
Programming Parallel Supercomputers

Walter F� Tichy and Michael Philippsen

Universit�at Karlsruhe

Fakult�at f�ur Informatik

D����� Karlsruhe� F�R�G�

email	 �tichy j phlipp��ira�uka�de

This paper appeared in� H� K�uster and W� Werner� editors� Proceedings of International

Conference on Mathematical Methods and Supercomputing in Nuclear Applications� volume

�� pages ��	� Karlsruhe� Germany� April 
	���� 
		�

Abstract

This paper discusses future directions in tools and
techniques for programming parallel supercomputers�
We base the discussion on two important observations	

� Automatic parallelization of sequential programs
will not achieve supercomputer performance in re�
al applications� Instead� applications will have to
be written with explicit parallelism�

� Machine�independence of parallel programs is a
precondition for wide acceptance of parallel com�
puters�

We comment on High Performance Fortran 
HPF� and
conclude that HPF will achieve machine�independence
to an initially satisfactory degree� but that another
language revision can be expected�

Machine�independence does not imply poor perfor�
mance� We present evidence that explicitly parallel�
machine�independent� and problem�oriented programs
can be translated automatically into parallel machine
code that is competitive in performance with hand�
written code�

Furthermore� we show that interactive� source�level
and problem�oriented debugging of explicitly parallel
program has recently become a reality�

� Introduction

The leading users of parallel supercomputers have
long abandoned the hope that automatically paral�
lelized� sequential programs will achieve supercomput�
er speed� It appears that the class of algorithms that
can be transformed automatically from sequential to a
highly e�cient parallel form is quite small� For older
applications� we can therefore expect a long� drawn�
out process of manual or semi�automatic paralleliza�
tion� similar to the process of vectorization� Various

transcription tools will ease this transformation� but
programmers will be responsible for the di�cult part�
namely the development of parallel algorithms� As a
signicant start� most vendors of parallel supercom�
puters are deeply involved in 
manually� parallelizing
large libraries of mathematical subroutines�

Users demand that parallel programs� both new�
ly written and reengineered� be machine�independent�
Otherwise� the software investment necessary to use
parallel supercomputers will be a�ordable by rela�
tively few users� Machine�independence is achieved
with a programming language that does not reveal
the idiosyncrasies of a given parallel machine� such
as message�passing primitives� synchronization con�
structs� or details about the memory layout and in�
terconnection network� These details typically change
from one computer model to the next� Any program
that depends on such details will either have to be
rewritten for every new generation of supercomputers
or be thrown away after a short time of use�

� Whither Fortran�

Fortran�� ��� provides instructions geared for vector
computers� but lacks facilities for SIMD or MIMD par�
allel machines� Consequently� vendors were forced to
extend either Fortran�� or Fortran�� with new lan�
guage constructs for parallelism� However� these con�
structs are machine�specic and therefore lock users
into a particular vendor�

High Performance Fortran 
HPF� ����� however�
provides a reasonable chance of achieving machine�
independence� The standardization process is fortu�
itously helped by a consolidation trend among paral�
lel computer architectures to the extent that program�
mers will be able to rely on a few rules of thumb to
hold across a spectrum of parallel computers� These
rules of thumb make it possible to expect good per�
formance on a reasonably large subset of parallel ma�



chines without reprogramming�
Steele writes about the purpose of HPF in ����	

The goal of High Performance Fortran �HPF� is
to extend Fortran�� to provide additional sup�
port for data parallel programming �de�ned as
a style of programming with a single conceptual
thread of control� a global name space� and loose�
ly synchronous parallel computation� to facili�
tate top performance on MIMD and SIMD com�
puters with non�uniform memory access costs�
while also promoting� or at least not impeding�
performance on other machines	 The idea is to
promote portability of Fortran programs over a
large class of computers� multihead vector com�
puters� shared�memory multicomputers� main�
frames� and workstations	

Note that support for explicit MIMD computa�

tion is not one of the goals of HPF	

The main extensions in HPF are array alignment and
distribution directives and an element�wise FORALL

statement� Alignment and distribution are critical
for distributed memory machines� where the cost of
accessing nonlocal memory is high� Since compiler
technology has not yet solved the problem of deriving
alignment and distribution automatically� HPF leaves
the decision to the programmer�

A simple example� taken from reference ����� fol�
lows� Suppose A is an array of dimensions ���� x
����� while B has dimensions ��� x ���� Assume ele�
ments A�I�J� interact with elements B�I���J���� so
A and B should be aligned accordingly� Furthermore�
elements within a column of A interact frequently� but
elements in di�erent columns interact much less of�
ten� so columns should not be split across multiple
processors� The following HPF directives encode this
information	

REAL A������������B���������

CHPF	 ALIGN B�I�J� WITH A�I
��J
��

CHPF	 DISTRIBUTE A���BLOCK�

The ALIGN directive is self�explanatory� The
DISTRIBUTE directive species that each column of A
is to remain within a single processor� while the rows
should be divided into equal segments� The e�ect is
that groups of columns are spread over the available
processors� It is also possible to direct the compiler to
redistribute arrays at runtime�

The language features for expressing parallelism are
the Fortran�� array intrinsics and a limited form of
a FORALL statement� This statement executes an en�
closed assignment statement in parallel on all elements
in the given index ranges�

FORALL �I��N���J��N��� B�I�J� � �A�I���J�
A�I�J
����

Conceptually� all parallel executions of the enclosed
assignment execute synchronously� but a compiler may
detect that synchronization steps may safely be omit�
ted to improve performance� Note that explicit com�
munication instructions are unnecessary because of
the shared name space� A compiler or runtime sys�
tem may have to insert special instructions to read or
write non�local array elements�

As compiler technology improves� it may be possi�
ble to omit the alignment and distribution directives�
because the compiler may be able to generate them
and even take the target machine architecture into ac�
count� For instance� Wholey ���� shows that the best
mapping varies with the interconnection structure of
the machine� the size of the machine� and the prob�
lem size� Therefore� a good compiler might actually
override a directive with a better choice for a given
architecture and problem size�

Redistribution of arrays is a di�cult aspect for pro�
grammers� because they must weigh the cost of the
actual redistribution against the access cost without
redistribution� possibly for a number of target archi�
tectures� Again� the compiler may be better equipped
to solve this optimization problem� especially because
the compiler already has to solve the general alignment
and distribution problem for program�generated tem�
porary variables� First promising results ���� ��� �� ��
indicate that the alignment and distribution problem
may be compiler�solvable�

The FORALL statement in HPF is severely limited�
For instance� it is not possible to place subroutine
calls� IF statements� or other FORALL statements into
its body� This restriction eliminates nested and recur�
sive parallelism and often forces unnecessary distor�
tions of otherwise clear� data�parallel programs� Fur�
thermore� asynchronous parallelism is completely lack�
ing� except through the escape of calling subroutines
written in di�erent language� possible in another For�
tran�

We think that HPF is a signicant step in the right
direction� especially since it achieves a high degree of
machine�independence and does not perpetuate the
myth of automatic parallelization� However� if stan�
dardized in its present form� it seems that yet another
extension will be needed before long�

� Results from the Compiler Front�
Generating E�cient Parallel Code

In this section� we present some recent results showing
that high�level� machine�independent programs can be



compiled into machine code that is comparable in ef�
ciency with hand�written machine code�

The language we use is Modula��� ����� an exten�
sion of Modula��� We chose Modula��� because it is
both more modern and smaller than Fortran� The
extensions are a superset of those in HPF� however�
Just as HPF� Modula��� provides a single� global name
space with potentially non�uniform access cost� Array
distribution is similar to array distribution in HPF�
except that alignment directives are unnecessary� In�
stead� the compiler derives the proper alignments au�
tomatically� Parallelism is expressed with an element�
wise FORALL� The synchronous version of this FORALL
operates much like the HPF FORALL� except that it is
fully orthogonal to the rest of the language	 Any state�
ment� including conditionals� loops� other FORALLs�
and subroutine calls may be placed in its body� Thus�
the language explicitly supports nested and recursive
parallelism� Finally� there is an asynchronous version
of a FORALL� allowing full control parallelism� The un�
restrained orthogonality of Modula��� 
such as mixing
data and control parallelism in one program� makes it
possible to write parallel programs that are both easy
to understand and machine�independent� However�
the orthogonality makes great demands on compiler
technology�

Our compiler research ���� �� ��� ��� indicates
that machine�independent� explicitly parallel pro�
grams can indeed be compiled into parallel machine
code that is competitive in performance with hand�
written code� This result is not only valid for trans�
lation of Modula��� programs� since the translation
of the general FORALL statement of Modula��� is more
demanding than translation of less expressive forms of
data parallelism� e�g� vector parallelism or the FORALL

of HPF�

��� The Compiler Benchmark

At the moment� our benchmark suite consists of ��
problems collected from literature ��� �� ��� �� ���
The problems are given brie�y in the appendix� For
each problem� we implemented the same algorithms
in Modula���� in sequential C� and in MPL�� Run�
times were measured on a ��K MasPar MP�� 
SIMD�

�MPL ���� is a data�parallel extension of C designed for the
MasPar MP series� In MPL� the number of available processors�
the SIMD architecture of the machine� its 	D mesh�connected
processor network� and the distributedmemory are visible� The
programmer writes a SIMD program and a sequential frontend
program with explicit interactions between the two� MPL pro�
vides special commands for neighborhood and general commu�
nication� Virtualization loops and distributed address compu�
tations must be implemented by hand�

and a SparcStation�� 
SISD� for widely ranging prob�
lem sizes� Measurements for LANs are not yet avail�
able because the tedious and error�prone task of im�
plementing hand�coded versions is still in progress�

Modula��� Programs� In Modula��� we employ
optimized parallel libraries for reductions and
scans� A technical deciency in our current
Modula��� compiler forced us to manually �un�
roll� two�dimensional arrays into one�dimensional
equivalents� This will no longer be necessary in
the near future�

MPL Programs� In MPL we implemented the same
algorithms as in Modula��� and carefully hand�
tuned them for the MasPar MP architecture� The
MPL programs make extensive use of local ac�
cess� neighborhood communication� standard li�
brary routines� and other documented program�
ming tricks� To ensure the fairness of the com�
parison� the resulting MPL programs are as gen�
erally scalable as their Modula��� counterparts�
Hence� scalability is not restricted to multiples
of the number of available processors� Therefore�
boundary checks are required in all virtualization
loops�

Sequential C Programs� The sequential C pro�
grams implement the parallel algorithms on a sin�
gle processor� We use optimized sequential li�
braries wherever possible� The C code does not
contain dirty �hacks��

In the following� we rst present performance results
and then compare the resource consumption of these
three program classes� We only summarize the results�
For detailed information see �����

��� Performance Results

For di�erent problem sizes we measured the run�
time of each test program on a ��K MasPar MP��
and a SparcStation��� Time was measured with the
high�resolution DPU timer on the MasPar and the
UNIX clock function on the SparcStation 
sum of
user and system time�� Below� tm�� represents the
Modula��� runtime on either a ��K MasPar MP�� or
a SparcStation�� 
as appropriate�� tmpl gives the MPL
runtime on a ��K MasPar MP��� tc stands for the se�
quential C runtime on a SparcStation���

We dene performance as work or problem size per
time and focus on the following relative performances	
size
tm��

� size
tmpl

� tmpl�tm�� and size
tm��

� size
tc

� tc�tm�� �



Note the ratio scale as the vertical axis� good perfor�
mance is indicated by curves approaching unity�

0.25

0.5

0.75

1

2^0 2^5 2^10 2^15 2^20 2^25
problem size

Problem average

t(mpl)/t(m2*)
t(c)/t(m2*)

For problem sizes ranging from �� to ��� we derived
the relative performances from our runtime measure�
ments� The resulting general relative performance� av�
eraged arithmetically over all test programs� is shown
above�

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative performance

overall performance distribution

t(mpl)/t(m2*)
t(c)/t(m2*)

