
Automatic Synchronization Elimination in Synchronous FORALLs

Michael Philippsen and Ernst A� Heinz
IPD� University of Karlsruhe� Germany� email� �phlipp jheinze�� ira�uka�de

This paper appeared in� Frontiers���� The Fifth Symposium on the Frontiers of Massively

Parallel Computation� pages ���	��
� McLean� Virginia� February �	�� ����

Abstract
This paper investigates a promising optimization technique

that automatically eliminates redundant synchronization

barriers in synchronous FORALLs� We present complete

algorithms for the necessary program restructurings and

subsequent code generation� Furthermore� we discuss the

correctness� complexity� and performance of our restruc�

turing algorithm before we �nally evaluate its practical use�

fulness by quantitative experimentation�

The experimental evaluation results are very encourag�

ing� An implementation of the optimization algorithms in

our Modula��� compiler eliminated more than �	
 of the

originally present synchronization barriers in a set of seven

parallel benchmarks� This barrier reduction improved the

execution times of the generated programs by over �	
 on

a MasPar MP�� with �
��� processors and by over �		

on a sequential workstation�

� Introduction

Data�parallel programs operate on all elements of a data
structure simultaneously and are expressed with explicit or
implicit FORALLs� During the compilation of FORALLs
a synchronization barrier has to be implemented between
potentially interfering data references if the compiler can�
not assure the absence of data dependences� Hence� the
primary optimization goal is to cover all detected depen�
dences with as few synchronizations as possible�

We tackle this optimization problem by means of a re�
structuring technique based on source�to�source transfor�
mations in the framework of Modula��� ��	
� Our restruc�
turing algorithm covers all language features of Modula����
including branches� loops� and procedure calls inside syn�
chronous FORALLs as well as arbitrary nestings thereof�
In general� reduction of synchronization barriers increases
the amount of temporary storage� Thus� we face the sec�
ondary optimization problem of minimizing this increase�

The remainder of the paper is organized as follows� Af�
ter discussing related work in section �� we brie�y intro�
duce our notation of FORALLs� Section � formulates the
restructuring algorithm and discusses its properties� Fi�
nally� section
 describes the setup and results of the ex�
periments evaluating the e�ectiveness of our techniques�

� Related Work

Several researchers have studied di�erent variations of the
synchronization elimination problem in the context of com�
piling data�parallel programs ��� ��� ��� ��� ��� ��
�

Our approach shares some similarities with the work
of Hatcher and Quinn ���
� They use a data�parallel lan�
guage that assigns a private address space to each virtual
processor� Data from other virtual processors can only be
accessed by explicit communication� Hence� synchroniza�
tions are only necessary where communications occur� The
number of barriers is reduced by grouping communication
operations together�

In languages with a shared address space the problem
is more complicated� Here� synchronization barriers are
not explicitly visible� compilers need sophisticated data
dependence analysis to capture access interferences� Fur�
thermore� our solution is more general than the work of
Hatcher and Quinn because our restructuring algorithm
works on �sub�� expressions and is extremely �ne grained�

The article ��
 by Chatterjee focuses on the compilation
of VCODE for shared memory multiprocessors� VCODE is
a low�level� data�parallel vector language intended to serve
as the target for optimizing compilers of higher level lan�
guages� It is based on the shared address space paradigm
and allows for nested parallelism�

VCODE programs do not contain any subscript expres�
sions� this considerably simpli�es the necessary data de�
pendence analysis because the compiler needs no subscript
tests� The VCODE compiler internally builds a so�called
computation graph of the source program� which is simi�
lar to our graph representation of synchronous FORALLs�
Their graph then serves as the basis for all optimizations�
namely partitioning into clusters and epochs as well as run�
time scheduling and storage minimization� Clustering sim�
ply amounts to the fusion of compatible vector operations
which translates to a fusion of compatible FORALLs in our
framework� Epoch formation resembles our restructuring
translation from synchronous FORALLs into sequences of
asynchronous FORALLs� As for this� Chatterjee�s clus�
ters and epochs closely correspond to our synchronous and
asynchronous FORALLs� resp� His experiments and per�
formance measurements � conducted for several parallel
programs on �� processors of a �� processor shared mem�
ory Encore Multimax � further con�rm the e�ectiveness of
synchronization barrier elimination�

As for language framework and optimization goals� the
recent work of Prakash et al� ���
 closely follows our direc�
tion which originally stems from ���� ���
� Prakash investi�
gates synchronization elimination in the UC programming
language� a data�parallel extension of C featuring a shared
address space� built�in data�parallel operations like reduc�

�

tions� and two new statements that introduce parallelism�
UC�s par and arb statements are e�ectively equivalent to
synchronous and asynchronous FORALLs� resp�

Prakash describes data dependence analysis and several
possibilities of optimizing program transformations� ar�
ray renaming� array alignment� barrier minimization� bar�
rier weakening� de�nition variables� and fuzzy barriers plus
non�blocking requests� Furthermore� a simple cost model
which may serve as the foundation of future static per�
formance estimation is introduced� But for none of the
above ���
 gives any concrete algorithms or implementation
schemes� Hence� it remains unclear how to successfully au�
tomize the inter�play of the proposed optimizations� How�
ever� the implementation of an optimizing UC compiler is
claimed to be in progress�

In contrast to Prakash� we focus on minimizing the
number of synchronization barriers because this seems
to be the most important optimization� Therefore we
present and discuss complete algorithms automizing pro�
gram restructuring and code generation� Moreover� we
evaluate the practical usefulness of the proposed optimiza�
tion techniques as implemented in our Modula��� com�
piler ��� ��
 by conducting quantitative experiments mea�
suring the performance of Modula��� programs on sequen�
tial workstations and a distributed memory MasPar MP���

� Synchronous FORALLs

When speaking of synchronous FORALLs we mean high�
level language constructs that allow for problem�oriented
expression of synchronous parallelism� In Modula��� the
syntax of synchronous FORALLs is de�ned as follows�

FORALL �ident� ��� �SimpleType� IN SYNC

�StatementSequence�

END

The FORALL creates as many �conceptual� processes as
there are elements in the possibly non�static scalar range
SimpleType� The identi�er ident is local to the FORALL

statement and serves as a runtime constant� it is initial�
ized to a unique value of SimpleType for each process� The
created processes execute StatementSequence in parallel
synchrony� The END imposes an explicit synchronization
barrier on the created processes� Termination of the whole
FORALL statement is delayed until all processes have �n�
ished their execution of StatementSequence�

Synchronous FORALLs are especially good at imple�
menting parallel modi�cations of overlapping data struc�
tures because the required synchronization need not be
formulated explicitly� Even irregular data permutations
are easy to understand and to program�

FORALL i � ����N	 IN SYNC

X�i	 �
 X�p�i�	

END

This FORALL permutes vector X according to permutation
function p��� The synchronous semantics ensure that all
RHS elements X�p�i�	 are read and temporarily stored
before any LHS variable X�i	 is written�

The behavior of branches inside synchronous FORALLs
is de�ned as follows� Modula��� allows branches of syn�
chronous CASE or IF statements to be executed con�
currently without any synchronization� The exact syn�
chronous semantics of nested statements are de�ned in ��	
�

� Synchronization Barrier Elimination
��� Example

FORALL i � AnySimpleType IN SYNC

A�i	 �
 A�i��	 � A�i��	 � B�i	

B�i	 �
 B�i��	

END

A number of parallel threads is created by this FORALL

statement� Conceptually� the threads have to be synchro�
nized after each individual subexpression� e�g� after the
evaluation of A�i��	� after the evaluation of A�i��	� af�
ter the addition of both operands� after the evaluation of
B�i	� and so on� Hence� a naive implementation would
implement eight synchronization barriers��

Changing the evaluation order is possible as long as cer�
tain constraints are obeyed� There are two types of such
constraints� The �rst type re�ects the semantics of in�
dividual statements� e�g� the RHS of a statement has to
be completely evaluated before a store to the LHS can be
performed� When representing constraints as edges in a
program dependence graph� the above example will have
two edges of this type� each connects the RHS with the
LHS of one assignment� The other type of constraint is in�
duced by data dependences as de�ned in ��� �� �� ��
� Data
dependences may exist within one thread or between di�er�
ent threads� intra�thread dependences are similar to def�use
chains �no synchronization necessary� whereas inter�thread
dependences require synchronization between the threads�

In the example there are four data dependences�
A�i��	�a A�i	� A�i��	�a A�i	� B��i	�

a B��i	 �intra��
B�i��	�a B��i	�� All of them can be obeyed with a single
synchronization barrier as shown in the following seman�
tically equivalent code�

FORALL i � AnySimpleType IN PARALLEL

H��i	 �
 A�i��	

H��i	 �
 A�i��	

H��i	 �
 B�i��	

END

FORALL i � AnySimpleType IN PARALLEL

A�i	 �
 H��i	 � H��i	 � B�i	

B�i	 �
 H��i	

END

Note that in contrast to the original code� two asyn�
chronous FORALL statements are used� No implicit syn�
chronization barriers remain inside the bodies of these
asynchronous FORALLs� All aforementioned constraints
are honored� the parts are evaluated in correct order�

�Because subexpressions may contain calls to functions with
side�e�ects� barriers are required� For plain array references�
however� some of the naive barriers can easily be removed�

�B��i� stands for the �rst occurrence of B�i� in the �rst
assignment� As usual �

a denotes an anti dependence�

�

the three inter�thread dependences involve only data ref�
erences that are in di�erent asynchronous FORALLs and
are therefore separated by a synchronization barrier�

Although the above code is semantically correct� there
exists an even better solution which requires less memory
�temporary variables� and access time�
FORALL i � AnySimpleType IN PARALLEL

H��i	 �
 A�i��	 � A�i��	 � B�i	

H��i	 �
 B�i��	

END

FORALL i � AnySimpleType IN PARALLEL

A�i	 �
 H��i	

B�i	 �
 H��i	

END

��� Graph Representation

The basic data structure is a directed graph P representing
a combination of a dependence graph and expression trees
as they are commonly used for intermediate representa�
tion in compilers� For each nesting of FORALLs� a graph
is constructed� Nodes of this graph are operands� e�g� des�
ignators� and operators� Nodes are connected by directed
edges representing ordering constraints as explained in the
following two subsections��

����� Data Dependence Edges
By data dependence analysis the compiler tries to prove
the absence of dependences in order to include as few edges
as possible into the graph P � There are a few modi�cations
of the usual data dependence analysis that are necessary
to obtain the desired information in the context of syn�
chronous parallelism�

� It is clear for sequences of assignment and branches
that all data dependences run in a lexically positive
direction since all threads execute all parts thereof
in lock�step� In loops inside synchronous FORALLs
we do not have to consider loop carried �i�e�� lexi�
cally negative� dependences� since synchronous loop
semantics ��	
 prescribe a barrier after each iteration�

� Hence� the resulting graph is acyclic�

� If two references to an array are both inside the same
asynchronous FORALL� no data dependence edge is
required� since the programmer explicitly allows the
parallel threads to proceed with arbitrary speed�

� For branching statements� loops� and procedures in�
side the FORALL nesting� it must be detected which
designators may cause data dependences� Our tech�
nique covers all these cases but due to space limita�
tions we must refer the interested reader to ���
�

� Prakash et al� ���
 eliminate intra�thread dependences
from their graphs� We show that keeping them in P
leads to further optimization�

�The de�nition of P resembles both the program dependence
graph PDG of ��	 and the dependence
ow graph DPG of ���	�
Whereas nodes of PDG and DPG are complete statements� in
P evaluation ordering is expressed on a subexpression basis�

����� Evaluation Ordering Edges
Although our restructuring and code generation techniques
include the handling of branches� loops� and procedure
calls ���
� the current presentation is restricted to �at se�
quences of assignments for the sake of clarity�

To ensure the correct evaluation order inside of and
between statements� additional edges are included into P �
In case of assignments� operand nodes and operator nodes
that occur on the RHS of the assignment are connected by
a directed edge in P � The direction represents the required
order of evaluation� The root of the expression tree for the
RHS is then connected to the designator node of the LHS�
For branching statements and loops� additional edges must
be inserted�

��� Central Idea

The central idea of the restructuring optimization is to
sort P topologically� The path with the maximal number
l of inter�thread dependence edges determines the minimal
number of synchronization barriers that are required� con�
sequently l asynchronous FORALLs have to be generated�

With l known� we try to �nd l disjunctive subgraphs T��
T�� � � � � Tl of P such that the following conditions hold�

� Each node N of P is mapped to exactly one Ti� We
call i the synchronization rank of N � All nodes with
synchronization rank i are in Ti�

� There is no forward path from a node N � Tj to a
node M � Ti if j � i�

� Within one subgraph there are no two nodes that are
connected by an inter�thread dependence edge� Thus�
inter�thread dependences always connect nodes from
di�erent subgraphs�

Finding a subgraph partitioning is equivalent to comput�
ing appropriate synchronization ranks� For nodes that are
on the path with the maximal number l of inter�thread
dependence edges� the synchronization rank is �xed� For
nodes on paths that have fewer inter�thread dependences�
there is some freedom in assigning synchronization ranks�

This freedom can be used for a secondary goal of op�
timization� The number of evaluation ordering edges that
link nodes in di�erent subgraphs determines the number
of variables necessary to store intermediate results� These
edges prescribe that an intermediate result is used in an�
other asynchronous FORALL than where it is computed�
Usually� temporary variables are arrays with one element
per thread�� Hence� when cutting P into subgraphs� the
total number of evaluation ordering edges linking nodes
with di�erent synchronization ranks is to be minimized�

Since we suspect this problem to be NP�complete�� we

�If no virtualization is necessary� i�e�� if the number of threads
does not exceed the number of available processors� registers can
be used instead of arrays�

�We have not yet found a conclusive proof� For l
 � the
problem is NP�complete since it reduces to �minimum cut into
bounded sets��

�

apply the following heuristics which are based on local in�
formation�

� Successor Locality� If there is a choice in mapping
an operator node to the subgraphs� the best subgraph
is the one in which the operands are evaluated�

T Tji T Tji

Instead of two intermediate results �left� only one
�right� has to be stored in a temporary variable�

� Predecessor Locality� The same idea applies when
mapping operand nodes� If there is a choice� the best
selection puts the operand node in that subgraph in
which the value is used�

T Tji T Tji

Instead of one intermediate result �left� no temporary
storage is required �right��

��� Code Restructuring

Before the restructuring� edges are attributed with
weights� Let wP�S be the weight of the edge connecting P
and S� Inter�thread dependence edges get a weight of �� all
other edges �� The following algorithm subdivides a given
graph P into subgraphs which ful�ll the above conditions�
For this purpose we compute a synchronization rank for
every node� If there is a choice in mapping nodes to sub�
graphs� the algorithm uses an arbitrary selection strategy�
In section ��� we add better heuristics�

Input� Graph P �

Output� Synchronization ranks for every node of P �

Data structures� Every node has two attributes�
minimal synchronization rank r � IN and maxi�
mal synchronization rank R � IN � The interval of
possible synchronization ranks is �r�R
� The idea
of the interval is that the node can be mapped
to any of the subgraphs Tr � Tr�� � � � � TR without
violating any of the conditions for cutting P into
subgraphs� After termination r � R holds for ev�
ery node� meaning that a synchronization rank is
computed and P is cut into subgraphs�

Algorithm� The algorithm consists of two phases�
During the �rst phase� the interval of possible syn�
chronization ranks is computed for every node� A
by�product is the number l of necessary synchro�
nization barriers� which is the same as the number
of subgraphs to be constructed�
The freezing phase handles the nodes with an un�
�xed synchronization rank �r � R� by selecting a
� � �r�R
 and then propagating this choice to ad�
just the intervals of possible synchronization ranks
of neighboring nodes�

I� Computation of Intervals�

For each node� the interval of possible synchroniza�
tion ranks is computed as follows�

I��� Minimal Synchronization Rank� The graph
P is sorted topologically� The minimal synchro�
nization rank r of each node is initialized to �� In
topological order� the nodes update their values of
r� The new value is the maximum of the old value
and the values of the predecessors� incremented by
the weights of the connecting edges� The maxi�
mum of all resulting r values is assigned to l�

I��� Maximal Synchronization Rank� The max�
imal synchronization rank is computed with the
dual algorithm� The direction of the edges is in�
verted� their weights are considered to be multi�
plyed by ��� and instead of maxima minima are
computed� The initial value for each R is set to l�

II� Freezing of Ranks�

For each node of P � an interval of possible syn�
chronization ranks �r�R
 is known� The �nal rank
will be inside this interval but it depends on the
synchronization ranks of neighboring nodes�

As long as there remain nodes with r � R do�

II��� Selection � Update� Select an arbitrary node
K with r � R� For this node K choose any � �
�r�R
 and set the interval of synchronization ranks
�r�R
 �� ����
�

II��� Propagation� If an interval of possible syn�
chronization ranks of a node K is updated� this
may in�uence the intervals of neighboring nodes�
In this case update their intervals as follows�

� The maximal synchronization rank of a predeces�
sor V of K may not be larger than RK � wV�K�
If this condition does not hold after modifying the
interval of K� set RV accordingly� This update is
propagated recursively�

� The minimal synchronization rank of a successor
N of K may not be smaller than rK � wK�N � If
this condition does not hold after modifying the
interval of K� set rN accordingly� This update is
propagated recursively�

�

After computing synchronization ranks� code is generated
as follows� For each synchronization rank an asynchronous
FORALL is generated in increasing order� In the body of
FORALL i� code for all those nodes of P is generated that
have synchronization rank i� The order of node implemen�
tation in the body� i�e� the resulting evaluation order� is
determined by the edges with weight �� Temporaries are
used if evaluation ordering edges start at nodes with rank
i and leave the subgraph Ti� or if nodes in Ti are desti�
nations of evaluation ordering edges that start in Tj with
j � i��

��� Correctness� Minimality� Complexity

It is obvious that a transformation is semantically correct�
if we can prove �a� that the necessary sequential intra�
thread execution order is obeyed and �b� that a synchro�
nization barrier is implemented between the source and
destination of every inter�thread data dependence�

Based on the assumption that each evaluation order�
ing constraint and each intra�thread dependence is rep�
resented by an edge in P � condition �a� holds because for
each synchronization rank the nodes are coded in the order
determined by the edges with weight ��

Thus� it is su�cient to show that the above restruc�
turing algorithm will implement at least one synchroniza�
tion barrier between source and destination of each inter�
thread dependence D� � D�� We assume that the data de�
pendence analysis works correctly� For each inter�thread
data dependence� P contains an edge with weight �� All
other edges have weight �� The �rst phase of the algorithm
ensures that for D� and D� the intervals of possible syn�
chronization ranks �r��R�
 and �r��R�
 ful�ll r� � � � r�
and R� � � � R�� This condition is an invariant of the
freezing phase of the algorithm� it holds before selecting ��
Since the new interval ��� �
 is inside the old one� the condi�
tion still holds� By propagating the update to neighboring
nodes� their intervals may be altered without contradic�
tion� since the weights of the edges are considered�

If there are only assignments in the body of the re�
structured synchronous FORALL� the algorithm �nds the
minimal number of synchronization barriers that are re�
quired to cover all corresponding dependences in P � This
was motivated at the beginning of section ���� Depend�
ing on the quality and resolution of the initial dependence
analysis� however� some semantically redundant barriers
may still remain in the generated code�

With n edges and m nodes� the complexity of the topo�
logical sort is O�n�m�� In the worst case� n nodes remain
with an un�xed synchronization rank after the �rst phase
of the algorithm� The second phase �xes the synchroniza�
tion rank and then propagates the update by means of a
topological sort� Thus� the overall complexity amounts to
O�n � �n �m���

�Code generation for nested synchronous FORALLs�
branches� and loops is more complicated� Due to space limi�
tations we kindly refer the interested reader to ���	�

��	 Heuristics

The number of temporary variables can be reduced if the
freezing phase of the restructuring algorithms is more so�
phisticated� Instead of the �arbitrary selection� in step II��
the successor and predecessor locality rules can be applied�
Their application does not interfere with the above asser�
tions concerning correctness� minimality� and complexity�
The above algorithm has to be modi�ed in step II���

II��� Selection� Update� Apply the following rules
with the given priority�

�a� Successor Locality� For each node K with
r � R� consider all its predecessors on edges with
weight �� If some of these predecessors already
have �xed synchronization ranks� let � be the max�
imum of these ranks� If r � � � R holds for K�
update the interval of K as �r�R
 �� ��� �
� If there
is more than one node ful�lling the above precon�
dition� use an arbitrary node with smallest R� r�

�b� Predecessor Locality� For each node K with
r � R� consider all its successors on edges with
weight �� �As long as we deal only with assign�
ments there is at most one successor�� If some
of these successors already have �xed synchroniza�
tion ranks� let � be the minimum of these ranks�
If r � � � R holds for K� update the interval of K
as �r�R
 �� ����
� If there is more than one node
ful�lling the above precondition� use an arbitrary
node with smallest R� r�

�c� Arbitrary� Select an arbitrary node K with r �
R� For this node K choose any � � �r�R
 and set
the interval of synchronization to ����
�

��
 Example � Continued

The following graph results from the example of sec�
tion ���� Thick lines have a weight of �� thin lines indicate
weights of �� To simplify the presentation� expression trees
of i�� and i�� have been condensed into one node each�

A�	
�����

A�	
�����

i��

�����

i��

�����

�
�������

�
�������

i
�������

B�	
�������

A�	

�����

i
�������

B�	

�����

B�	

�����

i��
�����

i
�������

�

�

�

� �

�� � � �

� ��
�� �

�

Directly attached to the nodes is the interval of possible
synchronization ranks as computed after the �rst phase of
the restructuring algorithm� the updates due to the freez�
ing phase are given after small arrows� Note� that the
intra�dependence edge which represents the data depen�
dence B��i	�

a B��i	 has weight � since it does not require
a synchronization barrier�

From this graph� the best last code as given in sec�
tion ��� is generated� Although there are only anti depen�
dences in the example� the algorithm works for output and
�ow dependences as well�

� Performance Results

At the moment� our benchmark suite consists of �� prob�
lems collected from literature ��

� Here� we only consider
those seven problems whose Modula��� solutions involve
synchronous FORALL statements�

Using the PowerTest ���
 to check subscripts during de�
pendence analysis� the programs were compiled for a ��K
processor MasPar MP�� �SIMD� and a sequential SUN
SparcStation�� �SISD� by our Modula��� compiler ��� ��
�
Automatic application of the synchronization elimination
scheme improved the execution times of the programs by
over ��! for the MasPar and by over ���! for the Sparc
on average� Note that even on an inherently synchronous�
parallel SIMD machine the elimination of synchronization
barriers clearly pays o� due to the necessity of virtualiza�
tion in the cases where problem size exceeds machine size�
Because our work on Modula��� compilers for MIMD ma�
chines� namely LANs of workstations and �virtual� shared
memory multiprocessors� is still in progress� we cannot
present any measurements therefor� But we expect even
better results since each synchronization barrier causes
high�latency delays on such machines�

For time measurements we used the high resolution
DPU timer on the MasPar and the UNIX clock func�
tion on the Sparc �sum of user and system time�� Be�
low� tsync�opt and tno�sync�opt represent program execu�
tion times on either a ��K MasPar MP�� or a SparcStation�
� �as appropriate� with the optimization techniques pre�
sented in the paper applied and not applied� respectively�

We de�ne performance as work or problem size per
time and focus on the following relative performances��

size
tsync�opt

� size
tno�sync�opt

� tno�sync�opt�tsync�opt� Thus�

the diagrams show a ratio scale as the vertical axis� Good
performance of the synchronization elimination technique
is indicated by curves above unity� e�g� a curve around �
shows that the elimination of redundant synchronization
barriers halved the execution time�

For problem sizes ranging from �� to ��� we derived the
relative performances from our execution time measure�
ments� The resulting general� relative performances� av�
eraged arithmetically over all test programs per problem
size� are shown below� �Only results with at least three
measurement points per problem size are included in this

�Comparisons with hand�coded programs are given in ���	�

average graph�� Originally� the programs had ��	 synchro�
nization barriers with only ��� remaining after application
of the elimination technique presented in the paper�

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14
problem size

Problem average

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

On sequential machines the asynchronous FORALLs are
implemented as for loops� The number of synchroniza�
tion barriers is equal to the number of loops� Hence� the
performance gain is mainly due to reduced loop overhead
and better register usage inside of larger loops�

��� Problems

����� List Rank
Problem� A linked list of n elements is given in an ar�
ray A����n
� Compute for each element its rank in the list�
Approach� This problem is solved by pointer jumping�
Note� Ranking the elements of a list is one of the elemen�
tary list processing tasks ���
� Comment� This problem
heavily relies on the general communication mechanism of
the MasPar programming language �mpl�� Since the cost
of communication dominates the total work� the elimina�
tion of synchronization barriers can only be e�ective when
just a few packets are sent� which is the case for smaller
problem sizes�

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20
problem size

Problem ListRank

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� ��

����� Root Search
Problem� Determine the value of x � �a� b
 such that
f�x� � �� given that f is monotone and continuously dif�
ferentiable� Approach� The problem is solved with mul�
tisection� The interval �a� b
 is equally divided over n pro�
cesses� If f has a root in �a� b
 then there is exactly one
process p with f�xp��� � f�xp� � �� Update the interval

�

�a�� b�
 �� �xp��� xp
� Iterate until the error b� � a� � 	�
Note� This problem occurs in science and engineering ��
�
Comment� The solution requires access to neighboring
data elements� Currently this is implemented on the Mas�
Par with global communication primitives� Since relative
overhead of the work incurred by unnecessary virtualiza�
tion loops will increase when faster grid communication
can be used instead� we expect better results in future�

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22
problem size

Problem RootSearchI

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� �

����� Longest Common Subsequence

Problem� Two strings A � a�a� � � � am and B �
b�b� � � � bn are given� Find a string C � c�c� � � � cp such
that C is a longest common subsequence of A and B� �C
is a subsequence of A if it can be constructed by remov�
ing elements from A without changing their order�� Ap	
proach� The solution uses a wave�front implementation
of dynamic programming� It causes intensive access to
neighboring data elements� Note� The parallel solution is
based on �

� Comment� see
�����

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14
problem size

Problem lcs

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� ��

����� Transitive Closure

Problem� The adjacency matrix of a directed graph with
n nodes is given� Find its transitive closure� Approach�
Process the adjacency matrix according to the property
that if nodes x and m as well as nodes m and y are �tran�
sitively� adjacent� then x and y are �transitively� adjacent�
Note� The problem was suggested by Hatcher ���
� Com	
ment� see
�����

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10
problem size

Problem warshall

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� 	

����� Game of Life
Problem� Apply Conway�s rules of life to a given matrix�
Approach� The value of a grid point depends on the sum
of the values of its neighbors� Comment� see
�����

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2^3 2^3.5 2^4 2^4.5 2^5 2^5.5 2^6 2^6.5 2^7
problem size

Problem life

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� ��

����� Synchronous Example
Problem� This is the example of a Modula��� program
containing one synchronous FORALL with a high poten�
tial of synchronization barriers that can be eliminated�
Note� The graph has a di�erently scaled vertical axis�

1

1.5

2

2.5

3

3.5

4

2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22
problem size

Problem sync

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� �

����� Heat Di	usion Kernel
Problem� The temperature on the edges of a square sur�
face are given as constants� while those on the inside are to

�

be calculated with a di�usion equation� Approach� The
value of a grid point is iteratively computed based on the
values of its neighbors�

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2^3 2^4 2^5 2^6 2^7 2^8
problem size

Problem diffuse

MP-1: t(no sync opt)/t(sync opt)
SUN4: t(no sync opt)/t(sync opt)

Reduction of synchronization barriers� �� �� ��

� Conclusion

The encouraging performance results of the experiments
assess the practical usefulness of our automatic elimina�
tion technique� Thus� we directly contribute to the �eld
of compiler construction for parallel computers by showing
how to handle synchronously parallel language constructs�
e�g� synchronous FORALLs� Fortran�� vector operations�
HPF FORALLs� and UC par statements� in order to gen�
erate e�cient code for them�

Furthermore� Chatterjee�s performance results and ours
taken together provide good evidence that synchronously
parallel language constructs can be compiled to e�cient
code for at least three di�erent kinds of machine architec�
tures� shared memory MIMD� SIMD� and SISD� Hence�
we do not see any necessity to exclude synchronous paral�
lelism from high�performance programming languages�

As for future work� we hope to be able to improve
the overall optimization results by completely integrating
processor virtualization� synchronization elimination� and
data prefetching� Moreover� Allen�s and Kennedy�s work
on vector register allocation ��
 contains ideas on how to
reduce temporary storage consumption that seem to apply
and �t well into our framework� too�

The IPD Modula��� system is freely available by anonymous
ftp from ftp�ira�uka�de in pub�programming�modula�star�

References

��
 S�G� Akl� The Design and Analysis of Parallel Algo�

rithms� Prentice Hall� ��	��

��
 R� Allen� D� Callahan� and K� Kennedy� Automatic
decomposition of scienti�c programs for parallel ex�
ecution� In Proc� of ACM POPL���� pages ������
Munich� January ��	�� ACM Press�

��
 R� Allen and K� Kennedy� Automatic translation of
Fortran programs to vector form� ACM TOPLAS�
���������
��� April ��	�� ACM Press�

��
 R� Allen and K� Kennedy� Vector register allocation�
IEEE Transactions on Computers� �����������������
October �����

�

 A� Apostoli� M�J� Atallah� L�L� Larmore� and S� Mc�
Faddin� E�cient parallel algorithms for string editing
and related problems� CSD�TR����� Purdue Univer�
sity� Dept� of Computer Science� May �����

��
 U� Banerjee� Dependence Analysis for Supercomput�

ing� Kluwer Academic Publishers� ��		�

��
 S� Chatterjee� Compiling nested data�parallel pro�
grams for shared memory multiprocessors� ACM

TOPLAS� �
������������ March �����

�	
 J� Ferrante� K�J� Ottenstein� and J�D� Warren� The
program dependence graph and its use in optimiza�
tions� ACM TOPLAS� ������������� March ��	��

��
 S� H"an#gen� E�A� Heinz� P� Lukowicz� M� Philippsen�
and W�F� Tichy� The Modula��� environment for par�
allel programming� In Proc� of the Conf� on Program�

ming Models for Massively Parallel Computers� pages
���
�� Berlin� September ����� IEEE Society Press�

���
 P�J� Hatcher and M�J� Quinn� Data�Parallel Program�
ming on MIMD Computers� MIT Press� �����

���
 J� JaJa� An Introduction to Parallel Algorithms�
Addison�Wesley� �����

���
 R� Johnson and K� Pingali� Dependence�based pro�
gram analysis� In Proc� of ACM PLDI���� pages �	�
	�� June ����� ACM Press�

���
 S�P� Midki� and D�A� Padua� Compiler algorithms for
synchronization� IEEE Transactions on Computers�
���������	
����
� December ��	��

���
 M� Philippsen� Optimierungstechniken zur �Uberset�

zung paralleler Programmiersprachen� Ph�D� Thesis�
University of Karlsruhe� Dept� of Informatics� �����

��

 M� Philippsen� E�A� Heinz� and P� Lukowicz� Com�
piling machine�independent parallel programs� ACM

SIGPLAN Notices� �	�	�������	� August �����

���
 M� Philippsen and W�F� Tichy� Modula��� and its
compilation� In Proc� of the First Intl� Conf� of the

Austrian Center for Parallel Computation� pages ����
�	�� October ����� LNCS
��� Springer Verlag�

���
 S� Prakash� M� Dhagat� and R� Bagrodia� Synchro�
nization issues in data�parallel languages� In Proc� of

the
th Intl� Workshop on Languages and Compilers

for Parallel Computing� pages ����
� August �����
LNCS ��	� Springer Verlag�

��	
 W�F� Tichy and C�G� Herter� Modula���� An ex�
tension of Modula�� for highly parallel� portable pro�
grams� TR�� ��� University of Karlsruhe� Dept� of
Informatics� January �����

���
 M� Wolfe� Optimizing Supercompilers for Supercom�

puters� Pitman� ��	��

���
 M� Wolfe and C��W� Tseng� The power test for data
dependence� TR�CSE������
� Oregon Graduate In�
stitute� August �����

�

