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Abstract

This paper discusses future directions in tools and
techniques for programming parallel supercomputers.
We base the discussion on two important observations:

e Automatic parallelization of sequential programs
will not achieve supercomputer performance in re-
al applications. Instead, applications will have to
be written with explicit parallelism.

e Machine-independence of parallel programs is a
precondition for wide acceptance of parallel com-
puters.

We comment on High Performance Fortran (HPF) and
conclude that HPF will achieve machine-independence
to an initially satisfactory degree, but that another
language revision can be expected.

Machine-independence does not imply poor perfor-
mance. We present evidence that explicitly parallel,
machine-independent, and problem-oriented programs
can be translated automatically into parallel machine
code that is competitive in performance with hand-
written code.

Furthermore, we show that interactive, source-level
and problem-oriented debugging of explicitly parallel
program has recently become a reality.

1 Introduction

The leading users of parallel supercomputers have
long abandoned the hope that automatically paral-
lelized, sequential programs will achieve supercomput-
er speed. It appears that the class of algorithms that
can be transformed automatically from sequential to a
highly efficient parallel form is quite small. For older
applications, we can therefore expect a long, drawn-
out process of manual or semi-automatic paralleliza-
tion, similar to the process of vectorization. Various

transcription tools will ease this transformation, but
programmers will be responsible for the difficult part,
namely the development of parallel algorithms. As a
significant start, most vendors of parallel supercom-
puters are deeply involved in (manually) parallelizing
large libraries of mathematical subroutines.

Users demand that parallel programs, both new-
ly written and reengineered, be machine-independent.
Otherwise, the software investment necessary to use
parallel supercomputers will be affordable by rela-
tively few users. Machine-independence is achieved
with a programming language that does not reveal
the idiosyncrasies of a given parallel machine, such
as message-passing primitives, synchronization con-
structs, or details about the memory layout and in-
terconnection network. These details typically change
from one computer model to the next. Any program
that depends on such details will either have to be
rewritten for every new generation of supercomputers
or be thrown away after a short time of use.

2  Whither Fortran?

Fortran90 [2] provides instructions geared for vector
computers, but lacks facilities for SIMD or MIMD par-
allel machines. Consequently, vendors were forced to
extend either Fortran77 or Fortran90 with new lan-
guage constructs for parallelism. However, these con-
structs are machine-specific and therefore lock users
into a particular vendor.

High Performance Fortran (HPF) [10], however,
provides a reasonable chance of achieving machine-
independence. The standardization process is fortu-
itously helped by a consolidation trend among paral-
lel computer architectures to the extent that program-
mers will be able to rely on a few rules of thumb to
hold across a spectrum of parallel computers. These
rules of thumb make it possible to expect good per-
formance on a reasonably large subset of parallel ma-



chines without reprogramming.
Steele writes about the purpose of HPF in [18]:

The goal of High Performance Fortran (HPF) is
to extend Fortran90 to provide additional sup-
port for data parallel programming (defined as
a style of programming with a single conceptual
thread of control, a global name space, and loose-
ly synchronous parallel computation) to facili-
tate top performance on MIMD and SIMD com-
puters with non-uniform memory access costs,
while also promoting, or at least not impeding,
performance on other machines. The idea is to
promote portability of Fortran programs over a
large class of computers, multihead vector com-
puters, shared-memory multicomputers, main-
frames, and workstations.

Note that support for explicit MIMD computa-
tion is not one of the goals of HPF.

The main extensions in HPF are array alignment and
distribution directives and an element-wise FORALL
statement. Alignment and distribution are critical
for distributed memory machines, where the cost of
accessing nonlocal memory is high. Since compiler
technology has not yet solved the problem of deriving
alignment and distribution automatically, HPF leaves
the decision to the programmer.

A simple example, taken from reference [18], fol-
lows. Suppose A is an array of dimensions 1000 x
1000, while B has dimensions 998 x 998. Assume ele-
ments A(I,J) interact with elements B(I+1,J+1), so
A and B should be aligned accordingly. Furthermore,
elements within a column of A interact frequently, but
elements in different columns interact much less of-
ten, so columns should not be split across multiple
processors. The following HPF directives encode this
information:

REAL A(1000,1000) ,B(998,998)
CHPF$ ALIGN B(I,J) WITH A(I+1,J+1)
CHPF$ DISTRIBUTE A(*,BLOCK)

The ALIGN directive 1is self-explanatory. The
DISTRIBUTE directive specifies that each column of 4
is to remain within a single processor, while the rows
should be divided into equal segments. The effect is
that groups of columns are spread over the available
processors. It 1s also possible to direct the compiler to
redistribute arrays at runtime.

The language features for expressing parallelism are
the Fortran90 array intrinsics and a limited form of
a FORALL statement. This statement executes an en-
closed assignment statement in parallel on all elements
in the given index ranges.

FORALL (I=2:N-1,J=2:N-1) B(I,J) = (A(I-1,J1)+A(I,J+1))/2

Conceptually, all parallel executions of the enclosed
assignment execute synchronously, but a compiler may
detect that synchronization steps may safely be omit-
ted to improve performance. Note that explicit com-
munication instructions are unnecessary because of
the shared name space. A compiler or runtime sys-
tem may have to insert special instructions to read or
write non-local array elements.

As compiler technology improves, it may be possi-
ble to omit the alignment and distribution directives,
because the compiler may be able to generate them
and even take the target machine architecture into ac-
count. For instance, Wholey [21] shows that the best
mapping varies with the interconnection structure of
the machine, the size of the machine, and the prob-
lem size. Therefore, a good compiler might actually
override a directive with a better choice for a given
architecture and problem size.

Redistribution of arrays is a difficult aspect for pro-
grammers, because they must weigh the cost of the
actual redistribution against the access cost without
redistribution, possibly for a number of target archi-
tectures. Again, the compiler may be better equipped
to solve this optimization problem, especially because
the compiler already has to solve the general alignment
and distribution problem for program-generated tem-
porary variables. First promising results [12, 17, 6, 3]
indicate that the alignment and distribution problem
may be compiler-solvable.

The FORALL statement in HPF is severely limited.
For instance, it is not possible to place subroutine
calls, IF statements, or other FORALL statements into
its body. This restriction eliminates nested and recur-
sive parallelism and often forces unnecessary distor-
tions of otherwise clear, data-parallel programs. Fur-
thermore, asynchronous parallelism is completely lack-
ing, except through the escape of calling subroutines
written in different language, possible in another For-
tran.

We think that HPF is a significant step in the right
direction, especially since 1t achieves a high degree of
machine-independence and does not perpetuate the
myth of automatic parallelization. However, if stan-
dardized in its present form, it seems that yet another
extension will be needed before long.

3 Results from the Compiler Front:
Generating Efficient Parallel Code

In this section, we present some recent results showing
that high-level, machine-independent programs can be



compiled into machine code that 1s comparable in ef-
ficiency with hand-written machine code.

The language we use is Modula-2* [19], an exten-
sion of Modula-2. We chose Modula-2, because it is
both more modern and smaller than Fortran. The
extensions are a superset of those in HPF, however.
Just as HPF, Modula-2* provides a single, global name
space with potentially non-uniform access cost. Array
distribution is similar to array distribution in HPF,
except that alignment directives are unnecessary. In-
stead, the compiler derives the proper alignments au-
tomatically. Parallelism is expressed with an element-
wise FORALL. The synchronous version of this FORALL
operates much like the HPF FORALL, except that it is
fully orthogonal to the rest of the language: Any state-
ment, including conditionals, loops, other FORALLs,
and subroutine calls may be placed in its body. Thus,
the language explicitly supports nested and recursive
parallelism. Finally, there is an asynchronous version
of a FORALL, allowing full control parallelism. The un-
restrained orthogonality of Modula-2* (such as mixing
data and control parallelism in one program) makes it
possible to write parallel programs that are both easy
to understand and machine-independent. However,
the orthogonality makes great demands on compiler
technology.

Our compiler research [16, 9, 13, 15] indicates
that machine-independent, explicitly parallel pro-
grams can indeed be compiled into parallel machine
code that is competitive in performance with hand-
written code. This result is not only valid for trans-
lation of Modula-2* programs, since the translation
of the general FORALL statement of Modula-2* is more
demanding than translation of less expressive forms of
data parallelism, e.g. vector parallelism or the FORALL
of HPF.

3.1 The Compiler Benchmark

At the moment, our benchmark suite consists of 12
problems collected from literature [1, 5, 11, 8§, 4].
The problems are given briefly in the appendix. For
each problem, we implemented the same algorithms
in Modula-2*, in sequential C, and in MPL'. Run-
times were measured on a 16K MasPar MP-1 (SIMD)

IMPL [14] is a data-parallel extension of C designed for the
MasPar MP series. In MPL, the number of available processors,
the SIMD architecture of the machine, its 2D mesh-connected
processor network, and the distributed memory are visible. The
programmer writes a SIMD program and a sequential frontend
program with explicit interactions between the two. MPL pro-
vides special commands for neighborhood and general commu-
nication. Virtualization loops and distributed address compu-
tations must be implemented by hand.

and a SparcStation-1 (SISD) for widely ranging prob-
lem sizes. Measurements for LANs are not yet avail-
able because the tedious and error-prone task of im-
plementing hand-coded versions is still in progress.

Modula-2* Programs. In Modula-2* we employ

optimized parallel libraries for reductions and
A technical deficiency in our current
Modula-2* compiler forced us to manually “un-
roll” two-dimensional arrays into one-dimensional
equivalents. This will no longer be necessary in
the near future.

scans.

MPL Programs. In MPL we implemented the same
algorithms as in Modula-2* and carefully hand-
tuned them for the MasPar MP architecture. The
MPL programs make extensive use of local ac-
cess, neighborhood communication, standard li-
brary routines, and other documented program-
ming tricks. To ensure the fairness of the com-
parison, the resulting MPL programs are as gen-
erally scalable as their Modula-2* counterparts.
Hence, scalability is not restricted to multiples
of the number of available processors. Therefore,
boundary checks are required in all virtualization
loops.

Sequential C Programs. The sequential C pro-
grams implement the parallel algorithms on a sin-
gle processor. We use optimized sequential li-
braries wherever possible. The C code does not
contain dirty “hacks”.

In the following, we first present performance results
and then compare the resource consumption of these
three program classes. We only summarize the results.
For detailed information see [20].

3.2 Performance Results

For different problem sizes we measured the run-
time of each test program on a 16K MasPar MP-1
and a SparcStation-1. Time was measured with the
high-resolution DPU timer on the MasPar and the
UNIX clock function on the SparcStation (sum of
user and system time). Below, t,,2, represents the
Modula-2* runtime on either a 16K MasPar MP-1 or
a SparcStation-1 (as appropriate); ¢y, gives the MPL
runtime on a 16K MasPar MP-1; ¢, stands for the se-
quential C runtime on a SparcStation-1.

We define performance as work or problem size per
time and focus on the following relative performances:
;ii/w = tmpl/th* and ;ii/% = tc/tm2*~

m2+ ! Tmpl m2*



Note the ratio scale as the vertical axis; good perfor-
mance 18 indicated by curves approaching unity.
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For problem sizes ranging from 23 to 22° we derived
the relative performances from our runtime measure-
ments. The resulting general relative performance, av-
eraged arithmetically over all test programs, is shown
above.
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The overall distribution of relative performances
proves to be equally encouraging. The histogram
above provides the number of relative performance
values falling into one of the classes [0%—5%), [5%—
15%), ..., [95%-100%]. The numbers are the accu-
mulated sums over all problems and problem sizes (all
data points).

MPL versus Modula-2%*:

e The general relative performance of Modula-2* is
quite stable over all problem sizes and averages

to 75%.

e Modula-2* typically achieves 60%—90% of the
MPL performance.

e Modula-2* often reaches over 90% of the MPL
performance, with peaks at 100%. The average

relative performance for a single problem 1is never
worse than 30%.

Sequential C versus Modula-2%:

e The general relative performance of Modula-2*
i1s again quite stable over all problem sizes and
averages to 90%.

o Modula-2* typically achieves 80%—100% of the se-
quential C performance.

e Modula-2* often reaches over 95% of the sequen-
tial C performance. The average relative perfor-
mance is never worse than 70% for a single prob-
lem.

3.3 Resource Consumption

The comparison 1s based on the criteria program
space, data space, development time and runtime per-
formance.

Program Space. Our compiler translates Modula-
2* programs to MPL or C. The resulting pro-
grams consume slightly more space than the
hand-coded MPL or C programs. Regarding
source code length, Modula-2* programs are typ-
ically half the size of their corresponding MPL or
C programs.

Data Space. The memory requirements of the
Modula-2* programs are typically similar to those
of the MPL and C programs. Memory overhead,
i.e. variable replication into temporaries, occurs
during synchronous assignments. This replica-
tion, however, is also required in hand-coded
MPL. Furthermore, there is some additional over-
head involved in controlling synchronous, nested,
and recursive parallelism (16 bytes per FORALL).

Development time. Due to compiler errors detect-
ed while implementing the benchmarks, we can-
not give exact quantitative figures on implemen-
tation and debugging time. However, we estimate
that the implementation effort in Modula-2* is a

fifth of that for MPL.

Comparison with sequential code is important for two
reasons. First, it shows that one may develop paral-
lel applications on sequential machines, without facing
an undue overhead. Once a program runs correctly on
the development platform, it can be recompiled and
run with larger data sets on a parallel supercomputer.



Second, good performance on sequential machines is
indicative of the scalability and quality of the compil-
er: The sequential code was produced by essentially
setting the number of target processors in the compiler
to unity. The performance figures show that the virtu-
alization introduced by the compiler (virtualization is
needed whan mapping a given degree of parallelism to
a machine with fewer processors) has been optimized
adequately and introduces little overhead.

4 MSDB — Parallel Debugger, Profiler,
and Visualizer

Due to the high level of abstraction in Modula-2*,
many of the usual problems of parallel programming
are of no concern to the Modula-2* user, e.g. data
access deadlocks, virtualization, and communication
operations. These are all taken care of by the compil-
er.

A high-level, parallel language shifts the focus of
debugging from machine-dependent to problem de-
pendent issues, such as visualization of data, activity
tracking, and performance profiling [7].

We have built an interactive, source-oriented de-
bugger and data visualizer for parallel programs writ-
ten in Modula-2* called MSDB. Figure 1 shows a
screendump presenting all of MSDB’s display features.
MSDB provides the usual debugger features such as
setting and examining variables, setting breakpoints
and stepping through the program. Breakpoints are
global, i.e. all processes are stopped if one of them
encounters a breakpoint. In the following, we de-
scribe the concepts that directly support high-level
Modula-2* abstractions.

e Activation Trees and Grouping. The activa-
tion tree shows where the parallel processes of the
program are currently located. It 1s updated each
time a process enters or leaves a statement that
affects the control flow. Whenever new parallel
processes are created, the corresponding branch
may split into several edges. Thus the display is
similar to showing a stack of invocations on a se-
quential machine, except that MSDB displays a
tree (or “cactus stack”) to visualize the parallel
activities.

To keep the tree manageable, equivalent processes
(going through the same control flow) are collect-
ed into a single edge in the tree. For example,
when control flow enters a synchronous FORALL,
only the FORALL will be displayed. When execu-
tion reaches an IF statement within the FORALL,

the branch will split into two edges, represent-
ing the two sets of activities in the two branches
of the IF. Thus, grouping makes process tracking
feasible even for massive parallelism. In its cen-
ter window, Figure 1 shows an extremely simple
activation tree, where all parallel processes of a
FORALL have been collapsed into one edge.

Multiple program counters provide a link between
the activation tree and the source code. FEach
counter represents a process group and points to
the group’s current source code location in the
open source code windows.

e Data Visualization. Multidimensional arrays
are visualized in MSDB by viewing 2-dimension-
al slices through the data.

Different kinds of visualizers are available, de-
pending on the kind of information the user wants
to obtain: Comparison and Range visualizers
highlight all values that fulfill a given condition.
Value visualizers provide a grayscale representa-
tion of array data. See the bottom right window
of Figure 1 for an illustration.

e Profiling. For performance tuning, the user
needs to know which parts of the program are
executed how often and on which process. MS-
DB provides two views of this information: (a) a
display of the most often used structures and (b)
a specialized visualizer for the current activities of
the virtual processes. The latter visualizer repre-
sents each process as a black or white pixel in an
array, depending on whether it is active or not.
The bottom center window of Figure 1 contains
an example.

The sequential version of a program running on a sin-
gle workstation and the distributed runtime system for
a network of workstations are now in use. Work on
other platforms, such as MasPar MP-1 and KSR1, is
in progress.

5 Conclusion

Machine-independent programming of parallel super-
computer applications is within reach. With the nec-
essary training in parallel algorithms and the availabil-
ity of optimizing compilers and source debuggers, de-
veloping parallel programs should eventually become
only moderately more complex than programming se-
quential computers.



Appendix: Benchmark Problems

List Rank: A linked list of n elements is given. All el-
ements are stored in an array A[l..n]. Compute for each
element its rank in the list.

Root Search: Determine the value of = € [a,b] such
that f(z) = 0, given that f is monotone and continuously
differentiable.

Point in Polygon: A simple polygon P and a point g are
given. Determine whether the point lies inside or outside
the polygon. (A polygon is simple if pairs of line segments
do not intersect except at their common vertex.)

Longest Common Subsequence: Two strings A =
a1a2 - am and B = byby --- by, are given. Find a string
C = ciea---¢cp such that C' is a longest common sub-
sequence of A and B. (C is a subsequence of A if it
can be constructed by removing elements from A with-
out changing their order. A common subsequence must
be constructible from both A and B.)

. . . . 1
Estimation of Pi: Use the equation m = fo ﬁ.

Prime Sieve: Compute all prime numbers in [2..n].
Pairs of Relative Primes: Count the number of pairs
(¢,7) with 2 <7 < j < n that are relatively prime, i.e. the
greatest common divisor of 7 and j is 1.

Red/Black Iteration: Implement a red/black iteration,
i.e. the kernel of a solver for partial differential equations.
Transitive Closure: The adjacency matrix of a directed
graph with n nodes is given. Find its transitive closure.

Mandelbrot Set: Compute the Mandelbrot set.

Hamming’s Problem: A set of primes {a,b,c,...} of
unknown size and an integer n are given. Find all integers
of the form a® -5 . ¢k . ... < n in increasing order and
without duplicates.

Doctor’s Office: Simulate the following queuing prob-
lem from [4]: a set of patients, a set of doctors, and a
receptionist are given. Patients become sick at random,
are assigned to one of the doctors by the receptionist, and
treated in a random amount of time.
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Figure 1: The MSDB environment in action. The program being debugged is a simple fractal computation, the (partial) results of
which are shown in a range visualizer. A visualization of the processes as well as the (grouped) dynamic activation tree and a profile
graph can also be seen. The left window shows the Modula-2* source with a program counter and a breakpoint, the right window

displays the corresponding C source.



