
Proceedings of the Conference on Massively Parallel Programming Models

pages ������ Berlin� Germany� September ������ 	

�

The Modula��� Environment for Parallel Programming

Stefan U� H�an�gen� Ernst A� Heinz� Paul Lukowicz� Michael Philippsen� Walter F� Tichy

�haensgenjheinze j lukowiczjphlipp jtichy�� ira�uka�de

Universit�at Karlsruhe

Fakult�at f�ur Informatik

D������ Karlsruhe	 F
R
G

Abstract

This paper presents a portable parallel program�
ming environment for Modula��� � an explicitly
parallel machine�independent extension of Modula���
Modula��� o�ers synchronous and asynchronous par�
allelism� a global single address space� and automatic
data and process distribution� The Modula��� system
consists of a compiler� a debugger� a cross�architecture
make� a runtime systems for di�erent machines� and a
set of scalable parallel libraries� Implementations exist
for the MasPar MP series of massively parallel proces�
sors 	SIMD
� the KSR�� parallel computer 	MIMD
�
heterogeneous LANs of workstations 	MIMD
� and
single workstations 	SISD
�

The paper presents the important components of the
Modula��� environment and discusses selected imple�
mentation issues� We focus on how we achieve a high
degree of portability for our system while at the same
time ensuring e�ciency�

� Introduction

The demand for increasing computer performance at
reasonable cost leads to rising interest in parallel com�
puter systems with tens of thousands of processors

To make such systems acceptable as serious platforms
for scienti�c and commercial computing	 they must
be programmable in a problem�oriented and machine�
independent manner
 Hence	 parallel programming
languages must be freed of machine dependent com�
munication and scheduling instructions
 Programs
need to be written independently of the number of
available processors and the actual machine topology

In this paper we present a parallel programming
system that ful�lls these requirements while achiev�
ing adequate performance of the compiled code ���

It consists of a compiler for a problem�oriented lan�
guage and a programming environment that provides
a uniform problem view across di�erent machine types
�MIMD	 SIMD and SISD�

Section � describes the main features of Modula���

In section � we then focus on the components of our
system	 in particular the architecture of the compiler
and the source�level debugger
 Finally	 we give some
benchmark results demonstrating the performance of
the compiled codes

� Modula���

The programming language Modula��� was devel�
oped to allow for high�level	 problem�oriented	 and
machine�independent parallel programming
 As de�
scribed in ���� it embodies the following features�

� An arbitrary number of processes operate on da�
ta in the same single address space �or virtual
shared memory�
 Note that shared memory is
not required� a single address space merely per�
mits all memory to be addressed uniformly but
not necessarily at uniform speed

� Synchronous and asynchronous parallel computa�
tions as well as arbitrary nestings thereof can be
formulated in a totally machine�independent way

� Procedures may be called in any context �sequen�
tial or parallel� and at any nesting depth
 Fur�
thermore	 additional parallel processes can be cre�
ated inside procedures �recursive parallelism�

� All abstraction mechanisms of Modula�� are
available for parallel programming

Modula��� extends Modula�� with just two language
constructs�

�
 The only way to introduce parallelism into
Modula��� programs is by means of the FORALL

statement which has a synchronous and an asyn�
chronous version

�
 The distribution of array data is optionally spec�
i�ed by so�called allocators
 These are machine�
independent data layout hints for the compiler
without any semantic meaning

Because of the compactness and simplicity of these ex�
tensions	 they could easily be incorporated into other
imperative programming languages	 such as Fortran	
C	 or Ada
 In Modula���	 the syntax of the FORALL

statement is de�ned as follows�

FORALL �Ident� ��� �SimpleType� IN �PARALLEL � SYNC�

�VarDecl�

BEGIN

�StatementSequence�

END	

SimpleType is an enumeration or a possibly non�static
subrange	 i
e
 the boundary expressions may contain
variables
 The FORALL creates as many �conceptual�
processes as there are elements in SimpleType
 The
identi�er introduced by the FORALL statement is local
to it and serves as a runtime constant for every process
created by the FORALL
 The runtime constant of each
process is initialized to a unique value of SimpleType

Each process created by a FORALL obtains an
instance of each variable declared in the decla�
ration part and then executes the statements in
StatementSequence
 The END of a FORALL statement
imposes a synchronization barrier on the participating
processes� termination of the whole FORALL is delayed
until each created process has �nished its execution of
StatementSequence

In a synchronous FORALL	 the created processes ex�
ecute StatementSequence in lock�step while they run
concurrently in the asynchronous case

Hence	 for non�overlapping vectors X	 Y	 and Z the
following asynchronous FORALL statement su�ces to
implement the vector addition X �� Y � Z

FORALL i �
�		N� IN PARALLEL

Z
i� � X
i� � Y
i�

END

In contrast to the above	 parallel modi�cations of over�
lapping data structures may require synchronization
provided by the synchronous version of the FORALL

statement
 Thus	 even irregular data permutations
are easy to formulate

FORALL i �
�		N� IN SYNC

X
i� � X
p�i��

END

This synchronous FORALL permutes the vector X ac�
cording to the permutation function p
 The syn�
chronous semantics ensure that all rhs elements
X�p�i�� are read and temporarily stored before any
lhs variable X�i� is written

The behavior of branches and loops inside syn�
chronous FORALLs is de�ned with a MSIMD �multiple

SIMD� machine in mind
 This means that Modula���
does not require any synchronization between di�erent
branches of synchronous CASE or IF statements
 The
exact synchronous semantics of all Modula��� state�
ments	 including nested FORALLs	 and the e�ects of
allocator declarations are described in ����

� The Modula��� System

The Modula��� system currently targets the MasPar
MP series of massively parallel processors �SIMD�	
the KSR�� parallel computer �MIMD�	 heterogeneous
LANs of workstations �MIMD�	 and single worksta�
tions �SISD�
 The Modula��� system consists of

�
 an optimizing and restructuring compiler	

�
 machine�dependent runtime systems	

�
 a parallel debugger	

�
 an automatic cross�architecture make	 and

�
 libraries of scalable parallel operations �enumera�
tion	 reduction	 scan	 etc
�

These components provide a uniform view of the sys�
tem that is independent of the underlying hardware

By targeting workstations and LANs we ensure that
parallel software can be developed and tested without
actual access to expensive parallel hardware
 Further�
more	 the LAN compiler represents an easy way to
exploit the computing power of workstation clusters

��� Compiler

General Architecture� To keep major parts of
the compiler machine�independent we use a two stage
strategy to distinguish target machines
 In the �rst
stage we make a coarse distinction between di�erent
parallel programming models
 To this end we use an
abstract classi�cation of parallel C dialects to control
some structural aspects of the code generated by the
compiler
 This code is a general intermediate rep�
resentation that we have chosen to be C augmented
with machine�independent macros and keywords ���

In the second stage we adapt our code to a speci�c
target architecture by by combining the intermediate
code with a machine�dependent macro package using
a standard preprocessor
 Thus	retargeting the com�
piler only requires the speci�cation of the appropriate
abstract class of the target language and the exchange
of the macro package and some libraries
 An exam�
ple of code generated for di�erent machines ���K PEs
MasPar MP�� and ��processors KSR��� can be found

Modula���

MODULE test

CONST N �����

VAR X� ARRAY
�		N� SPREAD OF CARDINAL�

BEGIN

FORALL i �
�		N��� IN SYNC X
i� � X
i��� END

END test	

MasPar

plural static struct testS��� �CARDINAL A
���X�

plural static dispatcher�� �

�ParProcStart����

�ParItem��Lwp���ID�Lwp����

�ParProcEnd����

�

void BEGIN�MODULE��� �� begin main program ��

�InitPEs����

� �� begin FORALL IN SYNC ��

�� some declarations omitted here ��

plural LONGCARD H���i
���

�� FORALL initialization ��

FLow�i �thispe������

FHi�i p���MIN��thispe������������

�InitBounds��FHi�i�FLow�i�FNum�i��

for�IR�i��iFLow�i�i�FHi�i�i���IR�i���

�Num�i ��AB�i
IR�i� ����Sync�����

�� virtualization loops ��

for�IR�i��iFLow�i�i�FHi�i�i���IR�i����

� plural LONGCARD L��� �� get X
i��� ��

�GetGlobalPT��L��� �pl���i � ������������X	A
����

H���i
IR�i� L����

��Sync����� �� synchronize ��

for�iIR�i��FLow�i�i�FHi�i�i���IR�i��� �

X	A
�� � H���i
IR�i�� �� store in X
i� ��

��Sync����� �� synchronize ��

��� end FORALL IN SYNC ��

�EndPEs����

� �� end main program ��

KSR�

plural static struct testS��� �CARDINAL A
N � ���� X�

plural static dispatcher�� �

�ParProcStart����

�ParItem��Lwp���ID�Lwp����

�ParProcEnd����

�

plural static Lwp����

��� begin FORALL IN SYNC ��

�� some declarations omitted here ��

plural LONGCARD H���i
�����

�� FORALL initialization ��

FLow�i �����thispe������

FHi�i p���MIN�������thispe�����������������

�InitBounds��FHi�i�FLow�i�FNum�i��IR�i��

for�iFLow�i�i�FHi�i�i���IR�i���

�Num�i �� AB�i
IR�i� �� � �Sync�����

�� virtualization loops ��

for�IR�i��iFLow�i�i�FHi�i�i���IR�i����

H���i
IR�i� X	A
i � ��� �� get X
i��� ��

� �Sync����� �� synchronize ��

for�IR�i��iFLow�i�i�FHi�i�i���IR�i��� �

X	A
i� H���i
IR�i�� �� store in X
i� ��

��Sync�����

� �� end FORALL IN SYNC ��

void BEGIN�MODULE�� � �� begin main program ��

�InitPEs����

�� start the FORALL code on all PEs ��

��CreateForallSProcs��Lwp���ID���

�EndPEs����

� �� end main program ��

Figure �� An example of Modula��� code generation
 A simple Modula��� program �top� was compiled for a
��K MasPar MP�� �bottom left� and a KSR�� using � processors �bottom right�
 For clarity some less relevant
declarations are omitted

in Figure �
 It will be used to illustrate some prin�
ciples of Modula��� code generation throughout this
section

Abstract Classes of Parallelism� In the classi��
cation of a C dialect we �rst consider the mechanism
for the creation of parallelism�

� Data Parallelism� Data parallelismmeans that
all operations on distributed data are automati�
cally executed in parallel
 The parallelism is in�
troduced by specifying a data distribution
 An
example of a data parallel model is the MasPar
MPL language

� Thread Parallelism� In this model the code to
be executed in parallel has to be packed into sep�
arate program entities �e
g
 procedure�
 To begin
parallel execution the desired number of threads
is explicitly launched
 A good example of this
model is the POSIX Thread Standard

� Region Parallelism� In a region parallel mod�
el the parallel code sections are enclosed in an
appropriate syntactic construct
 Such parallel re�
gions are automatically distributed to all PEs and
launched
 This concept can be found in many
parallel Fortran dialects �e
g
 KSR��� and can
easily be incorporated into C
 Currently	 howev�
er	 we know of no parallel C dialect using region
parallelism

Each of the above classes is further subdivided accord�
ing to the memory model into a shared memory and
distributed memory subclass

To provide some insight into the impact of the
above classi�cation on the code structure we consid�
er the KSR�� code in Figure �
 The KSR�� falls into
the thread parallel	 shared memory category
 Conse�
quently	 the contents of the FORALL statement is put
into a procedure Lwp	 and a thread creation macro
CreateForallSProc is inserted into the main section

The array X is not distributed
 It is declared the same
way as it would have been in a sequential C code ex�
cept for the plural keyword that has to be de�ned
void
 No communication statements are generated

In the MasPar code	 on the other hand	 the FORALL

statement remains in the main section and no threads
need to be created
 Since the MasPar is a distributed
memory machine the array X is distributed
 It is de�
�ned with the length of � on each of the ��K PEs
 As
the overall size is N�	
�� only the elements on the �rst
��� PEs are considered valid data
 A communication
macro GetGlobalPT is generated for remote access

Intermediate Language� Our intermediate lan�
guage is standard C with calls for data management	
process management	 processor control and other ad�
ministrative tasks
 Most of the time identical macros
are generated for all machine classes described above

For a particular machine some macros are redundant
and have to be de�ned void �e
g
 the plural keyword
on the KSR�� or the synchronization macro Sync on
the MasPar�

� Data Management� Data management macros
consist of a plural keyword marking distributed
data and statements for putting data to �Put� and
getting data from �Get� arbitrary remote memory
locations
 There are di�erent sorts of Put and
Get statements for PE�PE	 PE�frontend	 nearest
neighbor	 and global communication
 In Figure
� a macro for PE�PE communication using the
global router �PutGlobalPT� has been used
 The
parameters of the communication macros contain
all informationneeded to compute the PE number
and the local address of a data element from the
Modula��� array index

� Process Management� This is a group of calls
used to manage virtual processes
 Depending on
the bounds of a FORALL statement	 an appropriate
number of virtual processes is assigned to every
PE
 There is a for loop around every sequence
of statements between two synchronization barri�
ers
 In Figure � there are two virtualization loops

The �rst one loads the values of X�i�	� into the
temporary array H	i
 The second stores this
values into X�i�
 Macros are generated to com�
pute the values of the FORALL variable belong�
ing to a given PE as well as the upper bounds	
the lower bounds	 and the increment of the loops
from the PE number �InitBounds�
 Note that
the parameters and the implementation of these
macros determine the process distribution
 Fur�
ther macros are required to manage temporary
storage	 control the activation of individual pro�
cesses in control constructs	 and synchronize all
processes after each virtualization loop �Sync�

� Processor Control� Except for the data paral�
lel model macros are needed to schedule groups
of virtual processes onto the individual proces�
sors
 A close look at the KSR�� program in Fig�
ure � reveals that in the thread parallel class two
macro calls are generated to schedule each FORALL

statement� a CreateForallSProc in the sequen�
tial code and a ParItem macro in a dispatcher

procedure
 The scheduling is done in a mas�
ter�slave manner
 The dispatcher procedure
loops on each processor waiting for the master
to specify a FORALL to be executed
 The mas�
ter�s call of CreateForallSProc sends a message
containing an unique ID of the current FORALL

statement�Lwp	ID in our case� to each proces�
sor
 When this massage is received the dispatcher
matches the ID with a local address of the FORALL
procedure using the ParItem macro and starts
parallel execution

In the region parallel model
the CreateForallSProc is placed at the begin�
ning and a EndForallSProc at the end of each
FORALL
 In both the region and the data parallel
models the dispatcher procedure has no meaning
and all macros inside it are de�ned void

Macros are also provided for initialization and cleanup
�InitPEs� EndPEs�	 pro�ling	 debugging and proce�
dure parameter management

Optimizations� On parallel machines optimiza�
tions tend to improve program runtime dramatically

Therefore	 our Modula��� compiler performs various
optimizations and code restructuring as summarized
below

� Elimination of Synchronization Barriers�
The semantics of synchronous FORALL statements
in ���� require a large number of synchronization
barriers
 Most real synchronous FORALLs	 howev�
er	 only need a fraction thereof to ensure correct�
ness
 We have shown that the automatic elimina�
tion of such redundant synchronization barriers is
possible ���
 To statically detect redundant syn�
chronization barriers	 the compiler applies a vari�
ant of standard data dependence analysis modi�
�ed for our speci�c needs
 Typically	 this opti�
mization improves performance by over �� on a
��K MasPar MP�� and by over a factor of two on
sequential workstations

� Automatic Data and Process Distribution�
For distributed memory machines	 the distribu�
tion of array data and processes over the available
processors is a central problem

By analysis of usage patterns	 the compiler stat�
ically derives arrangement information �a� to de�
rive super�arrays that group together dimensions
of di�erent arrays and FORALL�ranges and �b�
to transform subscript expressions accordingly

Implemented as a source�to�source transforma�
tion	 this optimization results in dramatically en�
hanced locality and normally improves perfor�
mance on the MasPar MP�� by at least �� ����

Furthermore	 our compiler automatically maps
arbitrary multi�dimensional arrays to the avail�
able processors
 The scheme employed ��� enables
nearest�neighbor communication and achieves ef�
�cient address calculations

Implementation Restrictions� There are two ma�
jor restrictions in the current compiler
 The �rst one is
the lack of pointers to distributed data and distribut�
ed open array parameters �except for shared memory
machines�
 The second one concerns the generation of
e�cient code for nested and recursive parallelism and
the automatic recognition of nearest neighbor commu�
nication which are both in the experimental stages

��� Modula��� Runtime System

The Modula��� runtime system performs the initial�
ization	 maintenance	 and cleanup of code sections ex�
ecuted in parallel
 The runtime system functions	 e
g

remote data access and synchronization	 are used to
implement the machine�independent macro interfaces
described in the previous section

For di�erent architectures	 di�erent infrastructures
are used
 The MasPar runtime system makes use of
the MasPar system library	 while the LAN runtime
system is built on top of p�	 a message passing paral�
lel programming system available for a variety of ma�
chines

Figure � illustrates the setup of the LAN runtime
system processes and their interaction
 The system
consists of two components per PE which execute
all virtual PEs� instructions in virtualization loops

The Worker performs the distributed computations

For remote memory access the Worker performs syn�
chronized read�write accesses itself	 while the Runner
deals with asynchronous get�put memory accesses
 It
uses the ptrace system call for directly accessing da�
ta of the Worker
 A central Syncer provides global
synchronization barriers and I�O�

The current version of the LAN system runs on
a KSR�� parallel computer and a network of Sparc�
Stations
 Ports to other MIMD architectures are in
progress

�The Control and the Master Debugger processes are de�
scribed more closely in the debugger description on page ��

Worker Runner

Control

 Master
Debugger

Syncer

 User
Interface

PE1

Worker Runner

Control

...

PEn

sync cont sync cont

D
e

b
u

g
g

e
r

R
u

n
ti
m

e
 S

y
s
te

m

statuscontrol control status

status,
display

control,
query

access access

statuscontrol statuscontrol

get/put

read/write

...

Figure �� Process interaction in the LAN�based run�
time system with debugging support

��� Debugger MSDB

Due to the high level of abstraction	 many of the usual
problems of parallel programming are of no concern to
the Modula��� user	 e
g
 data access deadlocks	 virtu�
alization	 and communication operations
 These are
all taken care of by the compiler

This observation shifts the focus of debugging from
machine dependent issues to more abstract problems
such as visualization of parallel activities	 data	 and
dynamic activation trees
 For performance tuning	 we
additionally support pro�ling ���

Figure � shows a screendump presenting all of
MSDB�s display features

Concepts� The debugger provides the usual features
that are also found in sequential debuggers	 such as
setting and examining variables	 setting breakpoints	
and stepping through the program
 Additionally	
MSDB supports di�erent views of distributed data
and parallel execution

All distributed information about the program is in�
tegrated on one screen with several windows
 At each
single step	 or whenever a breakpoint is encountered	
all displayed information is updated

In the remainder of this section	 we focus on the
concepts that use high�level abstractions in terms of
the language and help to understand the parallel exe�
cution

� Activation Trees and Grouping� When many
di�erent parallel activities are running in parallel	
it is di�cult to keep an overview of the program�s
execution

The activation tree �or structure tree� shows	 in
terms of programming language constructs	 where
the activities inside the program are located at
the moment
 It is updated internally each time
an activity enters a new statement that a�ects
the control �ow	 e
g
 a loop	 an IF�statement or
a FORALL

The leafs of the activation tree are the locations of
the processing while their predecessors represent
their dynamic history
 This resembles a stack in a
conventional program	 only that MSDB shows all
constructs	 not just function calls	 and displays
parallel activities in form of a tree

To make this approach feasible even with a large
number of concurrent activities	 identical sub�
trees are grouped together
 This means that all
activities that are inside the same pass through
the same control �ow branch inside a FORALL are
shown as one node
 A simple example of group�
ing several nodes in an IF and a WHILE statement
executed in parallel is presented in Figure �

�

Figure �� Dynamic activation tree before and after group�
ing of equivalent nodes

� Multiple program counters� We need to keep
track of the program counter positions in the
code
 Since maintaining one source code win�
dow for each virtual PE quickly gets confusing
with a large number of PEs	 we use multiple pro�
gram counter arrows in the source code window
to represent the grouped activities
 The size of
the arrow indicates the number of processes that
are at this position
 More detailed information
about the processes in the group can be obtained
by clicking on the arrow

� Visualization of data� In the debugger mul�
tidimensional arrays are visualized by �cutting�
through the data and viewing ��dimensional slices
thereof ���dimensional data gets mapped onto a
��dimensional array for a better screen presenta�
tion�
 The exact value of the array element under
the mouse pointer is also displayed

Figure �� MSDB in action
 The program being debugged is a heat di�usion simulation
 Its results are shown
in a value visualizer
 A visualization of the virtual PEs� activities as well as the �grouped� activation tree and a
pro�le graph can also be seen
 The left window shows the Modula��� source with two di�erently sized program
counter markers and a breakpoint	 the right window displays the corresponding C source

Di�erent kinds of visualizers are available� Com�
parison visualizers highlight the array elements
which are equal to	 greater than or less than a
user de�ned value
 Range visualizers represent a
generalization of comparison which highlights all
values inside a user�de�ned range
 Finally	 Val�
ue visualizers map array elements to a grayscale
representation of the data	 compensating for sta�
tistical peaks

� Pro�ling and activities� For performance tun�
ing the user needs to know which parts of the
program are executed how often

MSDB keeps track of the processes entering	 re�
peating and leaving constructs
 Thus	 it can pro�
vide the user with a display of the most�often used
structures
 The number of runs through a state�

ment corresponds roughly to the time spent there

Abstracting from machine dependent displays of
processor activities	 the debugger has a special�
ized visualizer displaying the currently active vir�
tual PEs as black regions in a PE matrix

Although the real PEs are not visible to the
Modula��� programmer	 combining this view
with the pro�ling view gives more information
about the load distribution
 One can easily dis�
tinguish one process running a loop � times
from � processes running it one time

� Breakpoints� The semantics of a breakpoint in
parallel are more complicated than in the sequen�
tial case
 A common problem is the halting of all
processes in a consistent state

In MSDB breakpoints are global and asyn�
chronous
 A stop command is broadcast whenev�
er one process encounters a breakpoint
 The stop
is global to provide consistent handling among
MIMD	 SIMD	 and SISD machines	 as on the lat�
ter two all stops are necessarily global
 In addi�
tion	 virtualization loops make it di�cult to stop
just one single process

Asynchronous breakpoints are consistent with
Modula����s semantics� the end of the FORALL

statement is a synchronization barrier
 Thus	 the
stop command reaches every process eventually

In a synchronous FORALL	 all processes operate in
lockstep	 so they are stopped in the same state

The semantics of the asynchronous FORALL per�
mit an indeterministic order of execution among
the processes	 so it is of no concern where exactly
a process is stopped

The semantics of stepping through the program
are similar
 All processes execute the next state�
ment unless they are at the end of a FORALL

There they wait for the remaining processes to
synchronize with them

Instrumentation for Debugging� To support the
debugger	 the Modula��� compiler places additional
information in the code�

� Mapping from Modula��� to C� The com�
piler generates code for the parallel C dialect of
the target machine
 Thus	 the debugger can re�
ly on existing source level debuggers such as dbx
and gdb
 However	 it has to transparently map
Modula��� to C and vice versa while debugging
a program
 This is not simple due to the exten�
sive restructuring of the code done by the com�
piler ���

Thus	 the compiler generates hints for the line and
variable mapping and places them inside special
comments which are parsed by the debugger when
reading the source code

� Debug Functions� To build the dynamic ac�
tivation tree and also to generate the pro�ling
information	 debug functions are added to each
Modula��� structure �loops and branches�
 They
are called at all crucial points�

� Before entering the structure	 a correspond�
ing debug function adds a node to the ac�
tivation tree and stores	 among others	 the
current line number	 the values of FORALL
variables and loop boundaries

� A debug function records pro�ling informa�
tion for every run through the structure

� When leaving the structure	 a debug func�
tion updates the activation tree again

Thus	 the program itself generates information on
its run using the debug functions�

Debugger Architecture� Currently	 prototype im�
plementations of MSDB exist for a network of work�
stations and a sequential program running on a sin�
gle workstation
 The LAN implementation is based
on the p� system for communication and process cre�
ation
 To Inspect and change both data and program
state	 the UNIX debuggers dbx and gdb are used
 The
X Windows based user interface is derived from xdbx

The basic processes and their interaction have been
described in the runtime system section �
�
 To sup�
port the debugger	 we have two more kinds of process�
es which are also shown in Figure ��

The Control process stops the Worker	 modi�es it	
and retrieves information for visualization etc
 It also
monitors the Worker�s state and reports changes
 It
consists of the vendor�s debugger �e
g
 dbx� and an in�
terface which parses this debugger�s output and issues
new instructions
 Thus	 the underlying debugger may
be changed by just adapting the interface

All processes are coordinated by aMaster Debugger
which also handles the user interface and merges in�
formation
 For communication between the processes	
a set of debugging primitives is used �e
g
 for setting a
breakpoint	 performing a single step or obtaining the
value of a single variable�
 Additionaly	 a bulk data
transfer mode makes array visualizationmore e�cient

This arrangement provides a uniform view of de�
bugging on di�erent architectures

��� Cross�Architecture Make

The Modula��� System provides a cross�architecture
make that automatically generates standard Unix
make�les for Modula��� programs
 This enables
separate compilation of libraries and selective re�
compilation of recently changed modules or libraries

The generated make�les re�ect the module and library
dependencies of a program according to the normal
Modula�� import rules
 Internally	 the Modula���
make builds the complete transitive module depen�
dence graph of a program in order to derive the correct
make�le dependencies

�At the moment� the runtime overhead is about ��� but the
debug function code is not optimized yet� We expect to reduce
the overhead to an acceptable 	���

In addition	 our top level make driver allows for
automatic cross�architecture makes
 Its command line
syntax is as follows�

mm �program� ��	��architecture�
 �����machine�

The program parameter names the Modula��� pro�
gram to be made
 The optional architecture parame�
ter speci�es the desired target architecture and the op�
tional machine parameter supplies the name of a ma�
chine on which C compilation and object code linking
are to be performed
 If no optional parameters are giv�
en the whole make process takes place on the machine
and architecture under which the make is exectuted

��	 Parallel Libraries

The Modula��� parallel libraries aim at scalability	
portability	 and e�ciency of frequently used parallel
operations
 Scalability means that the library rou�
tines operate on open array parameters of arbitrary
size
 We ensure portability by providing the same
machine�independent Modula��� interfaces on all tar�
get machines
 To achieve e�ciency we exploit special
low�level features of each target machine in the di�er�
ent library implementations

Another interesting feature of these libraries is
their functional diversity
 Wherever possible	 normal	
masked	 segmented	 and universal �masked plus seg�
mented� versions of the parallel operations are provid�
ed

� Benchmark Results

Our benchmark suite consists of �� problems collect�
ed from literature ��	 �	 �	 �	 ��
 For each problem
we implemented the same algorithm in Modula���	 in
MPL�	 and in sequential C
 Then we measured the
runtimes of our implementations on a ��K MasPar
MP�� and a Sparc�� for widely ranging problem sizes

The detailed results can be found in ���

In the following discussion	 tmpl stands for the run�
time on a MasPar MP�� of a program written in MPL�
tc is the runtime of a sequential C program on a Sparc�
�� tm�� is the runtime of a Modula��� program on ei�
ther a MasPar MP�� or a Sparc�� �as appropriate�

�MPL is an extension of C designed for the MasPar MP�	�
In MPL the number of available processors� the SIMD architec�
ture� the
D mesh�connected processor network� and the dis�
tributed memory are visible� MPL provides special commands
for general and neighborhood communication� Virtualization
and address computations must be implemented by hand�

� MPL versus Modula��� on a �	K MasPar�
The general relative performance tmpl�tm�� is
quite stable over all problem sizes and averages to
��
 Modula��� typically achieves �����with
peaks at �� of the MPL performance
 Prob�
lems that can be implemented in MPL with a high
amount of neighborhood communication on ar�
rays with multiple dimensions currently perform
quite bad in Modula��� since the necessary opti�
mization is not implemented yet
 The Modula���
program texts are	 on average	 half the size of the
equivalent MPL programs

� C versus Modula��� on a Sparc��� The
general relative performance tc�tm�� is quite sta�
ble over all problem sizes and averages to ��

Modula��� typically achieves ����� of the se�
quential C performance with peaks at ��
 The
Modula��� program texts are	 on average	 half the
size of the equivalent C programs

The overall distribution of relative performances
proves to be encouraging
 The histogram in Fig�
ure � shows the number of relative performance values
falling into one of the classes ������	 ��������	 � � �	
��������
 These numbers are the accumulated
sums over all problems and problem sizes �all data
points�

� Conclusion

We have described a parallel programming environ�
ment that ensures full source code portability across
the whole range of commercially available parallel
hardware architectures
 The system achieves competi�
tive runtime performance and presents a uniform user
interface that is independent of the target architec�
ture

References

��� Selim G
 Akl
 The Design and Analysis of Paral�
lel Algorithms
 Prentice Hall	 Englewood Cli�s	
New Jersey	 ����

��� John T
 Feo	 editor
 A Comparative Study of
Parallel Programming Languages The Salishan
Problems
 Elsevier Science Publishers	 Holland	
����

��� Alan Gibbons and Wojciech Rytter
 E�cient
Parallel Algorithms
 Cambridge University Press	
����

�

��

��

��

��

��

	�
n
u
m
b
e
r

o
f

m
e
a
s
u
r
e
m
e
n
t
s

�

��

��

��

��

��

	�

�
� �
� �
� �
� �
� �
	 �
� �
� �
 �
�

relative performance

cumulative� relative performance distribution

t�c��t�m��� on seq
 SUN��
t�mpl��t�m��� on MasPar

Figure �� Distribution of relative performances

��� Stefan U
 H�an�gen
 Ein symbolischer X�Windows
Debugger f�ur Modula���
 Master�s thesis	 Uni�
versity of Karlsruhe	 Department of Informatics	
December ����

��� Philipp J
 Hatcher and Michael J
 Quinn
 Data�
Parallel Programming on MIMD Computers

MIT Press Cambridge	 Massachusetts	 London	
England	 ����

��� Ernst A
 Heinz and Michael Philippsen
 Syn�
chronization barrier elimination in synchronous
FORALLs
 Technical Report No
 �����	 Uni�
versity of Karlsruhe	 Department of Informatics	
April ����

��� Joseph J aJ a
 An Introduction to Parallel Algo�
rithms
 Addison�Wesley	 Reading	 Mass
	 ����

��� Pawel Lukowicz
 Code�Erzeugung f�ur Modula���
f�ur verschiedene Maschinenarchitekturen
 Mas�
ter�s thesis	 University of Karlsruhe	 Department
of Informatics	 January ����

��� Michael Philippsen
 Automatic data distribu�
tion for nearest neighbor networks
 In Frontiers
���The Fourth Symposium on the Frontiers of
Massively Parallel Computation	 pages �������	
Mc Lean	 Virginia	 October �����	 ����

��� Michael Philippsen	 Ernst A
 Heinz	 and Paul
Lukowicz
 Compiling machine�independent par�
allel programs
 ACM SIGPLAN Notices	
�����������	 August ����

���� Michael Philippsen and Markus U
 Mock
 Da�
ta and process alignment in Modula���
 In
Christoph W
 Kessler	 editor	 Automatic Par�
allelization � New Approaches to Code Genera�
tion� Data Distribution� and Performance Pre�
diction	 pages �������	 AP��� Saarbr�ucken	 Ger�
many	 March ���	 ����	 ����
 Verlag Vieweg	
Wiesbaden	 Germany	 Advanced Studies in Com�
puter Science

���� Walter F
 Tichy and Christian G
 Herter

Modula���� An extension of Modula�� for high�
ly parallel	 portable programs
 Technical Report
No
 ���	 University of Karlsruhe	 Department of
Informatics	 January ���

