THIS PAPER APPEARED IN: FRONTIERS’95: THE FIFTH SYMPOSIUM ON THE FRONTIERS OF MASSIVELY
PARALLEL, COMPUTATION, PAGES 350-357, MCLEAN, VIRGINIA, FEBRUARY 6-9, 1995

Automatic Synchronization Elimination in Synchronous FORALLSs

Michael Philippsen and Ernst A. Heinz
IPD, University of Karlsruhe, Germany, email: (phlipp | heinze) @ira.uka.de

Abstract

This paper investigates a promising optimization technique
that automatically eliminates redundant synchronization
barriers in synchronous FORALLs. We present complete
algorithms for the necessary program restructurings and
subsequent code generation. Furthermore, we discuss the
correctness, complexity, and performance of our restruc-
turing algorithm before we finally evaluate its practical use-
fulness by quantitative experimentation.

The expertmental evaluation results are very encourag-
ing. An implementation of the optimization algorithms in
our Modula-2* compiler eliminated more than 50% of the
originally present synchronization barriers in a set of seven
parallel benchmarks. This barrier reduction improved the
execution times of the generated programs by over 40% on
a MasPar MP-1 with 16384 processors and by over 100%
on a sequential workstation.

1 Introduction

Data-parallel programs operate on all elements of a data
structure simultaneously and are expressed with explicit or
implicit FORALLs. During the compilation of FORALLs
a synchronization barrier has to be implemented between
potentially interfering data references if the compiler can-
not assure the absence of data dependences. Hence, the
primary optimization goal is to cover all detected depen-
dences with as few synchronizations as possible.

We tackle this optimization problem by means of a re-
structuring technique based on source-to-source transfor-
mations in the framework of Modula-2* [18]. Our restruc-
turing algorithm covers all language features of Modula-2*,
including branches, loops, and procedure calls inside syn-
chronous FORALLs as well as arbitrary nestings thereof.
In general, reduction of synchronization barriers increases
the amount of temporary storage. Thus, we face the sec-
ondary optimization problem of minimizing this increase.

The remainder of the paper is organized as follows. Af-
ter discussing related work in section 2, we briefly intro-
duce our notation of FORALLs. Section 4 formulates the
restructuring algorithm and discusses its properties. Fi-
nally, section 5 describes the setup and results of the ex-
periments evaluating the effectiveness of our techniques.

2 Related Work

Several researchers have studied different variations of the
synchronization elimination problem in the context of com-
piling data-parallel programs [7, 10, 13, 14, 16, 17].

Our approach shares some similarities with the work
of Hatcher and Quinn [10]. They use a data-parallel lan-
guage that assigns a private address space to each virtual
processor. Data from other virtual processors can only be
accessed by explicit communication. Hence, synchroniza-
tions are only necessary where communications occur. The
number of barriers is reduced by grouping communication
operations together.

In languages with a shared address space the problem
is more complicated. Here, synchronization barriers are
not explicitly visible; compilers need sophisticated data
dependence analysis to capture access interferences. Fur-
thermore, our solution is more general than the work of
Hatcher and Quinn because our restructuring algorithm
works on (sub-) expressions and is extremely fine grained.

The article [7] by Chatterjee focuses on the compilation
of VCODE for shared memory multiprocessors. VCODE is
a low-level, data-parallel vector language intended to serve
as the target for optimizing compilers of higher level lan-
guages. [t is based on the shared address space paradigm
and allows for nested parallelism.

VCODE programs do not contain any subscript expres-
sions; this considerably simplifies the necessary data de-
pendence analysis because the compiler needs no subscript
tests. The VCODE compiler internally builds a so-called
computation graph of the source program, which is simi-
lar to our graph representation of synchronous FORALLs.
Their graph then serves as the basis for all optimizations,
namely partitioning into clusters and epochs as well as run-
time scheduling and storage minimization. Clustering sim-
ply amounts to the fusion of compatible vector operations
which translates to a fusion of compatible FORALLSs in our
framework. Epoch formation resembles our restructuring
translation from synchronous FORALLs into sequences of
asynchronous FORALLs. As for this, Chatterjee’s clus-
ters and epochs closely correspond to our synchronous and
asynchronous FORALLSs, resp. His experiments and per-
formance measurements — conducted for several parallel
programs on 12 processors of a 16 processor shared mem-
ory Encore Multimax — further confirm the effectiveness of
synchronization barrier elimination.

As for language framework and optimization goals, the
recent work of Prakash et al. [17] closely follows our direc-
tion which originally stems from 1991 [16]. Prakash investi-
gates synchronization elimination in the UC programming
language, a data-parallel extension of C featuring a shared
address space, built-in data-parallel operations like reduc-

tions, and two new statements that introduce parallelism.
UC’s par and arb statements are effectively equivalent to
synchronous and asynchronous FORALLs, resp.

Prakash describes data dependence analysis and several
possibilities of optimizing program transformations: ar-
ray renaming, array alignment, barrier minimization, bar-
rier weakening, definition variables, and fuzzy barriers plus
non-blocking requests. Furthermore, a simple cost model
which may serve as the foundation of future static per-
formance estimation is introduced. But for none of the
above [17] gives any concrete algorithms or implementation
schemes. Hence, it remains unclear how to successfully au-
tomize the inter-play of the proposed optimizations. How-
ever, the implementation of an optimizing UC compiler is
claimed to be in progress.

In contrast to Prakash, we focus on minimizing the
number of synchronization barriers because this seems
to be the most important optimization.
present and discuss complete algorithms automizing pro-
gram restructuring and code generation. Moreover, we
evaluate the practical usefulness of the proposed optimiza-
tion techniques as implemented in our Modula-2* com-
piler [9, 14] by conducting quantitative experiments mea-
suring the performance of Modula-2* programs on sequen-
tial workstations and a distributed memory MasPar MP-1.

3 Synchronous FORALLSs

When speaking of synchronous FORALLs we mean high-
level language constructs that allow for problem-oriented
expression of synchronous parallelism. In Modula-2* the
syntax of synchronous FORALLs is defined as follows.

Therefore we

FORALL <ident> ":'" <SimpleType> IN SYNC
<StatementSequence>
END

The FORALL creates as many (conceptual) processes as
there are elements in the possibly non-static scalar range
StmpleType. The identifier tdent is local to the FORALL
statement and serves as a runtime constant; it is initial-
ized to a unique value of StmpleType for each process. The
created processes execute StatementSequence in parallel
synchrony. The END imposes an explicit synchronization
barrier on the created processes. Termination of the whole
FORALL statement is delayed until all processes have fin-
ished their execution of StatementSequence.

Synchronous FORALLs are especially good at imple-
menting parallel modifications of overlapping data struc-
tures because the required synchronization need not be
formulated explicitly. Even irregular data permutations
are easy to understand and to program.

FORALL i : [1..N] IN SYNC
X[i] := X[pD)]1;
END

This FORALL permutes vector X according to permutation
function p(). The synchronous semantics ensure that all
RHS elements X[p(i)] are read and temporarily stored
before any LHS variable X[i] is written.

The behavior of branches inside synchronous FORALLs
is defined as follows: Modula-2* allows branches of syn-
chronous CASE or IF statements to be executed con-
currently without any synchronization. The exact syn-
chronous semantics of nested statements are defined in [18].

4 Synchronization Barrier Elimination
4.1 Example

FORALL i : AnySimpleType IN SYNC
A[i] := A[i+1] + A[i-1] + B[il;
B[il := B[i+1]

END

A number of parallel threads is created by this FORALL
statement. Conceptually, the threads have to be synchro-
nized after each individual subexpression, e.g. after the
evaluation of A[i+1], after the evaluation of A[i-1], af-
ter the addition of both operands, after the evaluation of
B[il, and so on. Hence, a naive implementation would
implement eight synchronization barriers.!

Changing the evaluation order is possible as long as cer-
tain constraints are obeyed. There are two types of such
constraints. The first type reflects the semantics of in-
dividual statements, e.g. the RHS of a statement has to
be completely evaluated before a store to the LHS can be
performed. When representing constraints as edges in a
program dependence graph, the above example will have
two edges of this type; each connects the RHS with the
LHS of one assignment. The other type of constraint is in-
duced by data dependences as defined in [2, 3, 6, 19]. Data
dependences may exist within one thread or between differ-
ent threads; intra-thread dependences are similar to def-use
chains (no synchronization necessary) whereas inter-thread
dependences require synchronization between the threads.

In the example there are four data dependences:
ALi+1]6“A[4], A[i-116%A[i], B;y[i]16“B.[i] (intra),
BL[i+1]16%B,[i].2 All of them can be obeyed with a single
synchronization barrier as shown in the following seman-
tically equivalent code.

FORALL i : AnySimpleType IN PARALLEL

H1[i] := A[i+1];

H2[il := A[i-1];

H3[i] := B[i+1]

END

FORALL i : AnySimpleType IN PARALLEL
A[il := H1[il + H2[i] + B[il
B[il := H3[il

END

Note that in contrast to the original code, two asyn-
chronous FORALL statements are used. No implicit syn-
chronization barriers remain inside the bodies of these
asynchronous FORALLs. All aforementioned constraints
are honored: the parts are evaluated in correct order,

1Because subexpressions may contain calls to functions with
side-effects, barriers are required. For plain array references,
however, some of the naive barriers can easily be removed.

2B, [i] stands for the first occurrence of B[i] in the first
assignment. As usual § denotes an anti dependence.

the three inter-thread dependences involve only data ref-
erences that are in different asynchronous FORALLs and
are therefore separated by a synchronization barrier.

Although the above code is semantically correct, there
exists an even better solution which requires less memory
(temporary variables) and access time.

FORALL i : AnySimpleType IN PARALLEL
H1[i] := A[i+1] + A[i-1] + BLil;
H3[i] := B[i+1]

END

FORALL i : AnySimpleType IN PARALLEL
A[il .= H1[dil;

B[il := H3[i]

END

4.2 Graph Representation

The basic data structure is a directed graph P representing
a combination of a dependence graph and expression trees
as they are commonly used for intermediate representa-
tion in compilers. For each nesting of FORALLs, a graph
is constructed. Nodes of this graph are operands, e.g. des-
ignators, and operators. Nodes are connected by directed
edges representing ordering constraints as explained in the
following two subsections:?

4.2.1 Data Dependence Edges

By data dependence analysis the compiler tries to prove
the absence of dependences in order to include as few edges
as possible into the graph P. There are a few modifications
of the usual data dependence analysis that are necessary
to obtain the desired information in the context of syn-
chronous parallelism.

o It is clear for sequences of assignment and branches
that all data dependences run in a lexically positive
direction since all threads execute all parts thereof
in lock-step. In loops inside synchronous FORALLs
we do not have to consider loop carried (i.e., lexi-
cally negative) dependences, since synchronous loop
semantics [18] prescribe a barrier after each iteration.

e Hence, the resulting graph is acyclic.

o If two references to an array are both inside the same
asynchronous FORALL, no data dependence edge is
required, since the programmer explicitly allows the
parallel threads to proceed with arbitrary speed.

e For branching statements, loops, and procedures in-
side the FORALL nesting, it must be detected which
designators may cause data dependences. Our tech-
nique covers all these cases but due to space limita-
tions we must refer the interested reader to [14].

e Prakash et al. [17] eliminate intra-thread dependences
from their graphs. We show that keeping them in P
leads to further optimization.

3The definition of P resembles both the program dependence
graph PDG of [8] and the dependence flow graph DPG of [12].
Whereas nodes of PDG and DPG are complete statements, in
P evaluation ordering is expressed on a subexpression basis.

4.2.2 Evaluation Ordering Edges

Although our restructuring and code generation techniques
include the handling of branches, loops, and procedure
calls [14], the current presentation is restricted to flat se-
quences of assignments for the sake of clarity.

To ensure the correct evaluation order inside of and
between statements, additional edges are included into P:
In case of assignments, operand nodes and operator nodes
that occur on the RHS of the assignment are connected by
a directed edge in P. The direction represents the required
order of evaluation. The root of the expression tree for the
RHS is then connected to the designator node of the LHS.
For branching statements and loops, additional edges must
be inserted.

4.3 Central Idea

The central idea of the restructuring optimization is to
sort P topologically. The path with the maximal number
l of inter-thread dependence edges determines the minimal
number of synchronization barriers that are required; con-
sequently { asynchronous FORALLs have to be generated.
With ! known, we try to find ! disjunctive subgraphs 71,
15, ..., T; of P such that the following conditions hold:

e Each node N of P is mapped to exactly one T;. We
call ¢ the synchronization rank of N. All nodes with
synchronization rank ¢ are in 7;.

e There is no forward path from a node N € 7 to a
node M € T; if 37 > 1.

o Within one subgraph there are no two nodes that are
connected by an inter-thread dependence edge. Thus,
inter-thread dependences always connect nodes from
different subgraphs.

Finding a subgraph partitioning is equivalent to comput-
ing appropriate synchronization ranks. For nodes that are
on the path with the maximal number ! of inter-thread
dependence edges, the synchronization rank is fixed. For
nodes on paths that have fewer inter-thread dependences,
there is some freedom in assigning synchronization ranks.
This freedom can be used for a secondary goal of op-
timization: The number of evaluation ordering edges that
link nodes in different subgraphs determines the number
of variables necessary to store intermediate results. These
edges prescribe that an intermediate result is used in an-
other asynchronous FORALL than where it is computed.
Usually, temporary variables are arrays with one element
per thread.! Hence, when cutting P into subgraphs, the
total number of evaluation ordering edges linking nodes
with different synchronization ranks is to be minimized.
Since we suspect this problem to be NP-complete®, we

4If no virtualization is necessary, i.e., if the number of threads
does not exceed the number of available processors, registers can
be used instead of arrays.

5We have not yet found a conclusive proof. For [= 2 the
problem is NP-complete since it reduces to “minimum cut into
bounded sets”.

apply the following heuristics which are based on local in-
formation.

e Successor Locality. If there is a choice in mapping
an operator node to the subgraphs, the best subgraph
is the one in which the operands are evaluated.

S~

Instead of two intermediate results (left) only one
(right) has to be stored in a temporary variable.

o Predecessor Locality. The same idea applies when
mapping operand nodes. If there is a choice, the best
selection puts the operand node in that subgraph in
which the value is used.

S)

Instead of one intermediate result (left) no temporary
storage is required (right).

4.4 Code Restructuring

Before the restructuring, edges are attributed with
weights. Let wp_ s be the weight of the edge connecting P
and S. Inter-thread dependence edges get a weight of 1, all
other edges 0. The following algorithm subdivides a given
graph P into subgraphs which fulfill the above conditions.
For this purpose we compute a synchronization rank for
every node. If there is a choice in mapping nodes to sub-
graphs, the algorithm uses an arbitrary selection strategy.
In section 4.6 we add better heuristics.

Input. Graph P.
Output. Synchronization ranks for every node of P.

Data structures. Every node has two attributes:
minimal synchronization rank r € IV and maxi-
mal synchronization rank R € IN. The interval of
possible synchronization ranks is [r, R]. The idea
of the interval is that the node can be mapped
to any of the subgraphs T, T,41, ...Tr without
violating any of the conditions for cutting P into
subgraphs. After termination r = R holds for ev-
ery node, meaning that a synchronization rank is
computed and P is cut into subgraphs.

Algorithm. The algorithm consists of two phases.

During the first phase, the interval of possible syn-
chronization ranks is computed for every node. A
by-product is the number ! of necessary synchro-
nization barriers, which is the same as the number
of subgraphs to be constructed.
The freezing phase handles the nodes with an un-
fixed synchronization rank (r < R) by selecting a
p € [r, R] and then propagating this choice to ad-
just the intervals of possible synchronization ranks
of neighboring nodes.

I. Computation of Intervals.

For each node, the interval of possible synchroniza-
tion ranks is computed as follows.

I.1. Minimal Synchronization Rank. The graph
P is sorted topologically. The minimal synchro-
nization rank r of each node is initialized to 1. In
topological order, the nodes update their values of
r: The new value is the maximum of the old value
and the values of the predecessors, incremented by
the weights of the connecting edges. The maxi-
mum of all resulting r values is assigned to (.

1.2. Maximal Synchronization Rank. The max-
imal synchronization rank is computed with the
dual algorithm. The direction of the edges is in-
verted, their weights are considered to be multi-
plyed by —1, and instead of maxima minima are
computed. The initial value for each R is set to [.

I1. Freezing of Ranks.

For each node of P, an interval of possible syn-
chronization ranks [r, R] is known. The final rank
will be inside this interval but it depends on the
synchronization ranks of neighboring nodes.

As long as there remain nodes with r < R do:

I1.1. Selection & Update. Select an arbitrary node
K with r < R. For this node K choose any p €
[, R] and set the interval of synchronization ranks
[r, R] := [p, p].

11.2. Propagation. If an interval of possible syn-
chronization ranks of a node K is updated, this
may influence the intervals of neighboring nodes.
In this case update their intervals as follows:

e The maximal synchronization rank of a predeces-
sor V of K may not be larger than Ry — wyv_x.
If this condition does not hold after modifying the
interval of K, set Rv accordingly. This update is
propagated recursively.

e The minimal synchronization rank of a successor
N of K may not be smaller than rx + wx_n. If
this condition does not hold after modifying the
interval of K| set rn accordingly. This update is
propagated recursively.

After computing synchronization ranks, code is generated
as follows. For each synchronization rank an asynchronous
FORALL is generated in increasing order. In the body of
FORALL 1, code for all those nodes of P is generated that
have synchronization rank :. The order of node implemen-
tation in the body, i.e. the resulting evaluation order, is
determined by the edges with weight 0. Temporaries are
used if evaluation ordering edges start at nodes with rank
1 and leave the subgraph 7, or if nodes in T; are desti-
nations of evaluation ordering edges that start in 7} with
J<i®

4.5 Correctness, Minimality, Complexity

It 1s obvious that a transformation is semantically correct,
if we can prove (a) that the necessary sequential intra-
thread execution order is obeyed and (b) that a synchro-
nization barrier is implemented between the source and
destination of every inter-thread data dependence.

Based on the assumption that each evaluation order-
ing constraint and each intra-thread dependence is rep-
resented by an edge in P, condition (a) holds because for
each synchronization rank the nodes are coded in the order
determined by the edges with weight 0.

Thus, it is sufficient to show that the above restruc-
turing algorithm will implement at least one synchroniza-
tion barrier between source and destination of each inter-
thread dependence Dy 6 Dy. We assume that the data de-
pendence analysis works correctly. For each inter-thread
data dependence, P contains an edge with weight 1. All
other edges have weight 0. The first phase of the algorithm
ensures that for 17 and D the intervals of possible syn-
chronization ranks [r1, R1] and [r2, Ro] fulfill 71 +1 < 72
and Ry +1 < Ry. This condition is an invariant of the
freezing phase of the algorithm; it holds before selecting p.
Since the new interval [p, p] is inside the old one, the condi-
tion still holds. By propagating the update to neighboring
nodes, their intervals may be altered without contradic-
tion, since the weights of the edges are considered.

If there are only assignments in the body of the re-
structured synchronous FORALL, the algorithm finds the
minimal number of synchronization barriers that are re-
quired to cover all corresponding dependences in P. This
was motivated at the beginning of section 4.3. Depend-
ing on the quality and resolution of the initial dependence
analysis, however, some semantically redundant barriers
may still remain in the generated code.

With n edges and m nodes, the complexity of the topo-
logical sort is O(n + m) In the worst case, n nodes remain
with an unfixed synchronization rank after the first phase
of the algorithm. The second phase fixes the synchroniza-
tion rank and then propagates the update by means of a
topological sort. Thus, the overall complexity amounts to

O(n - (n+m)).

6Code generation for mnested synchronous FORALLs,
branches, and loops is more complicated. Due to space limi-
tations we kindly refer the interested reader to [14].

4.6 Heuristics

The number of temporary variables can be reduced if the
freezing phase of the restructuring algorithms is more so-
phisticated. Instead of the “arbitrary selection” in step I1.1
the successor and predecessor locality rules can be applied.
Their application does not interfere with the above asser-
tions concerning correctness, minimality, and complexity.
The above algorithm has to be modified in step I1.1:

I1.1. Selection & Update. Apply the following rules
with the given priority:

(a) Successor Locality. For each node K with
r < R, consider all its predecessors on edges with
weight 0. If some of these predecessors already
have fixed synchronization ranks, let p be the max-
imum of these ranks. If r < p < R holds for K,
update the interval of K as [r, R] := [p, p]. If there
is more than one node fulfilling the above precon-
dition, use an arbitrary node with smallest R — r.

(b) Predecessor Locality. For each node K with
r < R, consider all its successors on edges with
weight 0. (As long as we deal only with assign-
ments there is at most one successor.) If some
of these successors already have fixed synchroniza-
tion ranks, let p be the minimum of these ranks.
If r < p < R holds for K, update the interval of K
as [r, R] := [p,p]. If there is more than one node
fulfilling the above precondition, use an arbitrary
node with smallest R — r.

(¢) Arbitrary. Select an arbitrary node K with 7 <
R. For this node K choose any p € [r, R] and set
the interval of synchronization to [p, p].

4.7 Example — Continued

The following graph results from the example of sec-
tion 4.1. Thick lines have a weight of 1, thin lines indicate
weights of 0. To simplify the presentation, expression trees
of i+1 and i-1 have been condensed into one node each.

[1,2—»1] [2,2] [1,1] [2,2]
| + Fall] [BO|=¢B0]
it
[1,2—1]
| + INBO] [i] [&4+¢1] [4]
[T2—1[1=22] [I.1] [1—22]

[

(A0] [A[]f=d| i |
[1,1] [1,1] [1,2—»1]
[1,1] [1,1]

Directly attached to the nodes is the interval of possible
synchronization ranks as computed after the first phase of
the restructuring algorithm; the updates due to the freez-
ing phase are given after small arrows. Note, that the
intra-dependence edge which represents the data depen-
dence By [1] 6“ B2 [i] has weight 0 since it does not require
a synchronization barrier.

From this graph, the best/last code as given in sec-
tion 4.1 is generated. Although there are only anti depen-
dences in the example, the algorithm works for output and
flow dependences as well.

5 Performance Results

At the moment, our benchmark suite consists of 17 prob-
lems collected from literature [15]. Here, we only consider
those seven problems whose Modula-2* solutions involve
synchronous FORALL statements.

Using the PowerTest [20] to check subscripts during de-
pendence analysis, the programs were compiled for a 16K
processor MasPar MP-1 (SIMD) and a sequential SUN
SparcStation-1 (SISD) by our Modula-2* compiler [9, 14].
Automatic application of the synchronization elimination
scheme improved the execution times of the programs by
over 40% for the MasPar and by over 100% for the Sparc
on average. Note that even on an inherently synchronous,
parallel SIMD machine the elimination of synchronization
barriers clearly pays off due to the necessity of virtualiza-
tion in the cases where problem size exceeds machine size.
Because our work on Modula-2* compilers for MIMD ma-
chines, namely LANs of workstations and (virtual) shared
memory multiprocessors, is still in progress, we cannot
present any measurements therefor. But we expect even
better results since each synchromization barrier causes
high-latency delays on such machines.

For time measurements we used the high resolution
DPU timer on the MasPar and the UNIX clock func-
tion on the Sparc (sum of user and system time). Be-
low, teync—opt and tno—sync—opt represent program execu-
tion times on either a 16K MasPar MP-1 or a SparcStation-
1 (as appropriate) with the optimization techniques pre-
sented in the paper applied and not applied, respectively.

We define performance as work or problem size per
time and focus on the following relative performances:’
P = b et [tanemcpr. Thus,
the diagrams show a ratio scale as the vertical axis. Good
performance of the synchronization elimination technique
is indicated by curves above unity, e.g. a curve around 2
shows that the elimination of redundant synchronization
barriers halved the execution time.

For problem sizes ranging from 2% to 2%! we derived the
relative performances from our execution time measure-
ments. The resulting general, relative performances, av-
eraged arithmetically over all test programs per problem
size, are shown below. (Only results with at least three
measurement points per problem size are included in this

T Comparisons with hand-coded programs are given in [15].

average graph.) Originally, the programs had 278 synchro-
nization barriers with only 109 remaining after application
of the elimination technique presented in the paper.

Problem average
T T T T

MP-1: t(no sync opt)/t(sync opt) —

SUN4: t(no sync opt)/t(sync opt) ----

ieblem e P Two
On sequential machines the asynchronous FORALLs are
implemented as for loops. The number of synchroniza-
tion barriers is equal to the number of loops. Hence, the
performance gain is mainly due to reduced loop overhead
and better register usage inside of larger loops.

5.1 Problems
5.1.1 List Rank

Problem: A linked list of n elements is given in an ar-
ray A[l..n]. Compute for each element its rank in the list.
Approach: This problem is solved by pointer jumping.
Note: Ranking the elements of a list is one of the elemen-
tary list processing tasks [11]. Comment: This problem
heavily relies on the general communication mechanism of
the MasPar programming language (mpl). Since the cost
of communication dominates the total work, the elimina-
tion of synchronization barriers can only be effective when
just a few packets are sent, which is the case for smaller
problem sizes.

Problem ListRank
T T

T T
MP-1: t(no sync opt)/t(sync opt) — |
SUN4: t(no sync opt)/t(sync opt) ----

2%6 2%8 2%10 2%12 2%14 2%16 2%18 220
problem size

Reduction of synchronization barriers: 40 — 16

5.1.2 Root Search

Problem: Determine the value of z € [a,b] such that
f(z) =0, given that f is monotone and continuously dif-
ferentiable. Approach: The problem is solved with mul-
tisection. The interval [a,b] is equally divided over n pro-
cesses. If f has a root in [a,b] then there is exactly one
process p with f(zp—1) - f(zp) < 0. Update the interval

[a',b'] := [#p—1,7p]. Tterate until the error &’ — a’ < .
Note: This problem occurs in science and engineering [1].
Comment: The solution requires access to neighboring
data elements. Currently this is implemented on the Mas-
Par with global communication primitives. Since relative
overhead of the work incurred by unnecessary virtualiza-
tion loops will increase when faster grid communication
can be used instead, we expect better results in future.

Problem RootSearchl
T T T T T
MP-1: t(no sync opt)/t(sync opt) —

1 1 1 1 1 1 1 1
2%6 2%8 2%10 2%12 2714 2%16 2%18 2%20 2%22
problem size

Reduction of synchronization barriers: 20 — 7

5.1.3 Longest Common Subsequence

Problem: Two strings A = aiaz---amn and B =
b1bs - - by are given. Find a string C = cica---¢p such
that C'is a longest common subsequence of A and B. (C
is a subsequence of A if it can be constructed by remov-
ing elements from A without changing their order.) Ap-
proach: The solution uses a wave-front implementation
of dynamic programming. It causes intensive access to
neighboring data elements. Note: The parallel solution is
based on [5]. Comment: see 5.1.2.

Problem lcs

T T T T
MP-1: t(no sync opt)/t(sync opt) —
SUN4: t(no sync opt)/t(sync opt) ----

277 2%8 2%9 2%10 2%11 2%12 2%13 2%14
problem size

Reduction of synchronization barriers: 62 — 26

5.1.4 Transitive Closure

Problem: The adjacency matrix of a directed graph with
n nodes is given. Find its transitive closure. Approach:
Process the adjacency matrix according to the property
that if nodes « and m as well as nodes m and y are (tran-
sitively) adjacent, then = and y are (transitively) adjacent.
Note: The problem was suggested by Hatcher [10]. Com-
ment: see 5.1.1.

Problem warshall
T T T T
MP-1: t(no sync opt)/t(sync opt) ——
SUN4: t(no sync opt)/t(sync opt) ----

2%3 2%4 2%s 2%6 2%7 2%8 2%9 2"10
problem size

Reduction of synchronization barriers: 12 — 8

5.1.5 Game of Life

Problem: Apply Conway’s rules of life to a given matrix.
Approach: The value of a grid point depends on the sum
of the values of its neighbors. Comment: see 5.1.2.

Problem life
T T T T
MP-1: t(no sync opt)/t(sync opt) —
SUN4: t(no sync opt)/t(sync opt) ----

problem size

Reduction of synchronization barriers: 66 — 30

5.1.6 Synchronous Example

Problem: This is the example of a Modula-2* program
containing one synchronous FORALL with a high poten-
tial of synchronization barriers that can be eliminated.
Note: The graph has a differently scaled vertical axis.

Problem sync
T T T T

MP-1: t(no sync opt)/t(sync opt) ——

SUN4: t(no sync opt)/t(sync opt) ----

1 1 1 1 1 1 1 1
2%6 2%8 2%10 2%12 2%14 2%16 2%18 2%20 2%22
problem size

Reduction of synchronization barriers: 44 — 6

5.1.7 Heat Diffusion Kernel
Problem: The temperature on the edges of a square sur-
face are given as constants, while those on the inside are to

be calculated with a diffusion equation. Approach: The
value of a grid point is iteratively computed based on the
values of its neighbors.

Problem diffuse
T T

MP-1: t(no sync opt)/t(sync opt) — |
SUN4: t(no sync opt)/tlsync opt) ----

1
2%3 274 2%s 2%6 2%7 2%8
problem size

Reduction of synchronization barriers: 34 — 16

6 Conclusion

The encouraging performance results of the experiments
assess the practical usefulness of our automatic elimina-
tion technique. Thus, we directly contribute to the field
of compiler construction for parallel computers by showing
how to handle synchronously parallel language constructs,
e.g. synchronous FORALLs, Fortran90 vector operations,
HPF FORALLs, and UC par statements, in order to gen-
erate efficient code for them.

Furthermore, Chatterjee’s performance results and ours
taken together provide good evidence that synchronously
parallel language constructs can be compiled to efficient
code for at least three different kinds of machine architec-
tures: shared memory MIMD, SIMD, and SISD. Hence,
we do not see any necessity to exclude synchronous paral-
lelism from high-performance programming languages.

As for future work, we hope to be able to improve
the overall optimization results by completely integrating
processor virtualization, synchronization elimination, and
data prefetching. Moreover, Allen’s and Kennedy’s work
on vector register allocation [4] contains ideas on how to
reduce temporary storage consumption that seem to apply
and fit well into our framework, too.

The IPD Modula-2* system is freely available by anonymous
ftp from ftp.ira.uka.de in pub/programming/modula2star.

References

[1] S.G. Akl. The Design and Analysis of Parallel Algo-
rithms. Prentice Hall, 1989.

[2] R. Allen, D. Callahan, and K. Kennedy. Automatic
decomposition of scientific programs for parallel ex-
ecution. In Proc. of ACM POPL’87, pages 63-76,
Munich, January 1987, ACM Press.

[3] R. Allen and K. Kennedy. Automatic translation of
Fortran programs to vector form. ACM TOPLAS,
9(4):491-592, April 1987, ACM Press.

[4] R. Allen and K. Kennedy. Vector register allocation.
IEEE Transactions on Computers, 41(10):1290-1317,
October 1992.

[5] A. Apostoli, M.J. Atallah, L.L. Larmore, and S. Mc-
Faddin. Efficient parallel algorithms for string editing
and related problems. CSD-TR-724, Purdue Univer-
sity, Dept. of Computer Science, May 1990.

[6] U. Banerjee. Dependence Analysis for Supercomput-
ing. Kluwer Academic Publishers, 1988.

[7] S. Chatterjee. Compiling nested data-parallel pro-
grams for shared memory multiprocessors. ACM

TOPLAS, 15(3):400-462, March 1993.
[8] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The

program dependence graph and its use in optimiza-

tions. ACM TOPLAS, 9(3):319-349, March 1987.

[9] S. HanBgen, E.A. Heinz, P. Lukowicz, M. Philippsen,
and W.F. Tichy. The Modula-2* environment for par-
allel programming. In Proc. of the Conf. on Program-
ming Models for Massively Parallel Computers, pages
43-52, Berlin, September 1993, IEEE Society Press.

[10] P.J. Hatcher and M.J. Quinn. Data-Parallel Program-
ming on MIMD Computers. MIT Press, 1991.

[11] J. J4J4. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[12] R. Johnson and K. Pingali. Dependence-based pro-
gram analysis. In Proc. of ACM PLDI’93, pages 78—
89, June 1993, ACM Press.

[13] S.P. Midkiff and D.A. Padua. Compiler algorithms for
synchronization. IEFE Transactions on Computers,
36(12):1485-1495, December 1987.

[14] M. Philippsen. Optimierungstechniken zur Uberset-
zung paralleler Programmuiersprachen. Ph.D. Thesis,
University of Karlsruhe, Dept. of Informatics, 1993.

[15] M. Philippsen, E.A. Heinz, and P. Lukowicz. Com-
piling machine-independent parallel programs. ACM
SIGPLAN Notices, 28(8):99-108, August 1993.

[16] M. Philippsen and W.F. Tichy. Modula-2* and its
compilation. In Proc. of the First Intl. Conf. of the
Austrian Center for Parallel Computation, pages 169—
183, October 1991, LNCS 591, Springer Verlag.

[17] S. Prakash, M. Dhagat, and R. Bagrodia. Synchro-
nization issues in data-parallel languages. In Proc. of
the 6th Intl. Workshop on Languages and Compilers
for Parallel Computing, pages 76-95, August 1993,
LNCS 768, Springer Verlag.

[18] W.F. Tichy and C.G. Herter. Modula-2*: An ex-
tension of Modula-2 for highly parallel, portable pro-
grams. TR-4/90, University of Karlsruhe, Dept. of
Informatics, January 1990.

[19] M. Wolfe. Optimizing Supercompilers for Supercom-
puters. Pitman, 1989.

[20] M. Wolfe and C.-W. Tseng. The power test for data
dependence. TR-CSE-90-015, Oregon Graduate In-
stitute, August 1990.

