INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 e Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Automatic Alignment of Array
Data and Processes To Reduce
Communication Time on DMPPs

Michael Philippsen*
phlipp @icsi.berkeley.edu

TR-94-070
July 1995

Abstract
This paper investigates the problem of aligning data and processes in a distributed-memory im-
plementation. We present complete algorithms for compile-time analysis, the necessary program
restructuring, and subsequent code-generation, and discuss their complexity. We finally evaluate
the practical usefulness by quantitative experimentation.

The technique presented analyzes complete programs, including branches, loops, and nested
parallelism. Alignment is determined with respect to offset, stride, and general axis relations.
Both placement of data and processes are computed in a unifying framework based on an ex-
tended preference graph and its analysis. Furthermore, dynamic redistribution and replication
are considered in the same technique.

The experimental results are very encouraging. The optimization algorithms implemented in

the Modula-2* compiler improved the execution times of the programs by over 40% on a MasPar
MP-1 with 16384 processors.

THIS PAPER APPEARED IN: PROCEEDINGS OF THE 5TH ACM SIGPLAN SYMPOSIUM ON
PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, PPOPP, ppP. 156165, SANTA
BarBarA, CA, JuLy 19-21, 1995.

*On leave from Department of Computer Science, University of Karlsruhe, Germany

Contents

1 Introduction 1
2 Related Work 1
3 Modula-2* 2
4 Alignment Optimization 2
4.1 Example e 2
4.2 Graph Representation L 3
4.2.1 Allocation Information e 3

4.2.2 Cost Model e e 3

4.2.3 Data Array Accesses 3

4.2.4 Integrating FORALL variables 4

4.2.5 Normalized Allocation Information 4

4.3 Central Idea L e 4
4.4 Conflict Detection e e e e 5
4.4.1 Conflicting Allocation Functions o 5

4.4.2 Conflicting Dimension Mappings e 5

4.5 Search Space and Complexity 5
4.5.1 Fundamental Cycles 5

4.5.2 Minimal Covering e 5

4.5.3 Replication 6

4.6 Example — Continued L 6

5 Performance Results 6
5.1 Problems e 7
5.1.1 Root Search e 7

5.1.2 Heat Diffusion Kernel e 7

5.1.3 Doctor’s Office e 7

5.1.4 Synchronous Example L 7

5.1.b Longest Common Subsequence L L oL 8

5.1.6 Red/Black Tteration 8

5.1.7 List Rank e 8

5.1.8 Transitive Closure e e e 8

5.1.9 Prime Sieve e e 8

5.1.10 Game of Life e 8

5.1.11 Pairs of Relative Primes e 8

5.1.12 Point in Polygon 8

5.1.13 Estimation of P1 e 9

5.1.14 Paraffins Problem 9

5.1.15 Hamming’s Problemo 9

6 Conclusion 9

References 10

THIS PAPER APPEARED IN: PrROC. OF THE HTH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE
OF PARALLEL PROGRAMMING, PPoPP pp. 156-165, SANTA BarBARA, CA, JuLy 19-21, 1995.

Automatic Alignment of Array Data and Processes
To Reduce Communication Time on DMPPs

Michael Philippsen*®
ICSI, International Computer Science Institute, Berkeley, CA, phlipp @icsi.berkeley.edu

Abstract

This paper investigates the problem of aligning array
data and processes in a distributed-memory implemen-
tation. We present complete algorithms for compile-
time analysts, the necessary program restructuring, and
subsequent code-generation, and discuss their complez-
ity. We finally evaluate the practical usefulness by
quantitative experiments.

The technique presented analyzes complete pro-
grams, including branches, loops, and nested paral-
lelism. Alignment s determined with respect to offset,
stride, and general axis relations. Pplacement of both
data and processes are computed in a unifying frame-
work based on an extended preference graph and its
analysis. Dynamic redistributions are derived.

The expertmental results are very encouraging. The
optimization algorithms implemented in our Modula-2%*
compiler improved the execution times of the programs
by an average over 40% on a MasPar MP-1 with 1638/
Processors.

1 Introduction

Straightforward compilation of forall statements or ar-
ray expressions and naive mapping of array elements
onto distributed memory parallel processors (DMPP)
usually result in a significant amount of interprocessor
data motion. Therefore, data and process placement is
an essential problem of several compiler projects tar-
geting DMPPs.

There is agreement about the two goals of data and
process placement: (1) Data locality. To reduce the
amount of communication and achieve minimal run-
time, all data elements which are used by a process
should be stored locally on the same PE. (2) Paral-
lelism. Using just one processor results in perfect data
locality and minimal communication cost. In general,
however, the runtime can be improved by exploiting
the parallelism provided by the hardware. A trade-off
between the conflicting goals must be found.

Whereas the goals are agreed upon, different ap-
proaches to reach them have been developed. Some

of those require that data 1s mapped onto the topol-
ogy by hand [24, 32], others are user guided and offer
sets of directives for the compiler, abstract topologies
(so-called templates), or interactive or knowledge-based
environments that help determine the alignment of ar-
ray dimensions and mapping functions [3, 15, 16].

Much recent work focuses on static compile-time
analysis to automatically find good data decomposi-
tions for vector and data-parallel operations. We de-
scribe this work in more detail in section 2.

Placement optimization is often done in two steps.
First, the alignment phase examines the relationship
between arrays and determines in which way different
array elements are used together and hence should be
co-located. In the subsequent distribution phase, co-
located array elements will be mapped to the same pro-
cessor’s local memory. While the first phase 1s machine-
independent since only relative positions of array ele-
ments are considered, the second phase deals with ab-
solute positions on the DMPP.

This paper is based on the following approach: We
automatically determine an alignment of arrays and
processes. This alignment is used in a source-to-source
code transformation where user defined arrays are re-
placed by (possibly several) substitute arrays. These
substitutes get distributed in the second phase with a
fixed distribution scheme described elsewhere [25, 26].

The transformation is presented using Modula-2*
[33] — a high-level, problem-oriented, and machine-
independent parallel language — but is directly appli-
cable to other languages, like HPF [16].

The remainder of the paper is organized as follows.
After discussing related work in section 2, we briefly in-
troduce our notation of a forall. Section 4 formulates
the alignment optimization and discusses its proper-
ties. Finally, section 5 describes the setup and results
of the experiments evaluating the effectiveness of our
techniques.

2 Related Work

The two phase approach to placement (alignment +
distribution) is used by Fortran D [10], HPF [16], CM-
Fortran [31], and Vienna Fortran [3]. Although our
work as well is based on the two phase approach, it is
different, since 1t performs both phases automatically.

*On leave from Dept. of Informatics, University of Karlsruhe.

We consider it to be premature to have manual
placement in languages; although the optimal place-
ment is NP-complete [19, 21, 22, 23], an automatic so-
lution of the placement problem is necessary for three
reasons: First, Wholey has shown in [35] that the best
placement depends on three factors: the topology of the
network, the number of available processors, and the
size of the problem. Hence, approaches that require the
user to explicitly provide static or dynamic mappings,
result in programs that may be source code portable
but will show different runtime performance. Second,
in different sections of a program different placements
may be optimal. The programmer not only has to find
an optimal placement for code segments, which is itself
difficult as explained above, but s/he must find a global
optimum that includes the cost of potential redistribu-
tions at certain points of the code. The necessary cost
considerations are complex [1, 8] and in general un-
decidable since they require knowledge about compiler
strategies, about network characteristics etc. Finally,
even if the programmer provides explicit placement in-
formation for the declared data structures, it remains
the task of the compiler to place temporaries.

Furthermore, we feel that both process and data
alignment must be considered. Simply deriving pro-
cess placements from data placements is suboptimal as
has been shown for the owner-computes rule in [5, 17].

There are already approaches to automatic align-
ment. In comparison to our work — see [26, 28] for
previous contributions — these have some restrictions.

Knobe et al. [17, 18] first introduced alignment anal-
ysis and the notion of preference graphs. Although
they considered dimension, stride, and offset alignment,
some problems remained. Their greedy algorithm for
solving alignment conflicts often returns suboptimal so-
lutions since cost estimates are basic and decisions are
based on local information. Dynamic redistribution is
considered only in special cases.

Neither dynamic redistribution nor loops or branches
are considered by Wholey [35], Li and Chen [21, 22],
and Gupta [13, 14]. Li and Chen only align dimen-
sions of given arrays to each other. Gupta ignores off-
set alignment, e.g., communication resulting from an
access to not co-located A[i] and B[i+1]. He does con-
sider both alignment and distribution and hence uses a
more accurate cost estimate than Li and Chen do.

The approach by Ramanujam [29] delivers good data
placement unless conflicting alignment preferences ex-
ist. However, such conflicts occur commonly.

Kremer [2, 19, 20] takes a different approach. In-
stead of building placement optimization into a com-
piler, he develops tools to support the programmer in
finding good placements. Although the approach is
different, Kremer applies placement optimization tech-
niques based on Li and Chen’s Component-Affinity-
Graph. He introduced the idea of using 0-1 integer
programming for solving placement problems.

Most of the groups have two basic approaches in
common, both of which result in suboptimal solutions:
process placement is derived from data placement and

placement of temporaries is not considered.

Gilbert, Schreiber, Chatterjee [4, 5, 12, 30] base their
work on the Alignment-Distribution-Graph. In con-
trast to the approaches mentioned before, the authors
tackle the problem of placing intermediate results. To
our knowledge, their model for representing the cost
of communication on the underlying topologies is the
most advanced. It clearly is to be preferred over the
simplistic cost model used here.

The main contributions of this paper are (1) the au-
tomatic computation of both data and process align-
ment in one framework, (2) an extended preference
graph and a novel technique for its analysis, and (3)
the performance results given in section 5.

3 Modula-2*

For the purpose of this article it 1s sufficient to under-
stand the key features of Modula-2*. The only way
to introduce parallelism into Modula-2* programs is by
means of the forall statement, which has a synchronous
and an asynchronous variant. The syntax of the forall
statement is:

FORALL <ident> '":" <SimpleType> IN (PARALLEL | SYNC)
<StatementSequence>
END.

Simple Type is an enumeration or a possibly non-static
subrange, i.e. the boundary expressions may contain
variables. The forall creates as many (conceptual) pro-
cesses as there are elements in Simple Type. The iden-
tifier introduced by the forall statement is local to it
and serves as a runtime constant ident for every pro-
cess. The runtime constant of each process is initialized
to a unique value of Simple Type.

Each process executes the statements in State-
mentSequence. The END of a forall statement imposes a
synchronization barrier on the participating processes:
the termination of the forall statement is delayed un-
til all created processes have finished their execution
of StatementSequence. In a synchronous forall, the
created processes execute StatementSequence in lock-
step, while in the asynchronous case, they can work
concurrently.

The behavior of branches and loops inside syn-
chronous foralls has MSIMD (multiple SIMD) se-
mantics. This means that Modula-2* does not re-
quire any synchronization between different branches
of synchronous case or if statements. The exact syn-
chronous semantics of all Modula-2* statements, in-
cluding nested foralls, are defined in [33].

4 Alignment Optimization
4.1 Example

VAR G: ARRAY [0..2%N-1] OF INTEGER;
H: ARRAY [0..N-1],[0..N-1] OF INTEGER;
G[L.] =L,
HL.,.1 := ...
FORALL i:[0..N-2] IN PARALLEL
G[2*i] := H[i,3] + H[i+1,4];
END

The optimal placement can be achieved in this simple
example if the elements of H are stored with a stride
of 2 in the first dimension so that G[2*i] is stored
either where H[1,3] or where H[i+1,4] is. The array
G is enlarged to be two-dimensional. There is a choice
of storing G[2*i] together with H[1,3] or H[i+1,4].
Independent of the choice, process i executes where two
of the three array elements are stored. Access to the
third element needs communication. When H[i,3] is
chosen, the placement algorithm transforms the above
code into:

VAR G’: ARRAY [0..2%N-11,[0..N-1] OF INTEGER;

H’: ARRAY [0..2#N-1],[0..N-1] OF INTEGER;

G’[.,.1 := ...

H'[.,.] := ...

FORALL i:[0..N-2] IN PARALLEL (* ALIGN G’[2%i,3] *)

G [2%i,3] := H’[2%i,3] + H’[2%i+2,4];
END

4.2 Graph Representation

The basic data structure is a preference graph P. Nodes
of P are array accesses and forall arrays (see 4.2.4) of
a given program. The basic idea of a preference graph
as introduced by Knobe [18] is that edges express align-
ment preferences. Co-location of arrays that are con-
nected by these edges will result in locality of access. If
edge constraints are not obeyed, arrays will be stored
differently and communication is necessary at runtime.
The type of edges we consider and the information at-
tached to edges differentiate our work from earlier work
based on preference graphs.

Whereas identity and conformance preferences (see
4.2.3) have been used by several groups, the activity
and virtualization preferences (see 4.2.4) and the allo-
cation information (see 4.2.1) used to decorate edges
of P are unique aspects of the preference graph pre-
sented here. Moreover, forall arrays (see 4.2.4) are not
considered elsewhere.

4.2.1 Allocation Information

For two nodes representing array accesses to A and B,
a connecting edge is labeled with the allocation infor-
mation (A, dy, sy, 01) > (B, dg, sg,08). The first node is
an access to A 1n dimension d; as A[...,syitos,...]
with i being a forall variable. The second node is a
similar access to array B using the same forall variable.
Positions of the allocation information are marked with
* if all dimensions are affected or if the index is not an
affine expression.

4.2.2 Cost Model

In addition to the alignment information, edges are la-
beled with costs. The cost must be paid if the place-
ment of the arrays cannot implement the co-location
preference expressed by the edge. For this paper we
use a simple cost model and do not try to represent the
exact cost induced by not obeying an edge. In particu-
lar, we ignore the number of bytes to be communicated,
the size of the packets, the communication pattern, and
the distance. Our cost model differentiates:

cnw cost of a parallel network write of data elements
cnr cost of a parallel network read of data elements

¢y cost of an asynchronous forall with empty body
¢s cost of a synchronization barrier

As suggested by performance results [27] this simplistic
cost model is not too far off for the MasPar when our
layout algorithm [25] is applied. Better cost estimates
are known and could be used instead.

In this representation, the problem is to find place-
ments for all nodes minimizing the total cost of all edges
that cannot be obeyed.

In 4.2.3 we discuss in detail the edges of P that are
caused by data arrays. 4.2.4 extends P to forall state-
ments and thus process scheduling.

4.2.3 Data Array Accesses

Identity Preferences. Nodes representing accesses to
the same array are connected by identity edges if the
following conditions hold: (1) At least one access is a
write, (2) if one access is a read, it will be executed after
the other, and (3) if both are writes, then the second
one is partial, 1.e., not all array elements get written.

An identity edge indicates that the placement of the
array should not change between the execution of the
connected nodes. Two reads do not induce identity
edges since the second could use a different placement
without problems. Two full writes do not require iden-
tity edges, since the old values and their placement van-
ish after the second write.

The allocation information of identity edges looks
like: (A, *, %, %)< (A, *,*,). Hence, the placement of A
is supposed not to change in any form.

If an identity edge cannot be obeyed, the whole ar-
ray, say A, must be copied into another placement, say
A’ . For this purpose the following code is generated':

FORALL i:[...] IN PARALLEL (* ALIGN A[i] =*)

A’ [1] := A[i]

END;

The total cost of identity edges thus is ¢ + cuu + ¢5.

Conformance Preferences. Nodes are connected
by conformance edges if the arrays are accessed in the
same statement and if the indexes use a forall variable.
If the arrays are multidimensional and the forall vari-
able occurs in more than one dimension, then there is
one edge per dimension. For example, the statement
A[i]:=B[1i,i] will induce two conformance edges. If
two nodes are both reads of the same array no confor-
mance edge is necessary, since both nodes are already
transitively connected by identity edges expressing the
desired locality.

The allocation information of conformance edges
looks like: (&,dy, sz, 04) > (B, dg, sp, 08). If the index
expressions that use the forall variable are not affine,
stride and offset use * instead of an explicit value.

Disobeying conformance edges results in network ac-
cess at runtime. The cost of a conformance edge is
estimated to be ¢,,.

ITo be more exact: Instead of [i] the allocation function com-
puted in 4.4 must be used to access the arrays.

4.2.4 Integrating FORALL variables

To integrate data and process alignment a forall state-
ment which declares i:[1..n] processes is considered
to create a conceptual array of forall variables. Nested
forall statements result in multidimensional arrays of
forall variables. The scheduling strategy then is as fol-
lows: process i is scheduled where element i of that
array would be stored. Hence, by determining a place-
ment for array [1..n] a process scheduling is found.

Since it might be advantageous to schedule different
statements of a forall differently, conceptually a node
representing a forall array is introduced in P perstate-
ment of the body.

Activity Preference. The forall array introduced
for a statement is considered to be written when the
processes are scheduled. Inside the statement the el-
ements of the forall array are read when user arrays
are accessed. Similar to identity preferences there is
an edge in P between the node representing the write
and every occurrence of the forall variable in an index
expression in the statement, i.e., the read node.

In the example below, two forall arrays (FA1 and
FA2) are introduced, one per statement. For the first
statement two activity edges are in P: one between
A[i+1] and FA1[i] and the other between B[i+1] and
FA1[i]. For the second statement only one activity
edge 1s in P.

FORALL i:[...] DO

A[i+1] := B[i+1]; (* FA1[1] *)

cli] := 0; (* FA2[i] =)

END

The motivation for these edges is obvious. Even if A
and B are perfectly aligned, the access is slow if the ac-
cessing processes (represented by FA1) have a different
placement.

The allocation information of activity edges looks
like (&,dy, sp,04) > (FAL v, s5,08) With v being the
nesting depth with respect to forall statements.

Since disobeying activity edges results in network
access at runtime, the cost of an activity edge is ¢,

Virtualization Preferences. Having one forall
array per statement might result in different schedul-
ings per statement which is in general too costly be-
cause of two reasons: Instead of one large virtualization
loop comprising several statements, code for several
small loops must be generated. Larger loops have more
potential for optimization and use of registers. The sec-
ond reason 1s the necessity to store and communicate
control flow information. Consider a re-scheduling of
processes inside an if statement in the forall. After
re-scheduling, the processes must know about the re-
sult of the condition evaluation, therefore it must be
communicated to the new placement.

The desire for large virtualization loops is reflected
in the cost estimate of virtualization edges as follows.
Disobeying a virtualization edge means re-scheduling
of the processes which is implemented in Modula-2*
by breaking the forall in two parts and scheduling

each of the two foralls individually. Hence, the cost
is ¢; + ¢y 4 0 - chy. The summand 6 - ¢, Tepresents the
cost of transmitting state information from one group of
processes to the other. Iff this 1s necessary then 6 = 1,
otherwise § = 0.2

Virtualization edges connect forall arrays of state-
ments in the same forall that might follow on each
other at runtime. The allocation information of virtu-
alization edges looks like (FAZL, *, s, %) bt (FA2, *, %, *).
In the example four virtualization edges are in P.

FORALL i:[...] DO

IF B[i] THEN —(* FALLi] =)

Ulil := 0 (x FA2[i] #)
ELSE

Uil := 1 (* FA3[i] #)
END
B[i]l := TRUE; (* FA4[i] *)

END

4.2.5 Normalized Allocation Information

Completely specified allocation information can be nor-
malized to a form where on one side of the < sign, stride
is 1 and offset is 0. The equivalence is: (&, dy, sp, 01) <
(B, ds, sp,08) < (A, ds, 1,0) > (B, dp, 2F, (0p — 3204))

4.3 Central Idea

Finding placements for arrays represented by nodes in
P requires us to map m dimensional arrays into n di-
mensional substitute arrays by computing allocation
functions. An allocation function will be applied to
the index expressions given in the program. An index
expression (41, %a, .. ., im,) which is used to access an el-
ement of array A will be transformed into an index ex-
pression (fu1 (i1, 8, ... 8m,)y oy fan(i1, 82, ... I,) tO
access the substitute array. We restrict our con-
siderations to affine allocation functions of the form
Jaw(i1,d2, .o im,) = Sak -4 + oap With 1 < £ < my and
Sak,onr € 4. We call sy stride and og; offset of the
mapping to the substitute array.

In this notation, the substitute array of every array
A occurring in a given program is specified by

e a dimension mapping >y = {1,2,...,my} —
{1,2,...,n} which injectively assigns to each dimen-
sion of A a dimension of the substitute array,

e strides s;; and offsets o, for each allocation func-
tion fip(1 < k < n).

If n > my there are fi; that do not depend on an index
of the original array (sy; = 0) but might have an offset
onk 7 0. These degrees of freedom are used for runtime
dependent allocation.

It is in general not possible to find dimension map-
pings and allocation functions for all data and forall

2This estimate can be refined by exploiting the fact that the
synchronization barrier is not always necessary. But since code
generation then becomes more intricate this must be left out of
this paper due to space limitations.

arrays occurring in a program so that the locality pref-
erences of all edges in P are obeyed. Usually there are
conflicting preferences. We first show in 4.4 how these
conflicts can be detected by processing the graph. Then
section 4.5 presents heuristics to find a cheap solution
with respect to edge costs, i.e., to find dimension map-
pings and allocation functions that will result in a high
degree of locality and little remaining communication.

4.4 Conflict Detection

There are two classes of conflicts. Conflicts can occur 1n
the allocation function and in the dimension mapping.

4.4.1 Conflicting Allocation Functions

Let the allocation function of an array A be given. The
allocation function of a neighboring array in P can
be computed by means of the allocation information
as follows. An index Sy is mapped to the substitute
array by fi(Sy) = siSy + op. If stride and offset of
the allocation information are unspecified, s; and o
are copied to the neighboring node. If a conformance
edge is attributed with the normalized allocation infor-
mation (4, dy, 1,0) b (B, dp, &, (0p — £04)) the index
expressions fulfill: Sy = z—;SB + (ox — j—QOB). By us-
ing this equation in f(Sy) the allocation function of
fx(S) = s4xS8 + 0y can be read as s, = skz—; and
op = sp(og — z—;OB) + o;. Based on this computation
of allocation functions, conflicts can be detected:

Consider a cycle of edges in P.

Start with an arbitrary allocation function at an ar-
bitrary node of the cycle. Compute the allocation
function of neighboring nodes along the cycle. If the
allocation information of an edge is incomplete, copy
the allocation function to the neighboring node, oth-
erwise use s, and o, as derived above.

If after returning to the starting node an allocation
function is computed, which is different from the ini-
tial one, then P has a conflict.

Note that useful allocation functions are computed if
no conflict exists in the cycle. Possible non-integer val-
ues are removed by multiplying by the least common
multiplier of the occurring denominators.

4.4.2 Conflicting Dimension Mappings

Since each dimension of a given array has to be mapped
to exactly one dimension of the substitute array, an in-
jective mapping 5 :{1,2,...,;my} — {1,2,... n}is
needed, where m; and n are the number of dimensions
of the given array and its substitute, respectively. The
value of n 1s determined by the largest dimensionality
in a given connected component of P. Allocation infor-
mation of the form (4,dy,.,.) > (B, ds,.,.) mean that
dimension d; of & and dimension dg of B should both be
mapped to the same dimension of the substitute arrays.
Hence, the following implication is derived from the al-
location information: (da, diarg) € 4 = (dp, dtarg) €

>g. When the dimension mapping is computed ele-
mentwise the injectivity is destroyed if
Elde {1,2,...,m5}\{d5} Z(d, dtarg) € Dp vV 1
el 2 dmgt: (dod) € by (D)

Based on the above computation of dimension map-
pings, conflicts can be detected as follows.

Consider a cycle of edges in P.

Start with an arbitrary dimension mapping > at an
arbitrary node of the cycle. Compute the dimension
mapping of neighboring nodes along the cycle using
the above implication.

Then P has a conflict, if one of the conditions given

in (1) occurs before the starting node is reached.

Note that useful dimension mappings are computed if
no conflict exists on the cycle.

4.5 Search Space and Complexity

In general, an optimal solution of the placement prob-
lem can be found in two steps. First, all cycles bearing
a conflict must be detected in P by the above methods.
Allthese cycles must then be cut to derive a placement.
The difficulty is to find a set of edges that cuts all cy-
cles and has the minimal total cost. Since this problem
is NP-complete, heuristics must be used to prune the
search space.

4.5.1 Fundamental Cycles

Instead of finding the set of all cycles, we restrict our
considerations to the set of fundamental cycles® in P
that bear a conflict. Nothing is lost by this restriction
since all cycles in P can be constructed by combinations
of fundamental cycles. Iff there is a conflict in a cycle
in P there 1s a conflict in a fundamental cycle as well.

For the general solution all sets of fundamental cy-
cles must be studied. For each graph P with n nodes, e
edges, k components, each set has p = e—n+k cycles,
and there is one set for each spanning tree. We restrict
our analysis:

Find the minimal set of fundamental cycles with re-
spect to the sum of the costs of the edges.

The underlying idea is as follows: Tt is more likely (but
cannot be guaranteed) that the set of edges to cut with
minimal cost is found in the minimal set of fundamen-
tal cycles than in any other set of fundamental cycles
because of the minimality of total edge cost. Although
the sub-problem of finding the minimal set of funda-
mental cycles is itself NP-complete, good polynomial
time approximations are known [7].

4.5.2 Minimal Covering

Even if the minimal set of fundamental cycles is known,
the remaining sub-problem still is NP-complete. The
problem is to determine which of the edges to cut to

*If unfamiliar with these terms, see for example [6].

achieve minimal cost by cutting all cycles. This prob-
lem is another representation of the weighted set cov-
ering problem [11] since some edges belong to several
cycles. It can be written as a linear programming prob-
lem:

For ¢« € I numbering the edges in the set of fun-
damental cycles, let ¢; be the cost of edge ¢ and
z; € {0,1} be integer variables. When #; = 0 the
edge ¢ remains uncut. For index sets Jy,...,J, C I
representing the edges of individual fundamental cy-
cles use the simplex algorithm to solve:

min) . x;-¢
AVGE{L o} s 3 eq w21

Although the simplex algorithm cannot be guaranteed
to terminate fast — its worst case behavior is in O((L))

with [being the length of the longest fundamental cy-
cle — it usually terminates in time proportional to the
number of equations p and variables ! [34]. A simple
basic solution 1s x; = 1 for all ¢ € 1.

Results by Kremer [2, 20] also indicate the useful-
ness of integer programming for placement problems.
Their use of 0-1 integer programming is restricted to
subproblems; e.g., data remapping and axis alignment,
and is intended for a tool supporting the programmer.

4.5.3 Replication

Replication is easily introduced in this scheme by con-
sideration of node splittings. A cycle can not only be
cut by splitting up one of its edges but additionally
by replacing one node with two substitute nodes. This
adds up to n new variables to the above system and en-
larges each of the inequalities by the number of nodes in
the corresponding fundamental cycle. Since node split-
ting and disobeyed identity edges both require that an
array using one placement must be transformed into a
second one, both have the same cost. It is still an un-
solved question for us how to decide between edge split-
ting and node splitting, i.e., when to replicate. Nodes
representing forall arrays or writes may not be split.

4.6 Example — Continued

For the example of section 4.1 eight edges are in P.
Nodes are numbered in order of their appearance in
the program, e.g., Hs represents H[i,3]. F is the forall
array. Fat lines cost ¢, 4+ ¢f + ¢,, thin lines are c,.

1
GGy HT H5 Hs

\ﬁ/
There are 24 spanning trees for P each of which has
a set of 3 fundamental cycles. When considering only
those cycles that bear a conflict, two minimal sets of
fundamental cycles can be found. In the schematic rep-
resentation only fat cycles have a conflict.

Go—HT HI"H GE=HT H3H
gyrize gk

F F

Although it is sufficient to consider one minimal set,
we present both for explanatory reasons. The simplex
algorithm finds, that in the first case either the edge
F < Hy or the edge F < Hy must be cut to achieve mini-
mal cost of ¢,. For the second case either edge G2 bt Hy
or Go < Hz 1s chosen with cost ¢,. By removing any of
these edges, dimension mappings and allocation func-
tions are computed as shown in section 4.4. If in any
case the first mentioned edge is cut, G will be placed
according to H[2*1+2,4]. Otherwise, H[2*1i,3] 1s se-
lected which results in the transformation given in 4.1.
Note that replication is not an issue here since the cost
of node splitting always surpasses ¢,.

5 Performance Results

At the moment, our benchmark suite consists of 17
problems collected from literature, see [27] for de-
tails. Here, we only consider those 15 problems whose
Modula-2* solutions are not totally aligned right from
the beginning.

The programs were compiled for a 16K processor
MasPar MP-1 (SIMD) by our Modula-2* compiler. Ap-
plication of the automatic alignment optimization im-
proved the execution times of the programs by over 40%
on average. Because our work on Modula-2* compil-
ers for MIMD machines, namely LANs of workstations
and (virtual) shared memory multiprocessors, is still
in progress, we cannot present any measurements for
them. But we expect even better results since remote
communication is more costly.

For time measurements we used the high resolu-
tion DPU timer on the MasPar. Below, t4ign—ops and
tro—align—opt TEPTESENt Program execution tlmes with the
optimization techniques presented in the paper applied
and not applied, respectively.

We define performance as work or problem size per
time and focus on the following relative performances:*

a:jeom /t size = tno—align—opt/talign—opt~ ThUS, the di-
agrams show a ratio scale as the vertical axis. Good
performance of the alignment optimization 1s indicated
by curves above unity, e.g. a curve around 2 shows that
the alignment optimization halved the execution time.

no—align—opt

Problem average
T T T

MP-1: t(no align opt)/t(align opt) —

18 B

16 B

12 b

1 I I I I
20 25 2710 275 2720 2725
problem size

*Comparisons with hand-coded programs are given in [27].

For problem sizes ranging from 2% to 2% we de-
rived the relative performances from our execution time
measurements. The resulting general, relative perfor-
mances are shown above, averaged arithmetically over
all test programs per problem size. (Only results with
at least three measurement points per problem size are
included in this average graph.)

Alignment optimization improves performance in
two ways. Obvious improvement is due to achieving lo-
cality where without optimization remote access would
occur.

A secondary improvement results from knowledge
about existing locality, which the Modula-2* compiler
exploits in the following way. For problem sizes above
the number of processors, the compiler generates vir-
tualization loops on each processor. The iteration vari-
able can reflect the true value of the forall variable
with respect to the section of the forall range that is
assigned to a particular PE. Or it can just count itera-
tions, starting from 0 on all PEs.

If locality of an array access is uncertain, first the
corresponding processor number and the local address
must be computed from the true forall variable, then
a subsequent if statement must decide locality at run-
time. In contrast, for known locality the iteration count
can often be used for direct indexing into the local seg-
ment of an array, thus removing the runtime decision
and often alleviating the cost of address calculations.

This often explains the increase of relative perfor-
mance for problem sizes above machine size (2).

5.1 Problems

5.1.1 Root Search

Problem: Determine the value of # € [a, b] such that
f(x) = 0, given that f is monotone and continuously
differentiable. Approach: The problem is solved with
multisection. The interval [a, b] is evenly divided over
n processes. If f has a root in [a,b] then there is ex-
actly one process p with f(zp_1) - f(x,) < 0. Update
the interval [@/, 4] := [xp_1, 2p]. Iterate until the error
b — a' < e. Discussion: Remote access cannot be
reduced here. The improvement is due to knowledge
about locality (see above).

T
12 MP-1: t(no align opt)/t(align opt) ——

1 —— I I I
26 2"8 270 2M2 2714 2716 2M8 2720 2122

5.1.2 Heat Diffusion Kernel

Problem: The temperature on the edges of a square
surface are given as constants, while those on the in-
side are to be calculated with a diffusion equation. Ap-
proach: The value of a grid point is iteratively com-
puted based on the values of its neighbors. Discus-
sion: See 5.1.1. Since the problem size is the length
of one axis of the square surface, virtualization loops
start at 27.

T T
MP-1: t(no align opt)/t(align opt) ——

1 I I I I I I
23 27 275 216 g 28 279 2M0

5.1.3 Doctor’s Office

Problem: Given a set of n patients, a set of doctors,
and a receptionist, model the following: Initially, all
patients are well and all doctors are in a queue await-
ing sick patients. Then patients become sick at random
and enter a queue for treatment by one of the doctors.
The receptionist handles the two queues, assigning pa-
tients to doctors. As soon as a doctor and a patient
are paired, the doctor diagnoses the illness and treats
the patient in a random amount of time. After cur-
ing a patient, the doctor rejoins the doctor’s queue to
await another patient (from [9]). Approach: The ran-
dom amounts of time that patients are well and that
doctors need to treat illnesses are counted down in par-
allel. The assignments of doctors to patients is done in
parallel. The output is a list of timestamps, indicating
when patients became ill, and list of triples (doctor,
patient, treatment time). Note: The vertical axis is
scaled differently. Discussion: See 5.1.1.

T T T
MP-1: t(no align opt)/t(align opt) ——

15 - b

L L L L L L L L
276 2"8 2710 2712 2714 2716 2718 2720 2722 2n24

5.1.4 Synchronous Example

T T T
MP-1: t(no align opt)/t(align opt) ——

35 ~

25 b

15 ~

L L L L L L
276 2°8 2710 2rM2 2n14 2716 2718 2720 2r22

Problem: This is an example of a Modula-2* program
with one synchronous forall that does a lot of (unmo-
tivated) array operations. Note: The vertical axis is
scaled differently. Discussion: See 5.1.1.

5.1.5 Longest Common Subsequence

Problem: Two strings A = ayas---a, and B =
biby - --b, are given. Find a string C' = ¢jea- - - ¢, such
that ' is a longest common subsequence of A and B.
(C is a subsequence of A if it can be constructed by
removing elements from A without changing their or-
der.) Approach: The solution uses a wave-front im-
plementation of dynamic programming. It causes in-
tensive access to neighboring data elements. Discus-
sion: Currently, access to neighboring data elements
is implemented with global communication primitives.
Since relative overhead of the work incurred by unnec-
essary virtualization loops will increase when faster grid
communication can be used instead, we expect better
results on SIMD machines in future.

T T
MP-1: t(no align opt)/t(align opt) ——

12 B

\

1 I I I I I I
77 2"8 279 2710 M1 272 273 2n14

5.1.6 Red/Black Iteration

Problem: Implement a red/black iteration, i.e., the
kernel of a solver for partial differential equations. Ap-
proach: The implementation intensively references
neighboring data elements in a n - n-matrix. Discus-
sion: Since the diagram is similar to the one of 5.1.5 it
1s omitted.

5.1.7 List Rank

Problem: A linked list of n elements is given in an
array A[l..n]. Compute for each element its rank in
the list. Approach: This problem is solved by pointer
jumping. Discussion: Since the diagram is similar to
the one of 5.1.5 it is omitted.

5.1.8 Transitive Closure

Problem: The adjacency matrix of a directed graph
with n nodes is given. Find its transitive closure. Ap-
proach: Process the adjacency matrix according to the
property that if nodes # and m as well as nodes m and
y are (transitively) adjacent, then z and y are (tran-
sitively) adjacent. Discussion: Since the diagram is
similar to the one of 5.1.5 it is omitted.

5.1.9 Prime Sieve

Problem: Compute all prime numbers in [2..n]. Ap-
proach: Rather than using a virtual process per can-
didate, our implementation of the classical prime sieve
assigns a segment of candidates to each processor. This
adaptive version works much faster since division can

be replaced by indexing within each segment. Discus-
sion: Since the diagram is similar to the one of 5.1.5 it
is omitted.

5.1.10 Game of Life

Problem: Apply Conway’s rules of life to a given ma-
trix. Approach: The value of a grid point depends
on the sum of the values of its neighbors. Discussion:
Since the diagram is similar to the one of 5.1.5 it is
omitted.

5.1.11 Pairs of Relative Primes

Problem: Count the number of pairs (7, j) with 2 <
t < j < n that are relatively prime, i.e. the greatest
common divisor of ¢ and j is 1. Approach: The solu-
tion is based on a data-parallel implementation of the
GCD algorithm followed by an add-scan. Discussion:
The relative effectiveness of the optimization depends
on the relation between data access time and compu-
tation time in the program. If the computation time
1s predominant improvement of data access shows only
little effect. This benchmark is a good example.

The parallel invocation of the GCD function and the
while loop inside are the dominant cost producers. Due
to the SIMD model, the overall runtime is determined
by the pair of numbers that requires the most iterations.
Up to a problem size of 27 the virtualization ratio is 1,
hence smaller problems mean fewer and in general less
complicated pairs to consider and thus less computation
and a better effect of the optimization. Starting with 28
the virtualization loops are iterated more than once. At
first, newly added GCD invocations terminate fast. As
more pairs are considered, more computation becomes
predominant again.

T T T
MP-1: t(no align opt)/t(align opt) ——

12 B

273 2™ 275 2"6 77 2°8 279 2710 2nM1

5.1.12 Point in Polygon

Problem: A simple polygon P with n edges and a
point g are given. Determine whether the point lies
inside the polygon. (A polygon is simple if pairs of
line segments do not intersect except at their common
vertex.) Approach: Draw a line from ¢ that is parallel
to the vertical axis. Count the number of intersections
with P. The point ¢ lies inside P if and only if this
number is odd. Discussion: Up to the machine size,
access to a locally stored array element is implemented
as access to a local variable. For larger problem sizes,
local access needs arrays and the computation of index
expressions, which slightly increases computation time
and hence reduces the effect of the optimization.

T T T
MP-1: t(no align opt)/t(align opt) ——

18 ~
16 ~

14+ ~

I I I I I I I I
26 28 2710 272 2714 2716 2718 2720 2722 224

5.1.13 Estimation of P1

Problem: Compute 7 using the equation = = fol 1_;17.
Approach: Approximate the solution by computing
%Z?:_ol 1-&13 (rectangular rule), where n is the problem

size parameter and #; = (i + %)/n is the midpoint of
the ith interval. Discussion: See 5.1.12.

T T T T
MP-1: t(no align opt)/t(align opt) ——

12| t]

1 I I I I I I I I I
276 2°8 2710 M2 M4 2716 2718 2720 2722 2n24 2726

5.1.14 Paraffins Problem

Problem: Given an integer n, output the chemical
structure of all paraffin molecules for ¢ < n, without
repetition and in order of increasing size. Include all
isomers, but no duplicates (from [9]). Note: The ver-
tical axis is scaled differently. Discussion: The un-
avoidable amount of remote communication becomes
the predominant cost factor with growing problems.
The optimization is most effective for smaller problem
sizes.

T T T
MP-1: t(no align opt)/t(align opt) ——

L L L ! L I
277 278 279 2710 271 272 2”3 2r14 2rM15 2716

5.1.15 Hamming’s Problem

Problem: A set of primes {a,b, ¢, ...} of arbitrary size
and an integer n are given. Find all integers of the
form a' - b - ¢f < n in increasing order and with-
out duplicates. Approach: For each prime p compute
{p|p* < n}. Combine any two power sets to a new one,
while enforcing that the products remain < n. Repeat
the combination for all power sets. Discussion: The
curve is due to a combination of the effects described
in 5.1.1 and in 5.1.12.

T T T T
MP-1: t(no align opt)/t(align opt) ——

18 ~

14 ~

12 ~

1 L L L L L L L L L
276 278 2710 M2 2nM14 2716 2718 2720 2722 2n24 2726

6 Conclusion

In this paper we presented evidence that in many cases
the problem of determining an efficient alignment of
data and processes can be solved automatically.

The technique presented analyzes complete pro-
grams, including branches; loops, and nested paral-
lelism. Alignment is determined with respect to offset,
stride, and general axis relations. Both placement of
data and processes are computed in a unified frame-
work based on an extended preference graph and its
analysis. Dynamic redistributions are derived.

The main contributions of this paper are (1) the au-
tomatic computation of both data and process align-
ment in one framework, (2) an extended preference
graph and a novel technique for its analysis, and (3)
the performance results which are very encouraging.

On average, the optimization algorithms imple-
mented in our Modula-2* compiler improved the ex-
ecution times of the programs by on average over 40%
on a MasPar MP-1 with 16384 processors.

The IPD Modula-2* system is available by anonymous ftp from
ftp.ira.uka.de in pub/programming/modula2star.

References

[1]

[2]

[16]

[17]

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer.
A static performance estimator to guide data partition-

ing decisions. Sigplan Notices 26(7):213-223, 1991.

Robert Bixby, Ken Kennedy, and Ulrich Kremer. Auto-
matic data layout using 0-1 integer programming. Tech.

Report CRPC-TRI3349-S, Rice University, 1993.

B. Chapman, H. Herbeck, and H. Zima. Automatic
support for data distribution. In 6th Distrib. Memory
Computing Conf., pp. 51-58, Portland, OR, 1991.

S. Chatterjee, J. Gilbert, and R. Schreiber. The
alignment-distribution graph. In 6th Workshop on Lan-

guages and Compilers for Parallelism, pp. 234-252,
Portland, OR, 1993.

S. Chatterjee, J. Gilbert, R. Schreiber, and S.-H. Teng.
Automatic array alignment in data-parallel programs.

In 20th ACM Symp. on Principles of Programming
Languages, pp. 16-28, 1993.

N. Deo. Graph Theory with Appl. to Fngineering and
Computer Science. Prentice Hall, 1974.

N. Deo, M. Prabhu, and M.S. Krishnamoothy. Algo-
rithms for generating fundamental cycles in a graph.

ACM Trans. on Mathem. Software, 8(1):26-42, 1982.

T. Fahringer, R. Blasko, and H. Zima. Static perfor-
mance prediction to support parallelization of Fortran
programs for massively parallel systems. In Int. Conf.
on Supercomputing, pp. 347-356, Washington, 1992.

J.T. Feo, editor. A Comparative Study of Parallel Pro-
grammang Languages. Elsevier , Holland, 1992.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U.
Kremer, C.-W. Tseng, and M.-Y. Wu. Fortran D
language specification. Tech. Report CRPC-TR90079,
Rice University, 1990.

M.R. Garey and D.S. Johnson. Computers and In-
tractability. W.H. Freeman, New York, 1991.

J. Gilbert and R. Schreiber. Optimal expression eval-
unation for data parallel architectures. J. Parallel and

Distributed Computing, 13(1):58-64, 1991.

M. Gupta and P. Banerjee. Automatic data partition-
ing on distributed memory multiprocessors. In 6th Dis-
trib. Memory Computing Conf., pp. 43-50, Portland,
OR, 1991.

M. Gupta. Automatic Data Partitioning on Distributed
Memory Multicomputers. PhD thesis, University of Illi-
nois at Urbana-Champaign, 1992.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Com-
piling Fortran D for MIMD distributed-memory ma-
chines. CACM, 35(8):66-80, 1992.

High Performance Fortran: Language specification.

Tech. Report, CRPC, Rice University, 1992.
K. Knobe, J.D. Lukas, and W.J. Dally. Dynamic align-

ment on distributed memory systems. In 3rd Workshop
on Compilers for Parallel Computers, pp. 394-404, Vi-
enna, Austria, 1992.

[18]

[19]

[20]

[22]

K. Knobe, J.D. Lukas, and G.L. Steele. Data optimiza-
tion: Allocation of arrays to reduce communication on
SIMD machines. J. Parallel and Distributed Comput-
ing, 8(2):102-118, 1990.

Ulrich Kremer. NP-completeness of dynamic remap-
ping. Tech. Report CRPC-TR93330-S, Rice University,
1993.

Ken Kennedy and Ulrich Kremer. Automatic data lay-
out for high performance computing. Tech. Report

CRPC-TR94498-S, Rice University, 1994.

J. Li and M. Chen. Index domain alignment: Minimiz-
ing cost of cross-referencing between distributed arrays.
In 8rd Frontiers of Massively Parallel Computation, pp.
424-433, 1990.

J. Li and M. Chen. The data alignment phase in
compiling programs for distributed-memory machines.
J. Parallel and Distributed Computing, 13(4):213-221,
1991.

M.E. Mace. Memory Storage Patterns in Parallel Pro-
cessing. Kluwer Academic Publishers, 1987.

MasPar Computer Corporation. MasPar Parallel Ap-
plication Language Reference Manual, 1990.

M. Philippsen. Automatic data distribution for near-
est neighbor networks. In {th Frontiers of Massively
Parallel Computation, pp. 178-185, 1992.

M. Philippsen. Optimierungstechniken zur ﬁbersetzung
paralleler Programmaiersprachen. PhD thesis, Univer-
sity of Karlsruhe, Informatics, 1993.

M. Philippsen, E.A. Heinz, and P. Lukowicz. Com-
piling machine-independent parallel programs. Sigplan

Notices, 28(8):99-108, 1993.

M. Philippsen and M.U. Mock. Data and process align-
ment in Modula-2*. In Automatic Parallelization: New

Approaches, pp. 177-191. Verlag Vieweg, 1994.

J. Ramanujam and P. Sadayappan. Access based data
decomposition for distributed memory machines. In
6th Distributed Memory Computing Conf., pp. 196—
199, Portland, OR, 1991.

T. Sheffler, R. Schreiber, J. Gilbert, and S. Chatterjee.
Aligning parallel arrays to reduce communication. In
5th Frontiers of Massively Parallel Computation, pp.
324-331, 1995.

Thinking Machines Corporation, Cambridge, Mas-

sachusetts. CM-Fortran Reference Manual, 1989.

Thinking Machines Corporation, Cambridge, Mas-
sachusetts. C* Language Reference Manual, 1991.

W.F. Tichy and C.G. Herter. Modula-2*: An exten-
sion of Modula-2 for highly parallel, portable programs.
Tech. Report 4/90, University of Karlsruhe, 1990.

S. Walukiewicz. Integer Programming. Kluwer Aca-

demic Publishers, 1991.

S. Wholey. Automatic Data Mapping for Distributed-
Memory Parallel Computers. PhD thesis, CMU, 1991.