The overall distribution of relative performances
proves to be equally encouraging� The histogram
above provides the number of relative performance
values falling into one of the classes �������� ����
����� � � �� ����������� The numbers are the accu�
mulated sums over all problems and problem sizes 
all
data points��

MPL versus Modula����

� The general relative performance of Modula��� is
quite stable over all problem sizes and averages
to ����

� Modula��� typically achieves ������� of the
MPL performance�

� Modula��� often reaches over ��� of the MPL
performance� with peaks at ����� The average

relative performance for a single problem is never
worse than ����

Sequential C versus Modula����

� The general relative performance of Modula���
is again quite stable over all problem sizes and
averages to ����

� Modula��� typically achieves �������� of the se�
quential C performance�

� Modula��� often reaches over ��� of the sequen�
tial C performance� The average relative perfor�
mance is never worse than ��� for a single prob�
lem�

��� Resource Consumption

The comparison is based on the criteria program
space� data space� development time and runtime per�
formance�

Program Space� Our compiler translates Modula�
�� programs to MPL or C� The resulting pro�
grams consume slightly more space than the
hand�coded MPL or C programs� Regarding
source code length� Modula��� programs are typ�
ically half the size of their corresponding MPL or
C programs�

Data Space� The memory requirements of the
Modula��� programs are typically similar to those
of the MPL and C programs� Memory overhead�
i�e� variable replication into temporaries� occurs
during synchronous assignments� This replica�
tion� however� is also required in hand�coded
MPL� Furthermore� there is some additional over�
head involved in controlling synchronous� nested�
and recursive parallelism 
�� bytes per FORALL��

Development time� Due to compiler errors detect�
ed while implementing the benchmarks� we can�
not give exact quantitative gures on implemen�
tation and debugging time� However� we estimate
that the implementation e�ort in Modula��� is a
fth of that for MPL�

Comparison with sequential code is important for two
reasons� First� it shows that one may develop paral�
lel applications on sequential machines� without facing
an undue overhead� Once a program runs correctly on
the development platform� it can be recompiled and
run with larger data sets on a parallel supercomputer�



Second� good performance on sequential machines is
indicative of the scalability and quality of the compil�
er	 The sequential code was produced by essentially
setting the number of target processors in the compiler
to unity� The performance gures show that the virtu�
alization introduced by the compiler 
virtualization is
needed whan mapping a given degree of parallelism to
a machine with fewer processors� has been optimized
adequately and introduces little overhead�

� MSDB � Parallel Debugger	 Pro
ler	

and Visualizer

Due to the high level of abstraction in Modula����
many of the usual problems of parallel programming
are of no concern to the Modula��� user� e�g� data
access deadlocks� virtualization� and communication
operations� These are all taken care of by the compil�
er�

A high�level� parallel language shifts the focus of
debugging from machine�dependent to problem de�
pendent issues� such as visualization of data� activity
tracking� and performance proling ����

We have built an interactive� source�oriented de�
bugger and data visualizer for parallel programs writ�
ten in Modula��� called MSDB� Figure � shows a
screendump presenting all of MSDB s display features�
MSDB provides the usual debugger features such as
setting and examining variables� setting breakpoints
and stepping through the program� Breakpoints are
global� i�e� all processes are stopped if one of them
encounters a breakpoint� In the following� we de�
scribe the concepts that directly support high�level
Modula��� abstractions�

� Activation Trees and Grouping� The activa�
tion tree shows where the parallel processes of the
program are currently located� It is updated each
time a process enters or leaves a statement that
a�ects the control �ow� Whenever new parallel
processes are created� the corresponding branch
may split into several edges� Thus the display is
similar to showing a stack of invocations on a se�
quential machine� except that MSDB displays a
tree 
or �cactus stack�� to visualize the parallel
activities�

To keep the tree manageable� equivalent processes

going through the same control �ow� are collect�
ed into a single edge in the tree� For example�
when control �ow enters a synchronous FORALL�
only the FORALL will be displayed� When execu�
tion reaches an IF statement within the FORALL�

the branch will split into two edges� represent�
ing the two sets of activities in the two branches
of the IF� Thus� grouping makes process tracking
feasible even for massive parallelism� In its cen�
ter window� Figure � shows an extremely simple
activation tree� where all parallel processes of a
FORALL have been collapsed into one edge�

Multiple program counters provide a link between
the activation tree and the source code� Each
counter represents a process group and points to
the group s current source code location in the
open source code windows�

� Data Visualization� Multidimensional arrays
are visualized in MSDB by viewing ��dimension�
al slices through the data�

Di�erent kinds of visualizers are available� de�
pending on the kind of information the user wants
to obtain	 Comparison and Range visualizers
highlight all values that fulll a given condition�
Value visualizers provide a grayscale representa�
tion of array data� See the bottom right window
of Figure � for an illustration�

� Pro�ling� For performance tuning� the user
needs to know which parts of the program are
executed how often and on which process� MS�
DB provides two views of this information	 
a� a
display of the most often used structures and 
b�
a specialized visualizer for the current activities of
the virtual processes� The latter visualizer repre�
sents each process as a black or white pixel in an
array� depending on whether it is active or not�
The bottom center window of Figure � contains
an example�

The sequential version of a program running on a sin�
gle workstation and the distributed runtime system for
a network of workstations are now in use� Work on
other platforms� such as MasPar MP�� and KSR�� is
in progress�

� Conclusion

Machine�independent programming of parallel super�
computer applications is within reach� With the nec�
essary training in parallel algorithms and the availabil�
ity of optimizing compilers and source debuggers� de�
veloping parallel programs should eventually become
only moderately more complex than programming se�
quential computers�



Appendix� Benchmark Problems

� List Rank� A linked list of n elements is given� All el�
ements are stored in an array A����n�� Compute for each
element its rank in the list�

� Root Search� Determine the value of x � �a� b� such
that f
x� � � given that f is monotone and continuously
di�erentiable�

� Point in Polygon� A simple polygon P and a point q are
given� Determine whether the point lies inside or outside
the polygon� 
A polygon is simple if pairs of line segments
do not intersect except at their common vertex��

� Longest Common Subsequence� Two strings A �
a�a� � � � am and B � b�b� � � � bn are given� Find a string
C � c�c� � � � cp such that C is a longest common sub�
sequence of A and B� 
C is a subsequence of A if it
can be constructed by removing elements from A with�
out changing their order� A common subsequence must
be constructible from both A and B��

� Estimation of Pi� Use the equation � �
R
�

�

�

��x�
�

� Prime Sieve� Compute all prime numbers in �	��n��

� Pairs of Relative Primes� Count the number of pairs

i� j� with 	 � i � j � n that are relatively prime� i�e� the
greatest common divisor of i and j is ��

� Red�Black Iteration� Implement a red�black iteration�
i�e� the kernel of a solver for partial di�erential equations�

� Transitive Closure� The adjacencymatrix of a directed
graph with n nodes is given� Find its transitive closure�

� Mandelbrot Set� Compute the Mandelbrot set�

� Hamming�s Problem� A set of primes fa� b� c� � � �g of
unknown size and an integer n are given� Find all integers
of the form ai � bj � ck � � � � � n in increasing order and
without duplicates�

� Doctor�s O�ce� Simulate the following queuing prob�
lem from ���� a set of patients� a set of doctors� and a
receptionist are given� Patients become sick at random�
are assigned to one of the doctors by the receptionist� and
treated in a random amount of time�



References

��� Selim G� Akl� The Design and Analysis of Paral�
lel Algorithms� Prentice Hall� Englewood Cli�s�
New Jersey� �����

��� American National Standards Institute� Inc��
Washington� D�C� ANSI� Programming Language
Fortran Extended �Fortran ���� ANSI X	�
���

���� �����

��� Siddhartha Chatterjee� John R� Gilbert� Robert
Schreiber� and Shang�Hua Teng� Automatic ar�
ray alignment in data�parallel programs� In Proc�
of the ��th ACM SIGPLAN�SIGACT Symposium
on Principles of Programming Languages� pages
������ Charleston� SC� January ������ �����

��� John T� Feo� ed�� A Comparative Study of Paral�
lel Programming Languages The Salishan Prob�
lems� Elsevier Science Publishers� Holland� �����

��� Alan Gibbons and Wojciech Rytter� E�cient
Parallel Algorithms� Cambridge University Press�
�����

��� Manish Gupta and Prithviraj Banerjee� Auto�
matic data partitioning on distributed memory
multiprocessors� In Proc� of the �th Distribut�
ed Memory Computing Conference� pages ������
Portland� Oregon� April �� � May �� �����

��� Stefan U� H�an!gen� Ein symbolischer X�Windows
Debugger f�ur Modula���� Master s thesis� Univer�
sity of Karlsruhe� Dept� of Informatics� December
�����

��� Philip J� Hatcher� Michael J Quinn� Anthony J�
Lapadula� Ray J� Anderson� and Robert R� Jones�
Dataparallel C	 A SIMD programming language
for multicomputers� In Proc� of the �th Distribut�
ed Memory Computer Conference� pages ������
Portland� Oregon� April �� � May �� �����

��� Ernst A� Heinz� Automatische Elimination
von Synchronisationsbarrieren in synchronen
FORALLs� Master s thesis� University of Karl�
sruhe� Deptartment of Informatics� November
�����

���� High Performance Fortran 
HPF�	 Language
specication� Technical report� Center for Re�
search on Parallel Computation� Rice University�
�����

���� Joseph J"aJ"a� An Introduction to Parallel Algo�
rithms� Addison�Wesley� Reading� Mass�� �����

���� Kathleen Knobe and Joan D� Lukas� Data opti�
mization and its e�ect on communication costs in
MIMD Fortran code� In Fifth SIAM Conference
on Parallel Processing in Scienti�c Computing�
Houston� TX� March �����

���� Pawel Lukowicz� Code�Erzeugung f�ur Modula���
f�ur verschiedene Maschinenarchitekturen� Mas�
ter s thesis� University of Karlsruhe� Dept� of In�
formatics� January �����

���� MasPar Computer Corporation� MasPar Parallel
Application Language �MPL� Reference Manual�
September �����

���� Michael Philippsen� Automatic data distribu�
tion for nearest neighbor networks� In Frontiers
���The Fourth Symposium on the Frontiers of
Massively Parallel Computation� pages ��������
Mc Lean� Virginia� October ������ �����

���� Michael Philippsen and Walter F� Tichy� Modula�
�� and its compilation� In First Internation�
al Conference of the Austrian Center for Paral�
lel Computation� Salzburg� Austria� 
��
� pages
�������� Springer Verlag� Lecture Notes in Com�
puter Science ���� �����

���� J� Ramanujam and P� Sadayappan� Access based
data decomposition for distributed memory ma�
chines� In Proc� of the �th Distributed Memory
Computing Conference� pages �������� Portland�
Oregon� April �� � May �� �����

���� Guy L� Steele� High Performance Fortran	 Status
report� In Proc� of the 
��	 Workshop on Lan�
guages� Compilers� and Run�Time Environments
for Distributed Memory Multiprocessors� pages ��
�� Boulder� CO� September �� � October �� �����
January ����� ACM SIGPLAN Notices ��
���

���� Walter F� Tichy and Christian G� Herter�
Modula���	 An extension of Modula�� for high�
ly parallel� portable programs� Technical Report
No� �#��� University of Karlsruhe� Dept� of Infor�
matics� January �����

���� Walter F� Tichy� Michael Philippsen� Ernst A�
Heinz� and Paul Lukowicz� From Modula��� to ef�
cient parallel code� Technical Report No� ��#���
University of Karlsruhe� Dept� of Informatics�
August �����

���� Skef Wholey� Automatic Data Mapping for
Distributed�Memory Parallel Computers� PhD
thesis� Carnegie�Mellon University� Dept� of
Computer Science� Pittsburg� PA� May �����



Figure �� The MSDB environment in action� The program being debugged is a simple fractal computation� the 
partial� results of

which are shown in a range visualizer� A visualization of the processes as well as the 
grouped� dynamic activation tree and a pro�le

graph can also be seen� The left window shows the Modula�	� source with a program counter and a breakpoint� the right window

displays the corresponding C source�


