
INTERNATIONAL COMPUTER SCIENCE INSTITUTE I���� Center St� � Suite ��� � Berkeley� California �����	���
 � ���� ���	���� � FAX ���� ���	��
�

Automatic Alignment of Array

Data and Processes To Reduce

Communication Time on DMPPs

Michael Philippsen�

phlipp� icsi�berkeley�edu

TR�������

July 	��

Abstract

This paper investigates the problem of aligning data and processes in a distributed�memory im�
plementation� We present complete algorithms for compile�time analysis� the necessary program
restructuring� and subsequent code�generation� and discuss their complexity� We �nally evaluate
the practical usefulness by quantitative experimentation�
The technique presented analyzes complete programs� including branches� loops� and nested

parallelism� Alignment is determined with respect to oset� stride� and general axis relations�
Both placement of data and processes are computed in a unifying framework based on an ex�
tended preference graph and its analysis� Furthermore� dynamic redistribution and replication
are considered in the same technique�
The experimental results are very encouraging� The optimization algorithms implemented in

the Modula��� compiler improved the execution times of the programs by over ��� on a MasPar
MP�	 with 	���� processors�

This paper appeared in� Proceedings of the �th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming� PPoPP� pp� �������� Santa

Barbara� CA� July �	�
�� �		��

�On leave from Department of Computer Science� University of Karlsruhe� Germany

Contents

� Introduction �

� Related Work �

� Modula��� �

� Alignment Optimization �
��� Example �
��� Graph Representation �

����� Allocation Information �
����� Cost Model �
����� Data Array Accesses �
����� Integrating FORALL variables �
����� Normalized Allocation Information �

��� Central Idea �
��� Con�ict Detection �

����� Con�icting Allocation Functions �
����� Con�icting Dimension Mappings �

��� Search Space and Complexity �
����� Fundamental Cycles �
����� Minimal Covering �
����� Replication �

��� Example 	 Continued �

� Performance Results �
��� Problems �

����� Root Search �

����� Heat Di�usion Kernel �

����� Doctor�s Oce �

����� Synchronous Example �

����� Longest Common Subsequence �
����� Red�Black Iteration �
����
 List Rank �
����� Transitive Closure �
����� Prime Sieve �
������ Game of Life �
������ Pairs of Relative Primes �
������ Point in Polygon �
������ Estimation of Pi �
������ Parans Problem �
������ Hamming�s Problem �

� Conclusion 	

References �

Automatic Alignment of Array Data and Processes

To Reduce Communication Time on DMPPs

Michael Philippsen�

ICSI� International Computer Science Institute� Berkeley� CA� phlipp � icsi�berkeley�edu

This paper appeared in� Proc� of the �th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming� PPoPP� pp� �������� Santa Barbara� CA� July �	�
�� �		��

Abstract

This paper investigates the problem of aligning array
data and processes in a distributed�memory implemen�
tation� We present complete algorithms for compile�
time analysis� the necessary program restructuring� and
subsequent code�generation� and discuss their complex�
ity� We �nally evaluate the practical usefulness by
quantitative experiments�

The technique presented analyzes complete pro�
grams� including branches� loops� and nested paral�
lelism� Alignment is determined with respect to o�set�
stride� and general axis relations� Pplacement of both
data and processes are computed in a unifying frame�
work based on an extended preference graph and its
analysis� Dynamic redistributions are derived�

The experimental results are very encouraging� The
optimization algorithms implemented in our Modula���
compiler improved the execution times of the programs
by an average over 	
� on a MasPar MP�� with ���	
processors�

� Introduction

Straightforward compilation of forall statements or ar�
ray expressions and naive mapping of array elements
onto distributed memory parallel processors �DMPP�
usually result in a signi�cant amount of interprocessor
data motion� Therefore� data and process placement is
an essential problem of several compiler projects tar�
geting DMPPs�

There is agreement about the two goals of data and
process placement� ��� Data locality� To reduce the
amount of communication and achieve minimal run�
time� all data elements which are used by a process
should be stored locally on the same PE� ��� Paral�
lelism� Using just one processor results in perfect data
locality and minimal communication cost� In general�
however� the runtime can be improved by exploiting
the parallelism provided by the hardware� A trade�o�
between the con�icting goals must be found�

Whereas the goals are agreed upon� di�erent ap�
proaches to reach them have been developed� Some

of those require that data is mapped onto the topol�
ogy by hand ���� ���� others are user guided and o�er
sets of directives for the compiler� abstract topologies
�so�called templates�� or interactive or knowledge�based
environments that help determine the alignment of ar�
ray dimensions and mapping functions ��� ��� ����

Much recent work focuses on static compile�time
analysis to automatically �nd good data decomposi�
tions for vector and data�parallel operations� We de�
scribe this work in more detail in section ��

Placement optimization is often done in two steps�
First� the alignment phase examines the relationship
between arrays and determines in which way di�erent
array elements are used together and hence should be
co�located� In the subsequent distribution phase� co�
located array elements will be mapped to the same pro�
cessor�s local memory� While the �rst phase is machine�
independent since only relative positions of array ele�
ments are considered� the second phase deals with ab�
solute positions on the DMPP�

This paper is based on the following approach� We
automatically determine an alignment of arrays and
processes� This alignment is used in a source�to�source
code transformation where user de�ned arrays are re�
placed by �possibly several� substitute arrays� These
substitutes get distributed in the second phase with a
�xed distribution scheme described elsewhere ���� ����

The transformation is presented using Modula���
���� 	 a high�level� problem�oriented� and machine�
independent parallel language 	 but is directly appli�
cable to other languages� like HPF �����

The remainder of the paper is organized as follows�
After discussing related work in section �� we brie�y in�
troduce our notation of a forall� Section � formulates
the alignment optimization and discusses its proper�
ties� Finally� section � describes the setup and results
of the experiments evaluating the e�ectiveness of our
techniques�

� Related Work

The two phase approach to placement �alignment �
distribution� is used by Fortran D ����� HPF ����� CM�
Fortran ����� and Vienna Fortran ���� Although our
work as well is based on the two phase approach� it is
di�erent� since it performs both phases automatically�

�On leave from Dept� of Informatics� University of Karlsruhe�

We consider it to be premature to have manual
placement in languages� although the optimal place�
ment is NP�complete ���� ��� ��� ���� an automatic so�
lution of the placement problem is necessary for three
reasons� First� Wholey has shown in ���� that the best
placement depends on three factors� the topology of the
network� the number of available processors� and the
size of the problem� Hence� approaches that require the
user to explicitly provide static or dynamic mappings�
result in programs that may be source code portable
but will show di�erent runtime performance� Second�
in di�erent sections of a program di�erent placements
may be optimal� The programmer not only has to �nd
an optimal placement for code segments� which is itself
dicult as explained above� but s�he must �nd a global
optimum that includes the cost of potential redistribu�
tions at certain points of the code� The necessary cost
considerations are complex ��� �� and in general un�
decidable since they require knowledge about compiler
strategies� about network characteristics etc� Finally�
even if the programmer provides explicit placement in�
formation for the declared data structures� it remains
the task of the compiler to place temporaries�

Furthermore� we feel that both process and data
alignment must be considered� Simply deriving pro�
cess placements from data placements is suboptimal as
has been shown for the owner�computes rule in ��� �
��

There are already approaches to automatic align�
ment� In comparison to our work 	 see ���� ��� for
previous contributions 	 these have some restrictions�

Knobe et al� ��
� ��� �rst introduced alignment anal�
ysis and the notion of preference graphs� Although
they considered dimension� stride� and o�set alignment�
some problems remained� Their greedy algorithm for
solving alignment con�icts often returns suboptimal so�
lutions since cost estimates are basic and decisions are
based on local information� Dynamic redistribution is
considered only in special cases�

Neither dynamic redistribution nor loops or branches
are considered by Wholey ����� Li and Chen ���� ����
and Gupta ���� ���� Li and Chen only align dimen�
sions of given arrays to each other� Gupta ignores o��
set alignment� e�g�� communication resulting from an
access to not co�located A�i� and B�i���� He does con�
sider both alignment and distribution and hence uses a
more accurate cost estimate than Li and Chen do�

The approach by Ramanujam���� delivers good data
placement unless con�icting alignment preferences ex�
ist� However� such con�icts occur commonly�

Kremer ��� ��� ��� takes a di�erent approach� In�
stead of building placement optimization into a com�
piler� he develops tools to support the programmer in
�nding good placements� Although the approach is
di�erent� Kremer applies placement optimization tech�
niques based on Li and Chen�s Component�Anity�
Graph� He introduced the idea of using �	� integer
programming for solving placement problems�

Most of the groups have two basic approaches in
common� both of which result in suboptimal solutions�
process placement is derived from data placement and

placement of temporaries is not considered�
Gilbert� Schreiber� Chatterjee ��� �� ��� ��� base their

work on the Alignment�Distribution�Graph� In con�
trast to the approaches mentioned before� the authors
tackle the problem of placing intermediate results� To
our knowledge� their model for representing the cost
of communication on the underlying topologies is the
most advanced� It clearly is to be preferred over the
simplistic cost model used here�

The main contributions of this paper are ��� the au�
tomatic computation of both data and process align�
ment in one framework� ��� an extended preference
graph and a novel technique for its analysis� and ���
the performance results given in section ��

� Modula���

For the purpose of this article it is sucient to under�
stand the key features of Modula���� The only way
to introduce parallelism into Modula��� programs is by
means of the forall statement� which has a synchronous
and an asynchronous variant� The syntax of the forall
statement is�

FORALL �ident� ��� �SimpleType� IN �PARALLEL � SYNC�

�StatementSequence�

END	

SimpleType is an enumeration or a possibly non�static
subrange� i�e� the boundary expressions may contain
variables� The forall creates as many �conceptual� pro�
cesses as there are elements in SimpleType� The iden�
ti�er introduced by the forall statement is local to it
and serves as a runtime constant ident for every pro�
cess� The runtime constant of each process is initialized
to a unique value of SimpleType�

Each process executes the statements in State�
mentSequence� The END of a forall statement imposes a
synchronization barrier on the participating processes�
the termination of the forall statement is delayed un�
til all created processes have �nished their execution
of StatementSequence� In a synchronous forall� the
created processes execute StatementSequence in lock�
step� while in the asynchronous case� they can work
concurrently�

The behavior of branches and loops inside syn�
chronous foralls has MSIMD �multiple SIMD� se�
mantics� This means that Modula��� does not re�
quire any synchronization between di�erent branches
of synchronous case or if statements� The exact syn�
chronous semantics of all Modula��� statements� in�
cluding nested foralls� are de�ned in �����

� Alignment Optimization
��� Example

VAR G� ARRAY
�		�N��� OF INTEGER�

H� ARRAY
�		N����
�		N��� OF INTEGER�

G
	� �� 			

H
	�	� �� 			

FORALL i�
�		N��� IN PARALLEL

G
�i� �� H
i��� � H
i������

END

The optimal placement can be achieved in this simple
example if the elements of H are stored with a stride
of � in the �rst dimension so that G���i� is stored
either where H�i�	� or where H�i���
� is� The array
G is enlarged to be two�dimensional� There is a choice
of storing G���i� together with H�i�	� or H�i���
��
Independent of the choice� process i executes where two
of the three array elements are stored� Access to the
third element needs communication� When H�i�	� is
chosen� the placement algorithm transforms the above
code into�

VAR G�� ARRAY
�		�N����
�		N��� OF INTEGER�

H�� ARRAY
�		�N����
�		N��� OF INTEGER�

G�
	�	� �� 			

H�
	�	� �� 			

FORALL i�
�		N��� IN PARALLEL � ALIGN G�
�i��� �

G�
�i��� �� H�
�i��� � H�
�i������

END

��� Graph Representation

The basic data structure is a preference graph P � Nodes
of P are array accesses and forall arrays �see ������ of
a given program� The basic idea of a preference graph
as introduced by Knobe ���� is that edges express align�
ment preferences� Co�location of arrays that are con�
nected by these edges will result in locality of access� If
edge constraints are not obeyed� arrays will be stored
di�erently and communication is necessary at runtime�
The type of edges we consider and the information at�
tached to edges di�erentiate our work from earlier work
based on preference graphs�

Whereas identity and conformance preferences �see
������ have been used by several groups� the activity
and virtualization preferences �see ������ and the allo�
cation information �see ������ used to decorate edges
of P are unique aspects of the preference graph pre�
sented here� Moreover� forall arrays �see ������ are not
considered elsewhere�

����� Allocation Information

For two nodes representing array accesses to A and B�
a connecting edge is labeled with the allocation infor�
mation �A� dA� sA� oA� �� �B� dB� sB� oB�� The �rst node is
an access to A in dimension dA as A�����sAi�oA�����
with i being a forall variable� The second node is a
similar access to array B using the same forall variable�
Positions of the allocation information are marked with
� if all dimensions are a�ected or if the index is not an
ane expression�

����� Cost Model

In addition to the alignment information� edges are la�
beled with costs� The cost must be paid if the place�
ment of the arrays cannot implement the co�location
preference expressed by the edge� For this paper we
use a simple cost model and do not try to represent the
exact cost induced by not obeying an edge� In particu�
lar� we ignore the number of bytes to be communicated�
the size of the packets� the communication pattern� and
the distance� Our cost model di�erentiates�

cnw cost of a parallel network write of data elements
cnr cost of a parallel network read of data elements
cf cost of an asynchronous forall with empty body
cs cost of a synchronization barrier

As suggested by performance results ��
� this simplistic
cost model is not too far o� for the MasPar when our
layout algorithm ���� is applied� Better cost estimates
are known and could be used instead�

In this representation� the problem is to �nd place�
ments for all nodes minimizing the total cost of all edges
that cannot be obeyed�

In ����� we discuss in detail the edges of P that are
caused by data arrays� ����� extends P to forall state�
ments and thus process scheduling�

����� Data Array Accesses

IdentityPreferences� Nodes representing accesses to
the same array are connected by identity edges if the
following conditions hold� ��� At least one access is a
write� ��� if one access is a read� it will be executed after
the other� and ��� if both are writes� then the second
one is partial� i�e�� not all array elements get written�

An identity edge indicates that the placement of the
array should not change between the execution of the
connected nodes� Two reads do not induce identity
edges since the second could use a di�erent placement
without problems� Two full writes do not require iden�
tity edges� since the old values and their placement van�
ish after the second write�

The allocation information of identity edges looks
like� �A� �� �� �� �� �A� �� �� ��� Hence� the placement of A
is supposed not to change in any form�

If an identity edge cannot be obeyed� the whole ar�
ray� say A� must be copied into another placement� say
A�� For this purpose the following code is generated��

FORALL i�
			� IN PARALLEL � ALIGN A
i� �

A�
i� �� A
i�

END�

The total cost of identity edges thus is cf � cnw � cs�
Conformance Preferences� Nodes are connected

by conformance edges if the arrays are accessed in the
same statement and if the indexes use a forall variable�
If the arrays are multidimensional and the forall vari�
able occurs in more than one dimension� then there is
one edge per dimension� For example� the statement
A�i��B�i�i� will induce two conformance edges� If
two nodes are both reads of the same array no confor�
mance edge is necessary� since both nodes are already
transitively connected by identity edges expressing the
desired locality�

The allocation information of conformance edges
looks like� �A� dA� sA� oA� �� �B� dB� sB� oB�� If the index
expressions that use the forall variable are not ane�
stride and o�set use � instead of an explicit value�

Disobeying conformance edges results in network ac�
cess at runtime� The cost of a conformance edge is
estimated to be cnr�

�To be more exact� Instead of
i� the allocation function com�
puted in ��� must be used to access the arrays�

����� Integrating FORALL variables

To integrate data and process alignment a forall state�
ment which declares i����n� processes is considered
to create a conceptual array of forall variables� Nested
forall statements result in multidimensional arrays of
forall variables� The scheduling strategy then is as fol�
lows� process i is scheduled where element i of that
array would be stored� Hence� by determining a place�
ment for array ����n� a process scheduling is found�

Since it might be advantageous to schedule di�erent
statements of a forall di�erently� conceptually a node
representing a forall array is introduced in P per state�
ment of the body�
Activity Preference� The forall array introduced

for a statement is considered to be written when the
processes are scheduled� Inside the statement the el�
ements of the forall array are read when user arrays
are accessed� Similar to identity preferences there is
an edge in P between the node representing the write
and every occurrence of the forall variable in an index
expression in the statement� i�e�� the read node�

In the example below� two forall arrays �FA� and
FA�� are introduced� one per statement� For the �rst
statement two activity edges are in P � one between
A�i��� and FA��i� and the other between B�i��� and
FA��i�� For the second statement only one activity
edge is in P �

FORALL i�
			� DO

A
i��� �� B
i���� � FA�
i� �

C
i� �� �� � FA�
i� �

END

The motivation for these edges is obvious� Even if A
and B are perfectly aligned� the access is slow if the ac�
cessing processes �represented by FA�� have a di�erent
placement�

The allocation information of activity edges looks
like �A� dA� sA� oA� �� �FA�� v� sB� oB� with v being the
nesting depth with respect to forall statements�

Since disobeying activity edges results in network
access at runtime� the cost of an activity edge is cnr�
Virtualization Preferences� Having one forall

array per statement might result in di�erent schedul�
ings per statement which is in general too costly be�
cause of two reasons� Instead of one large virtualization
loop comprising several statements� code for several
small loops must be generated� Larger loops have more
potential for optimization and use of registers� The sec�
ond reason is the necessity to store and communicate
control �ow information� Consider a re�scheduling of
processes inside an if statement in the forall� After
re�scheduling� the processes must know about the re�
sult of the condition evaluation� therefore it must be
communicated to the new placement�

The desire for large virtualization loops is re�ected
in the cost estimate of virtualization edges as follows�
Disobeying a virtualization edge means re�scheduling
of the processes which is implemented in Modula���
by breaking the forall in two parts and scheduling

each of the two foralls individually� Hence� the cost
is cs � cf � � � cnw� The summand � � cnw represents the
cost of transmitting state information fromone group of
processes to the other� I� this is necessary then � � ��
otherwise � � ���

Virtualization edges connect forall arrays of state�
ments in the same forall that might follow on each
other at runtime� The allocation information of virtu�
alization edges looks like �FA�� �� �� �� �� �FA�� �� �� ���
In the example four virtualization edges are in P �

FORALL i�
			� DO

IF B
i� THEN � FA�
i� �

U
i� �� � � FA�
i� �

ELSE

U
i� �� � � FA�
i� �

END

B
i� �� TRUE� � FA�
i� �

END

����� Normalized Allocation Information

Completely speci�ed allocation information can be nor�
malized to a formwhere on one side of the �� sign� stride
is � and o�set is �� The equivalence is� �A� dA� sA� oA� ��
�B� dB� sB� oB�� �A� dA� �� �� �� �B� dB�

sB
sA
� �oB �

sB
sA
oA��

��� Central Idea

Finding placements for arrays represented by nodes in
P requires us to map m dimensional arrays into n di�
mensional substitute arrays by computing allocation
functions� An allocation function will be applied to
the index expressions given in the program� An index
expression �i�� i�� � � � � imA

� which is used to access an el�
ement of array A will be transformed into an index ex�
pression �fA��i�� i�� � � � � imA

�� � � � � fAn�i�� i�� � � � � imA
�� to

access the substitute array� We restrict our con�
siderations to ane allocation functions of the form
fAk�i�� i�� � � � � imA

� � sAk � i� � oAk with � � � � mA and
sAk � oAk � ZZ� We call sAk stride and oAk o�set of the
mapping to the substitute array�

In this notation� the substitute array of every array
A occurring in a given program is speci�ed by

� a dimension mapping �A � f�� �� � � ��mAg ��
f�� �� � � �� ng which injectively assigns to each dimen�
sion of A a dimension of the substitute array�

� strides sAk and o�sets oAk for each allocation func�
tion fAk�� � k � n��

If n � mA there are fAk that do not depend on an index
of the original array �sAk � �� but might have an o�set
oAk 	� �� These degrees of freedom are used for runtime
dependent allocation�

It is in general not possible to �nd dimension map�
pings and allocation functions for all data and forall

�This estimate can be re�ned by exploiting the fact that the
synchronization barrier is not always necessary� But since code
generation then becomes more intricate this must be left out of
this paper due to space limitations�

arrays occurring in a program so that the locality pref�
erences of all edges in P are obeyed� Usually there are
con�icting preferences� We �rst show in ��� how these
con�icts can be detected by processing the graph� Then
section ��� presents heuristics to �nd a cheap solution
with respect to edge costs� i�e�� to �nd dimension map�
pings and allocation functions that will result in a high
degree of locality and little remaining communication�

��� Con�ict Detection

There are two classes of con�icts� Con�icts can occur in
the allocation function and in the dimension mapping�

����� Con�icting Allocation Functions

Let the allocation function of an array A be given� The
allocation function of a neighboring array in P can
be computed by means of the allocation information
as follows� An index SA is mapped to the substitute
array by fk�SA� � skSA � ok� If stride and o�set of
the allocation information are unspeci�ed� sk and ok
are copied to the neighboring node� If a conformance
edge is attributed with the normalized allocation infor�
mation �A� dA� �� �� �� �B� dB�

sB
sA
� �oB �

sB
sA
oA�� the index

expressions ful�ll� SA � sA
sB
SB � �oA �

sA
sB
oB�� By us�

ing this equation in f�SA� the allocation function of
f��SB� � s�SB � o� can be read as s� � sk

sA
sB

and

o� � sk�oA �
sA
sB
oB� � ok � Based on this computation

of allocation functions� con�icts can be detected�

Consider a cycle of edges in P �
Start with an arbitrary allocation function at an ar�
bitrary node of the cycle� Compute the allocation
function of neighboring nodes along the cycle� If the
allocation information of an edge is incomplete� copy
the allocation function to the neighboring node� oth�
erwise use s� and o� as derived above�
If after returning to the starting node an allocation
function is computed� which is di�erent from the ini�
tial one� then P has a con�ict�

Note that useful allocation functions are computed if
no con�ict exists in the cycle� Possible non�integer val�
ues are removed by multiplying by the least common
multiplier of the occurring denominators�

����� Con�icting Dimension Mappings

Since each dimension of a given array has to be mapped
to exactly one dimension of the substitute array� an in�
jective mapping �A � f�� �� � � ��mAg �� f�� �� � � � � ng is
needed� where mA and n are the number of dimensions
of the given array and its substitute� respectively� The
value of n is determined by the largest dimensionality
in a given connected component of P � Allocation infor�
mation of the form �A� dA� �� �� �� �B� dB� �� �� mean that
dimension dA of A and dimension dB of B should both be
mapped to the same dimension of the substitute arrays�
Hence� the following implication is derived from the al�
location information� �dA� dtarg� � �A �
 �dB� dtarg� �

�B� When the dimension mapping is computed ele�
mentwise the injectivity is destroyed if

�d � f�� �� � � ��mBgnfdBg � �d� dtarg� � �B �
�d � f�� �� � � �� ngnfdtargg � �dB� d� � �B

���

Based on the above computation of dimension map�
pings� con�icts can be detected as follows�

Consider a cycle of edges in P �
Start with an arbitrary dimension mapping � at an
arbitrary node of the cycle� Compute the dimension
mapping of neighboring nodes along the cycle using
the above implication�
Then P has a con�ict� if one of the conditions given
in ��� occurs before the starting node is reached�

Note that useful dimension mappings are computed if
no con�ict exists on the cycle�

��� Search Space and Complexity

In general� an optimal solution of the placement prob�
lem can be found in two steps� First� all cycles bearing
a con�ict must be detected in P by the above methods�
All these cycles must then be cut to derive a placement�
The diculty is to �nd a set of edges that cuts all cy�
cles and has the minimal total cost� Since this problem
is NP�complete� heuristics must be used to prune the
search space�

����� Fundamental Cycles

Instead of �nding the set of all cycles� we restrict our
considerations to the set of fundamental cycles� in P
that bear a con�ict� Nothing is lost by this restriction
since all cycles in P can be constructed by combinations
of fundamental cycles� I� there is a con�ict in a cycle
in P there is a con�ict in a fundamental cycle as well�

For the general solution all sets of fundamental cy�
cles must be studied� For each graph P with n nodes� e
edges� k components� each set has � � e�n�k cycles�
and there is one set for each spanning tree� We restrict
our analysis�

Find the minimal set of fundamental cycles with re�
spect to the sum of the costs of the edges�

The underlying idea is as follows� It is more likely �but
cannot be guaranteed� that the set of edges to cut with
minimal cost is found in the minimal set of fundamen�
tal cycles than in any other set of fundamental cycles
because of the minimality of total edge cost� Although
the sub�problem of �nding the minimal set of funda�
mental cycles is itself NP�complete� good polynomial
time approximations are known �
��

����� Minimal Covering

Even if the minimal set of fundamental cycles is known�
the remaining sub�problem still is NP�complete� The
problem is to determine which of the edges to cut to

�If unfamiliar with these terms� see for example �	
�

achieve minimal cost by cutting all cycles� This prob�
lem is another representation of the weighted set cov�
ering problem ���� since some edges belong to several
cycles� It can be written as a linear programming prob�
lem�

For i � I numbering the edges in the set of fun�
damental cycles� let ci be the cost of edge i and
xi � f�� �g be integer variables� When xi � � the
edge i remains uncut� For index sets J�� ���� J� I
representing the edges of individual fundamental cy�
cles use the simplex algorithm to solve�

min
P

i�I xi � ci

��j � f�� ���� �g �
P

ij�Jj
xij � �

Although the simplex algorithm cannot be guaranteed
to terminate fast 	 its worst case behavior is in O�

�
l

�

�
�

with l being the length of the longest fundamental cy�
cle 	 it usually terminates in time proportional to the
number of equations � and variables l ����� A simple
basic solution is xi � � for all i � I�

Results by Kremer ��� ��� also indicate the useful�
ness of integer programming for placement problems�
Their use of �	� integer programming is restricted to
subproblems� e�g�� data remapping and axis alignment�
and is intended for a tool supporting the programmer�

����� Replication

Replication is easily introduced in this scheme by con�
sideration of node splittings� A cycle can not only be
cut by splitting up one of its edges but additionally
by replacing one node with two substitute nodes� This
adds up to n new variables to the above system and en�
larges each of the inequalities by the number of nodes in
the corresponding fundamental cycle� Since node split�
ting and disobeyed identity edges both require that an
array using one placement must be transformed into a
second one� both have the same cost� It is still an un�
solved question for us how to decide between edge split�
ting and node splitting� i�e�� when to replicate� Nodes
representing forall arrays or writes may not be split�

��� Example Continued

For the example of section ��� eight edges are in P �
Nodes are numbered in order of their appearance in
the program� e�g�� H� represents H�i�	�� F is the forall
array� Fat lines cost cn � cf � cs� thin lines are cn�

G� G� H� H� H�

F
HH ��

�

There are �� spanning trees for P each of which has
a set of � fundamental cycles� When considering only
those cycles that bear a con�ict� two minimal sets of
fundamental cycles can be found� In the schematic rep�
resentation only fat cycles have a con�ict�

G� H� H� H�

F
HHHH �

�
�

��
�

G� H� H� H�

F
HHHH ��

�

Although it is sucient to consider one minimal set�
we present both for explanatory reasons� The simplex
algorithm �nds� that in the �rst case either the edge
F �� H� or the edge F �� H� must be cut to achieve mini�
mal cost of cn� For the second case either edge G� �� H�
or G� �� H� is chosen with cost cn� By removing any of
these edges� dimension mappings and allocation func�
tions are computed as shown in section ���� If in any
case the �rst mentioned edge is cut� G will be placed
according to H���i���
�� Otherwise� H���i�	� is se�
lected which results in the transformation given in ����
Note that replication is not an issue here since the cost
of node splitting always surpasses cn�

� Performance Results

At the moment� our benchmark suite consists of �

problems collected from literature� see ��
� for de�
tails� Here� we only consider those �� problems whose
Modula��� solutions are not totally aligned right from
the beginning�

The programs were compiled for a ��K processor
MasPar MP�� �SIMD� by our Modula��� compiler� Ap�
plication of the automatic alignment optimization im�
proved the execution times of the programs by over ���
on average� Because our work on Modula��� compil�
ers for MIMD machines� namely LANs of workstations
and �virtual� shared memory multiprocessors� is still
in progress� we cannot present any measurements for
them� But we expect even better results since remote
communication is more costly�

For time measurements we used the high resolu�
tion DPU timer on the MasPar� Below� talign�opt and
tno�align�opt represent program execution times with the
optimization techniques presented in the paper applied
and not applied� respectively�

We de�ne performance as work or problem size per
time and focus on the following relative performances��

size
talign�opt

	 size
tno�align�opt

� tno�align�opt	talign�opt� Thus� the di�

agrams show a ratio scale as the vertical axis� Good
performance of the alignment optimization is indicated
by curves above unity� e�g� a curve around � shows that
the alignment optimization halved the execution time�

1

1.2

1.4

1.6

1.8

2^0 2^5 2^10 2^15 2^20 2^25
problem size

Problem average

MP-1: t(no align opt)/t(align opt)

�Comparisons with hand�coded programs are given in ���
�

For problem sizes ranging from �� to ��� we de�
rived the relative performances from our execution time
measurements� The resulting general� relative perfor�
mances are shown above� averaged arithmetically over
all test programs per problem size� �Only results with
at least three measurement points per problem size are
included in this average graph��

Alignment optimization improves performance in
two ways� Obvious improvement is due to achieving lo�
cality where without optimization remote access would
occur�

A secondary improvement results from knowledge
about existing locality� which the Modula��� compiler
exploits in the following way� For problem sizes above
the number of processors� the compiler generates vir�
tualization loops on each processor� The iteration vari�
able can re�ect the true value of the forall variable
with respect to the section of the forall range that is
assigned to a particular PE� Or it can just count itera�
tions� starting from � on all PEs�

If locality of an array access is uncertain� �rst the
corresponding processor number and the local address
must be computed from the true forall variable� then
a subsequent if statement must decide locality at run�
time� In contrast� for known locality the iteration count
can often be used for direct indexing into the local seg�
ment of an array� thus removing the runtime decision
and often alleviating the cost of address calculations�

This often explains the increase of relative perfor�
mance for problem sizes above machine size ������

��� Problems

����� Root Search

Problem� Determine the value of x � �a� b� such that
f�x� � �� given that f is monotone and continuously
di�erentiable� Approach� The problem is solved with
multisection� The interval �a� b� is evenly divided over
n processes� If f has a root in �a� b� then there is ex�
actly one process p with f�xp��� � f�xp� � �� Update
the interval �a�� b�� �� �xp��� xp�� Iterate until the error
b� � a�
 �� Discussion� Remote access cannot be
reduced here� The improvement is due to knowledge
about locality �see above��

1

1.2

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22

MP-1: t(no align opt)/t(align opt)

����� Heat Di�usion Kernel

Problem� The temperature on the edges of a square
surface are given as constants� while those on the in�
side are to be calculated with a di�usion equation� Ap�
proach� The value of a grid point is iteratively com�
puted based on the values of its neighbors� Discus�
sion� See ������ Since the problem size is the length
of one axis of the square surface� virtualization loops
start at ���

1

1.2

2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10

MP-1: t(no align opt)/t(align opt)

����� Doctor�s O�ce

Problem� Given a set of n patients� a set of doctors�
and a receptionist� model the following� Initially� all
patients are well and all doctors are in a queue await�
ing sick patients� Then patients become sick at random
and enter a queue for treatment by one of the doctors�
The receptionist handles the two queues� assigning pa�
tients to doctors� As soon as a doctor and a patient
are paired� the doctor diagnoses the illness and treats
the patient in a random amount of time� After cur�
ing a patient� the doctor rejoins the doctor�s queue to
await another patient �from ����� Approach� The ran�
dom amounts of time that patients are well and that
doctors need to treat illnesses are counted down in par�
allel� The assignments of doctors to patients is done in
parallel� The output is a list of timestamps� indicating
when patients became ill� and list of triples �doctor�
patient� treatment time�� Note� The vertical axis is
scaled di�erently� Discussion� See ������

1

1.5

2

2.5

3

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24

MP-1: t(no align opt)/t(align opt)

����� Synchronous Example

1

1.5

2

2.5

3

3.5

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22

MP-1: t(no align opt)/t(align opt)

Problem� This is an example of a Modula��� program
with one synchronous forall that does a lot of �unmo�
tivated� array operations� Note� The vertical axis is
scaled di�erently� Discussion� See ������

����� Longest Common Subsequence

Problem� Two strings A � a�a� � � �am and B �
b�b� � � �bn are given� Find a string C � c�c� � � �cp such
that C is a longest common subsequence of A and B�
�C is a subsequence of A if it can be constructed by
removing elements from A without changing their or�
der�� Approach� The solution uses a wave�front im�
plementation of dynamic programming� It causes in�
tensive access to neighboring data elements� Discus�
sion� Currently� access to neighboring data elements
is implemented with global communication primitives�
Since relative overhead of the work incurred by unnec�
essary virtualization loops will increase when faster grid
communication can be used instead� we expect better
results on SIMD machines in future�

1

1.2

2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14

MP-1: t(no align opt)/t(align opt)

����� Red�Black Iteration

Problem� Implement a red�black iteration� i�e�� the
kernel of a solver for partial di�erential equations� Ap�
proach� The implementation intensively references
neighboring data elements in a n � n�matrix� Discus�
sion� Since the diagram is similar to the one of ����� it
is omitted�

����� List Rank

Problem� A linked list of n elements is given in an
array A����n�� Compute for each element its rank in
the list� Approach� This problem is solved by pointer
jumping� Discussion� Since the diagram is similar to
the one of ����� it is omitted�

����� Transitive Closure

Problem� The adjacency matrix of a directed graph
with n nodes is given� Find its transitive closure� Ap�
proach� Process the adjacency matrix according to the
property that if nodes x and m as well as nodes m and
y are �transitively� adjacent� then x and y are �tran�
sitively� adjacent� Discussion� Since the diagram is
similar to the one of ����� it is omitted�

����	 Prime Sieve

Problem� Compute all prime numbers in ����n�� Ap�
proach� Rather than using a virtual process per can�
didate� our implementation of the classical prime sieve
assigns a segment of candidates to each processor� This
adaptive version works much faster since division can

be replaced by indexing within each segment� Discus�
sion� Since the diagram is similar to the one of ����� it
is omitted�

�����
 Game of Life

Problem� Apply Conway�s rules of life to a given ma�
trix� Approach� The value of a grid point depends
on the sum of the values of its neighbors� Discussion�
Since the diagram is similar to the one of ����� it is
omitted�

������ Pairs of Relative Primes

Problem� Count the number of pairs �i� j� with � �
i
 j � n that are relatively prime� i�e� the greatest
common divisor of i and j is �� Approach� The solu�
tion is based on a data�parallel implementation of the
GCD algorithm followed by an add�scan� Discussion�
The relative e�ectiveness of the optimization depends
on the relation between data access time and compu�
tation time in the program� If the computation time
is predominant improvement of data access shows only
little e�ect� This benchmark is a good example�

The parallel invocation of the GCD function and the
while loop inside are the dominant cost producers� Due
to the SIMD model� the overall runtime is determined
by the pair of numbers that requires the most iterations�
Up to a problem size of �� the virtualization ratio is ��
hence smaller problems mean fewer and in general less
complicated pairs to consider and thus less computation
and a better e�ect of the optimization� Starting with ��

the virtualization loops are iterated more than once� At
�rst� newly added GCD invocations terminate fast� As
more pairs are considered� more computation becomes
predominant again�

1

1.2

2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11

MP-1: t(no align opt)/t(align opt)

������ Point in Polygon

Problem� A simple polygon P with n edges and a
point q are given� Determine whether the point lies
inside the polygon� �A polygon is simple if pairs of
line segments do not intersect except at their common
vertex�� Approach� Draw a line from q that is parallel
to the vertical axis� Count the number of intersections
with P � The point q lies inside P if and only if this
number is odd� Discussion� Up to the machine size�
access to a locally stored array element is implemented
as access to a local variable� For larger problem sizes�
local access needs arrays and the computation of index
expressions� which slightly increases computation time
and hence reduces the e�ect of the optimization�

1

1.2

1.4

1.6

1.8

2

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24

MP-1: t(no align opt)/t(align opt)

������ Estimation of Pi

Problem� Compute � using the equation � �
R �

�

�

��x� �
Approach� Approximate the solution by computing
�

n

Pn��
i	�

�

��x�

i

�rectangular rule�� where n is the problem

size parameter and xi � �i � �

�
�	n is the midpoint of

the ith interval� Discussion� See �������

1

1.2

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26

MP-1: t(no align opt)/t(align opt)

������ Para�ns Problem

Problem� Given an integer n� output the chemical
structure of all paran molecules for i � n� without
repetition and in order of increasing size� Include all
isomers� but no duplicates �from ����� Note� The ver�
tical axis is scaled di�erently� Discussion� The un�
avoidable amount of remote communication becomes
the predominant cost factor with growing problems�
The optimization is most e�ective for smaller problem
sizes�

1

1.5

2

2.5

3

3.5

2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16

MP-1: t(no align opt)/t(align opt)

������ Hamming�s Problem

Problem� A set of primes fa� b� c� � � �g of arbitrary size
and an integer n are given� Find all integers of the
form ai � bj � ck � � � � � n in increasing order and with�
out duplicates� Approach� For each prime p compute
fpijpi � ng� Combine any two power sets to a new one�
while enforcing that the products remain � n� Repeat
the combination for all power sets� Discussion� The
curve is due to a combination of the e�ects described
in ����� and in �������

1

1.2

1.4

1.6

1.8

2

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26

MP-1: t(no align opt)/t(align opt)

	 Conclusion

In this paper we presented evidence that in many cases
the problem of determining an ecient alignment of
data and processes can be solved automatically�

The technique presented analyzes complete pro�
grams� including branches� loops� and nested paral�
lelism� Alignment is determined with respect to o�set�
stride� and general axis relations� Both placement of
data and processes are computed in a uni�ed frame�
work based on an extended preference graph and its
analysis� Dynamic redistributions are derived�

The main contributions of this paper are ��� the au�
tomatic computation of both data and process align�
ment in one framework� ��� an extended preference
graph and a novel technique for its analysis� and ���
the performance results which are very encouraging�

On average� the optimization algorithms imple�
mented in our Modula��� compiler improved the ex�
ecution times of the programs by on average over ���
on a MasPar MP�� with ����� processors�

The IPD Modula�� system is available by anonymous ftp from
ftp�ira�uka�de in pub�programming�modula�star�

References

��� V� Balasundaram� G� Fox� K� Kennedy� and U� Kremer�
A static performance estimator to guide data partition�
ing decisions� Sigplan Notices ��	
�������� �����

��� Robert Bixby� Ken Kennedy� and Ulrich Kremer� Auto�
matic data layout using ��� integer programming� Tech�
Report CRPC�TR����S� Rice University� ����

�� B� Chapman� H� Herbeck� and H� Zima� Automatic
support for data distribution� In �th Distrib� Memory
Computing Conf�� pp� ������ Portland� OR� �����

��� S� Chatterjee� J� Gilbert� and R� Schreiber� The
alignment�distribution graph� In �th Workshop on Lan�
guages and Compilers for Parallelism� pp� �������
Portland� OR� ����

��� S� Chatterjee� J� Gilbert� R� Schreiber� and S��H� Teng�
Automatic array alignment in data�parallel programs�
In ��th ACM Symp� on Principles of Programming
Languages� pp� ������ ����

��� N� Deo� Graph Theory with Appl� to Engineering and
Computer Science� Prentice Hall� ��
��

�
� N� Deo� M� Prabhu� and M�S� Krishnamoothy� Algo�
rithms for generating fundamental cycles in a graph�
ACM Trans� on Mathem� Software� �	��������� �����

��� T� Fahringer� R� Blasko� and H� Zima� Static perfor�
mance prediction to support parallelization of Fortran
programs for massively parallel systems� In Int� Conf�
on Supercomputing� pp� �
���� Washington� �����

��� J�T� Feo� editor� A Comparative Study of Parallel Pro�
gramming Languages� Elsevier � Holland� �����

���� G� Fox� S� Hiranandani� K� Kennedy� C� Koelbel� U�
Kremer� C��W� Tseng� and M��Y� Wu� Fortran D
language speci�cation� Tech� Report CRPC�TR���
��
Rice University� �����

���� M�R� Garey and D�S� Johnson� Computers and In�
tractability� W�H� Freeman� New York� �����

���� J� Gilbert and R� Schreiber� Optimal expression eval�
uation for data parallel architectures� J� Parallel and
Distributed Computing� �	��������� �����

��� M� Gupta and P� Banerjee� Automatic data partition�
ing on distributed memory multiprocessors� In �th Dis�
trib� Memory Computing Conf�� pp� ����� Portland�
OR� �����

���� M� Gupta� Automatic Data Partitioning on Distributed
Memory Multicomputers� PhD thesis� University of Illi�
nois at Urbana�Champaign� �����

���� S� Hiranandani� K� Kennedy� and C��W� Tseng� Com�
piling Fortran D for MIMD distributed�memory ma�
chines� CACM� �	��������� �����

���� High Performance Fortran� Language speci�cation�
Tech� Report� CRPC� Rice University� �����

��
� K� Knobe� J�D� Lukas� and W�J� Dally� Dynamic align�
ment on distributed memory systems� In �rd Workshop
on Compilers for Parallel Computers� pp� ������� Vi�
enna� Austria� �����

���� K� Knobe� J�D� Lukas� and G�L� Steele� Data optimiza�
tion� Allocation of arrays to reduce communication on
SIMD machines� J� Parallel and Distributed Comput�
ing� �	����������� �����

���� Ulrich Kremer� NP�completeness of dynamic remap�
ping� Tech� Report CRPC�TR���S� Rice University�
����

���� Ken Kennedy and Ulrich Kremer� Automatic data lay�
out for high performance computing� Tech� Report
CRPC�TR������S� Rice University� �����

���� J� Li and M� Chen� Index domain alignment� Minimiz�
ing cost of cross�referencing between distributed arrays�
In �rd Frontiers of Massively Parallel Computation� pp�
������ �����

���� J� Li and M� Chen� The data alignment phase in
compiling programs for distributed�memory machines�
J� Parallel and Distributed Computing� �	����������
�����

��� M�E� Mace� Memory Storage Patterns in Parallel Pro�
cessing� Kluwer Academic Publishers� ���
�

���� MasPar Computer Corporation� MasPar Parallel Ap�
plication Language Reference Manual� �����

���� M� Philippsen� Automatic data distribution for near�
est neighbor networks� In �th Frontiers of Massively
Parallel Computation� pp� �
������ �����

���� M� Philippsen� Optimierungstechniken zur 	Ubersetzung
paralleler Programmiersprachen� PhD thesis� Univer�
sity of Karlsruhe� Informatics� ����

��
� M� Philippsen� E�A� Heinz� and P� Lukowicz� Com�
piling machine�independent parallel programs� Sigplan
Notices� ��	���������� ����

���� M� Philippsen and M�U� Mock� Data and process align�
ment in Modula���� In Automatic Parallelization
 New
Approaches� pp� �

����� Verlag Vieweg� �����

���� J� Ramanujam and P� Sadayappan� Access based data
decomposition for distributed memory machines� In
�th Distributed Memory Computing Conf�� pp� ����
���� Portland� OR� �����

��� T� She�er� R� Schreiber� J� Gilbert� and S� Chatterjee�
Aligning parallel arrays to reduce communication� In
�th Frontiers of Massively Parallel Computation� pp�
����� �����

��� Thinking Machines Corporation� Cambridge� Mas�
sachusetts� CM�Fortran Reference Manual� �����

��� Thinking Machines Corporation� Cambridge� Mas�
sachusetts� C� Language Reference Manual� �����

�� W�F� Tichy and C�G� Herter� Modula���� An exten�
sion of Modula�� for highly parallel� portable programs�
Tech� Report ����� University of Karlsruhe� �����

��� S� Walukiewicz� Integer Programming� Kluwer Aca�
demic Publishers� �����

��� S� Wholey� Automatic Data Mapping for Distributed�
Memory Parallel Computers� PhD thesis� CMU� �����

