture

In SIMD mode the frontend produces the instruc�
tion stream and controls the backend portion at in�
struction level� In MIMD mode the frontend is re�
sponsible for downloading the code and the initiation
of the program� The instruction bus is �� bits wide�
For reasons of decoupling frontend and backend in or�
der to reduce the time of the frontend waiting for the
backend to become ready� or vice versa� the instruction
stream is sent through a �fo� The handshake signals
necessary to control the instruction stream are part of
the control bus�

For reasons of debugging it is a good idea to have
direct access from the frontend to all parts of the
machine� especially to the main memory distributed
among the processing elements� As a direct conse�
quence of the common address space of Triton
� this
is possible via the so called analyze mode� To sup�
port the analyze mode the control bus includes �� ad�
dress lines and several dedicated control signals� the
instruction bus is used for data transport� While be�
ing in analyze mode� all PEs release their local busses�
to enable frontend access via direct memory access�

The processing elements are designed as universal
computing elements� capable of performing computa�
tion as well as service functions� Each PE consists
of a Motorola MC����� micro�processor� a memory
management unit �MC������ a numeric co�processor
�MC����� or MC����� � � MBytes of main memory�
a SCSI interface� and a network�processor� Figure �
gives an overview� No extra controllers for mass stor�
age access or any other I
O are necessary�

The network of Triton
� is built up of the network�
processors included in the PEs� the interconnection
lines� realized with �at cables� and �fo bu�ers for in�
termediate bu�ering of data packets� The network is
able to route data packets from their source to their
destination without interfering with the PEs� Non�
interference permits latency hiding techniques to be
applied� Again for reasons of decoupling� the interface
between a PE and its respective network processor is
implemented with �fos�

Parity checking of mainmemory� network links� and
mass storage implements error detection� Periodic sig�
nature tests locate malfunctioning elements�



RAM

SCSI

NET

FPU

CPU

MMU

FE
Address Bus

Data Bus

Figure �� Triton
� Processing Element

��� Detailed discussion of selected hard�
ware aspects

In order to get a better idea on the architectural fea�
tures of Triton
� it is necessary to look into some im�
plementation details of the hardware�

The implementation of the instruction bus and
the control bus is quite naturally done by a hier�
archy of bus drivers� for signals from the frontend to
the backend For the opposite direction� global�wired�
or lines are emulated by explicit OR�combining the
signals from the single PEs� In SIMD mode all PEs
execute the same instruction at a time �or idle� in�
cluding reading the instruction at the same time� The
reading of instructions by the PEs is controlled via
three control signals� Instruction strobe signals the
frontend that all PEs currently listening to the in�
struction stream are ready to read an instruction� The
frontend then asserts the instruction and answers with
instruction transfer acknowledge� If all PEs current�
ly listening accepted the instruction instruction fetch
done is asserted� which signals the end of an instruc�
tion transfer� The three�way handshake introduces
a non�negligible amount of delay due to the signals
traversing the complete bus hierarchy several times�
To reduce that delay we introduced an instruction
bu�er at each driver level in the bus hierarchy� re�
ducing the delay for the instruction fetch by two clock
cycles in the normal case� Thus the handshake de�
scribed above is executed in between every two hier�
archy levels� rather than between the frontend and the
PEs�

As mentioned above the global address space
constists of a �� bit address� The least signi�cant �	
bits are used to select the memory and the memory
mapped I
O in the PEs� Another �� bits are used to
identify the PE to be accessed� and one bit is used to
distinguish frontend and backend� The identi�cation
of the PEs is twofold� Each PE has a hardware iden�
ti�cation� which is selected by a switch setting� The
hardware identi�cation is used to select the PE in the
analyze mode for debugging� Additionally� each PE
has a software identi�cation� which is used while com�
puting� The software id is initially set to the same
value as the hardware id� but can alter for reasons
of hardware error handling� However� implementing

a concept with a �� bit address space does not auto�
matically imply computing with �� bit addresses all
the time� In the majority of the cases computing with
	� bit addresses su�ces� reducing the time spent with
address calculation�

Another point of interest is mode�switching�
Though the MIMD mode is more natural to the pro�
cessor the system is started in SIMD mode� This is
done to save additional hardware for the startup code�
In SIMD mode� the function codes of the processor
are used to determine whether the processor intends
a data or a program access� According to that� the
processor bus is connected to the local memory or the
instruction bus� respectively� If a PE is selected not
to execute an instruction� the local signal listen to
instruction stream is turned o� and the processor of
that PE is not noti�ed of instructions� except if the in�
struction is unconditional� The value of the processors
program counter is completely ignored in SIMD mode�
In order to switch to MIMD mode the program to be
executed has to be downloaded to the memory of the
PEs� This is done via the instruction stream in SIMD
mode� Thus� the distribution of code is� in contrast to
many other MIMD machines� done in a time propor�
tional to the length of the code� independent of the
size of the machine� The switch from SIMD to MIMD
mode is performed by two instructions� With the �rst
instruction� the program counter is set according to
the location of the program to be executed in MIMD
mode by a JMP instruction� With the second instruc�
tion� the SIMD request bit in the command register
local to the PE is deactivated� The PE then switches
to MIMD mode at the end of the current cycle and
commences execution of the local code without de�
lay� To switch from MIMD to SIMD mode� the SIMD
request bit in the local command register simply is ac�
tivated� which causes the PE to switch to SIMD mode
at the end of the current cycle� The next instruction
is then expected form the instruction stream�

While some PEs are executing in MIMD mode� the
rest of the PEs may execute in SIMD mode� This is
achieved by activating the instruction transfer hand�
shake in the case of MIMD operation� If there is no PE
left to execute in SIMD mode but still some instruc�
tions remain in the instruction �fo� the handshake sig�
nals automatically empty the bu�er�
Data transfer is an important point in every par�

allel computer� There are several di�erent data paths
to consider� The most important point is the data
transport between the PEs� That task is performed
by the network which is described later in detail� An�
other important point is the transport of data from
the frontend to the backend and vice versa� There are
di�erent possibilities for each direction� To transport
data from the frontend to the backend� the easiest way
is to send the data as immediate data via the instruc�
tion stream in SIMD mode� With that possibility� any
subset of the PEs can be the destination of the data�
Unfortunately only unidirectional access is possible�
The second possibility of transferring data is the di�
rect memory access within the analyze mode� Herein
data can be transferred in both directions� The draw�
back of the analyze mode is that no computation can



take place and not more than one PE can be accessed
concurrently� The third possibility of data transport is
via the network� There is one dedicated network node
which is connected to the frontend� This is especial�
ly useful in the case that more than a few bytes have
to be transported from di�erent PEs to the frontend�
e�g� picture data� Another advantage of a network
node included in the frontend is that computation can
commence while data is transported�

����� Fast barrier synchronization in MIMD
mode

An important problem is the realization of barrier syn�
chronization in the case that several di�erent sets of
processes are distributed randomly over the PEs� A
set or group of processes is de�ned as executing the
same part of code �e�g� procedure and therefore shar�
ing common variables� If there is only one set of pro�
cesses requesting synchronization� the barrier synchro�
nization is easily done by the usage of a global�wired�or
line� Each PE sets its ready bit on the line to true as
soon as it reaches the synchronization point� Approx�
imately one clock cycle after the last PE sets its bit�
the frontend is able to recognize the result and the
PEs are noti�ed by the result line�

The problem of using synchronization with a single
global�wired�or line in MIMD mode is that a global�
wired�or line cannot be partitioned randomly� In the
general case� more than one group of processes exists�
Each of these groups share common variables to which
accesses have to be regulated� In most cases the groups
of processes are distributed randomly over the set of
PEs so that they cannot be partitioned by partitioning
the backend�

To enable the usage of hardware supported syn�
chronization with several groups of processes running
in MIMD mode� the global�wired�or line is adminis�
trated by the frontend as a synchronization resource
in the following way� Each group of processes is iden�
ti�ed by a unique process group number� Initially� the
synchronization line is not used� and each PE is al�
lowed to request it on behalf of a group� The request
is performed by the �rst PE reaching a barrier� That
PE signals the frontend by the service request line and
sends the group identi�cation via the analyze circuits�
If more than one PE reaches a barrier at once� the an�
alyze circuits will select one randomly� The frontend
then knows which group demands the synchronization
line� Next� the frontend interrupts all PEs and forces
them into SIMD mode to perform a barrier setup� The
PEs not belonging to the requesting group are pro�
hibited to request the sync line themselves� They also
turn on their ready bits� The PEs belonging to the
requesting group set their ready bit to true if they
already reached the sync point� otherwise to false�

After this setup phase� the PEs return to MIMD
mode� All PEs continue computation� independent of
their group membership� As soon as the last ready
bit is turned on� the group owning the global�wired�or
line synchronizes and then releases the sync line� The
frontend then releases the request prohibition in order
to enable other groups to synchronize�

This discussion glossed over the di�culties that
arise if a PE virtualizes� i�e�� executes several threads
or processes which may belong to di�erent groups�
In this case� the ready bits have to be virtualized as
well� The details depend on the virtualization strat�
egy� which may be a mixture of looping and context
switching�

��� Communications Network
The Triton
� network is based on the generalized De
Bruijn Net ��� 	�� The number N of nodes in the net�
work is not limited to powers of two� The �maximum
diameter is dlog

d
Ne� The average diameter is well

below log
d
N and in practice quite close to the theo�

retical lower bound� the average diameter of directed
Moore graphs�
In our implementation we use degree d � �� which
makes our net a perfect shu�e �see �gure 	� In com�
parison with other frequently used networks� this de�
sign has the bene�t of a constant degree per node and
a small average diameter� Data transport is done via
a table�based� self�routing packet switching method�
which allows wormhole�routing and load dependent
detouring of packets� Every node is equipped with its
own routing table and with four bu�ers� two for in�
termediate storage of data packets coming from other
nodes and two to communicatewith its associated pro�
cessing element� The bu�ering temporally decouples
the network from local processing�

�
��
�
��
�
��
��������������

��
��
�
��
��
�������������

��
�
��
�
��
�

��
�
��
��
���
������������

��
��
�
��
���
�������������

��
��
��
�
�
�

�
��
�
��
�
��
��������������

��
��
�
��
��
�������������

��
�
��
�
�
��

�
��
�
��
�
��
��������������

��
��
�
��
��
�������������

��
�
��
�
��
� �

��
�
��
�
��
��������������

��
��
�
��
��
�������������

��
�
��
�
��
�

��
�
��
��
���
������������

��
��
�
��
���
�������������

��
��
��
�
�
�

�
��
�
��
�
��
��������������

��
��
�
��
��
�������������

��
�
��
�
�
��

�
��
�
��
�
��
��������������

��
��
�
��
��
�������������

��
�
��
�
��
����������������������������������������������������������������������������������

����
����
��
��

�������������������������������������������������������������������������
����
��
��

������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����
����
��
��

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���
���
�

������������

��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
����
��
��
��
��
�
�

������������

��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
����
��
��
��
��
�
�

������������

����
����
����
�����
����
�����
����
����
�����
����
����
�����
����
�����
����
����
�����
����
�����
����
����
�����
����
����
��
��
���
���

�
��
�
��
�
��
��
�

����
����
����
�����
����
�����
����
����
�����
����
����
�����
����
�����
����
����
�����
����
�����
����
����
�����
����
����
��
��
���
���

�
��
�
��
�
��
��
�

����
����
����
�����
����
����
�����
����
�����
����
����
�����
����
�����
����
����
�����
����
�����
����
����
���
����
������
��
�
�
�
��
��
�

��
��
���
���
��

����
����
����
�����
����
����
�����
����
�����
����
����
�����
����
�����
����
����
�����
����
�����
����
����
���
����
������
��
�
�
�
��
��
�

��
��
���
���
��

��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��������������

��
��
��
��
��
�
�

��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��������������

��
��
��
��
��
�
�

�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
���

�
�
��
�
��
��
���

�
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
���
�
��
��
��
��
�

��
�
��
��
��
��
�

�

�

�

�

�

�

�

	

��
�
��
��
��
���
����
���������������������

����
��
��
��
��
�
��
�
��
�
��
�
��
��
��
���
�������������������������

���
���
��
��
��
��
��
��
��

�
��
��
�
��
��
��
�
��
�

�
�����������

�
����
���������������������

����
��
��
��
��
�
��
�
��
��
��
��
�
��
�
��
�
��
��
�
��
��
�
��
��
��
���
��
����
�����������������������

���
��
��
�

��
����
��
�
��
��
�
��

��
��
��
��
��
��

Figure 	� De Bruijn Net with � nodes

The communications processor is able to route the
packets without interfering with the local processing
element� Optimal routes are stored in a routing ta�
ble per communications processor� The network can
thus transport data in parallel with the operation of
the processing elements� This feature can be used by
the compiler to overlap communication and processing
time by rearranging code�

In order to analyze the behavior of the network� we
built a simulator based on the measured performance
of a single communications processor� We simulat�
ed the overall performance of the network in various
modes� The number of nodes ranged from 	� to �����
Figure � presents the results of a series of experiments
with a random communication pattern �random H�
permutations�
Both the sender and the receiver were chosen random�
ly� with the restriction that the number of data packets
to be transported is the same as the number of nodes
in the network� The simulation shows that the net�
work scales well� the delay introduced by the network
is within O�logN � with N denoting the number of
nodes and messages�



�

��

��

��

��

�

��

��

��

��

�� �� ��� �	� 	�� ���� ���� ��
� ��
�

Number of nodes

�������������
��������������

�������������
�������������

��������������
������������

�������������
������������

��������������
������������

�������������
������������

�������������
�������������

������������
������������

������������
�������������

�������������
������������

������������
������������

��������������
������������

������������
������������

������������
�������������

������������
�������������

������������
������������

�������������
������������

������������
������������

������������

��������
������������

������������
������������

������������
�������������

������������
������������

������������
�������������

������������
������������

������������
������������

��������������
������������

������������
������������

������������
�������������

������������
������������

������������
������������

�������������
������������

������������
������������

�������������
������������

�������������
������������

������������
�������������

������������
������������

������������
������������

���

�����
����
��

����
����
���

���
�����
���

���
����
����

����
����
���

����
����
���

����
����
���

����
����
���

���
����
����

����
���
���
�

���
���
���
��

����
���
���
�

����
���
���
�

����
���
���
�

����
���
���
�

���
���
���
��

���
���
��
���

��
����
���
��

����
���
����

����
���
����

���
��
���
���

��
���
��
���
�

���
��
���
���

b

bb

bb

bb

bb

bb

bb

bb

b

�
��

��
��

��
��

��
��

�

r
rr

rr
rr

rr
rr

rr
rr

r

� ��� � transfer time in network cycles
��� maximum diameter
��� average diameter

Figure �� Performance on random communication

The robustness against overload is surprisingly
good� Even if all processing elements send a great
number of packets simultaneously� the overall through�
put of the network does not decrease� Irregular per�
mutations are performed especially fast� All �hard 
patterns known from literature� e�g�� transposition of
a matrix� butter�y� and bit reversal perform well too�
The delivery time for those is equal to or lower than
the delivery time for random permutaitions�

� Conclusion
The integrated approach of designing language� com�
piler� and hardware together has lead to a parallel
architecture that supports higher�level languages ad�
equately� Fast barrier synchronization for multiple
process groups� SAMD mode� shared address space�
and a fast� independently operating network should
make parallel computers run e�ciently even when pro�
grammed in a machine�independent fashion�

Status and schedule of Triton��

The fully functional prototype of a PE board was
completed in October ����� The individual compo�
nents �communication processor� processing element
and control processor interface are tested and are run�
ning according to speci�cations� The manufacturing
of the printed circuit boards is in progress� The �nal
assembly of Triton
� will be completed early in ���	�

References
��� M� Auguin and F� Boeri� The OPSILA computer�

In M� Consard� editor� Parallel Languages and Ar�
chitectures� pages ��	!��	� Elsivier Science Pub�
lishers� Holland� �����

��� N� G� De Bruijn� A combinatorial problem� In
Proc� of the Sect� of Science Akademie van Weten�
schappen� pages ���!���� Amsterdam� June ��
�����

�	� Makoto Imase and Masaki Itoh� Design to min�
imize diameter on building�block network� IEEE
Transactions on Computers� 	�����	�!���� June
�����

��� David A� Patterson� Garth Gibons� and Randy H�
Katz� A case for redundant arrays of inexpensive
disks �RAID� In Proc� of the �� ACM�SIGMOD
Conference on Managenment of Data� pages ���!
���� Chicago� ��	 June �����

��� Michael Philippsen� Walter F� Tichy� and Chris�
tian G� Herter� Modula��� and its compilation�
In First International Conference of the Austrian
Center for Parallel Computation� pages ���!��	�
Salzburg� Austria� September ����� Springer Ver�
lag� Lecture Notes in Computer Science ����

��� H�J� Siegel� T� Schwederski� J�T� Kuehn� and N�J�
Davis� An overview of the PASM parallel process�
ing system� In D�D� Gajski� V�M�Milutinovic� and
H�J�Siegel and B�P� Furht� editors� Computer Ar�
chitecture� pages 	��!���� IEEE Computer Society
Press� Washington� DC� �����

��� Walter F� Tichy and Christian G� Herter� Modula�
��� An Extension of Modula�� for Highly Parallel�
Portable Programs� Technical Report No� �
��
�Interner Bericht� University of Karlsruhe� De�
partment of Informatics� January �����


