Nail and Nail Wire Bending Tests

Report prepared by

Jürgen Ehlbeck, Wichard Siebert and Hartmut Werner

Versuchsanstalt für Stahl, Holz und Steine

Dept. Timber Engineering

University Fridericiana Karlsruhe

November 1990

Nail and Nail Wire Bending Tests

Jürgen Ehlbeck, Wichard Siebert, Hartmut Werner

Introduction

Stimulated by discussions in Working Group 1 (WG1) 'Test Methods' of CEN/TC 124 'Timber Structures' for drafting a CEN-Standard on the determination of the yield moment (bending resistance) of dowel-type fasteners by testing it was decided to carry out comparative tests with nails and nail wires of different types and material specifications.

It was of special interest to check the so-called revised NORDTEST Method using a special test device as well as the simple bending test method as described in the RILEM-Recommendation TT-1B, Annex B, which is identical with the former NORDTEST Method (1981). At the Danish Building Research Institute in H ϕ rsholm, Marius Johansen developed in 1988 a test apparatus described in a document for the SBI-project R 13-78 (Nordtest project 710-87) titled 'Bending Strength of Nails - Testing of proposal for Nordtest-method'. In WG 1 of CEN/TC 124 this test method had been brought in as a basic paper for drafting a CEN-Standard. One of the main objectives was the principle, that the nail to be tested should be loaded in a manner that the loading points do not change their positions along the length of the nail. This can be verified by using a procedure shown in Fig. 1.

Test set up and nail loading

A prototype test apparatus was built in the Timber Engineering Laboratory of the University of Karlsruhe using Johansen's idea. This apparatus and the test set-up are shown in Figs. 2 and 3. The nail or piece of wire is placed into a fixing device and bent directly by hand, see Fig. 4, or with a lever (for big nail diameters). The laod is measured with a calibrated load-cell and the bending angle of the nail is recorded by means of a potentiometer. Load-angle-diagrams are plotted.

Test set-up

3

Fig. 4:Manual bending of nail

With this test apparatus nails or wires with a diameter up to 8 mm can be tested. The test speed is of no relevant influence on the test results. Thus, the tests are not very time-consuming. A bent nail in the test equipment is shown in Fig. 5.

Fig. 5: Bent nail in test equipment

Tests and Test Results

The test programme comprised 38 different nails or wires with five tests, or ten tests each, respectively. The diameters ranged from 2.5 mm to 7.0 mm. The nail shanks were smooth, or helically threaded, or annularly threaded, respectively. The nail or wire material was different (common wire, hardened steel, stainless steel), and the surfaces of the nail shanks were blank, galvanized or hot-dipped, respectively. All nails or wires tested are listed in <u>Table 1</u>. In Fig. 6 some typical load-bending angle-diagrams of annularly threaded nails are shown (Fig. 6a: galvanized nails 6.0 x 100; Fig. 6b: stainless steel nails). Different types of nails yield different load-bending angle-diagrams. For common wire galvanized threaded nails an elastic-plastic behaviour can be assumed (see Fig. 6a), whereas for stainless steel threaded nails a kind of elastic limit can be noted with a continuous increasing of the load above this limit. Up to a bending angle of 50° to 60° unequivocal failures do normally not occur.

Fig. 6:

Load-bending angle diagrams for galvanized and stainless annularly threaded nails

Table 1:	Tested nails and wires								
Series	Nail/ Manufacturer	Size d _n x I ^{*)}	Profile	Surface/ Material	Diameter [mm] d _n d ₁		d _k		
1a 1b 2	A A A	3.8 x 105 3.8 x 105 3.8 x 120	smooth smooth smooth	hardened hardened hardened	3.80 3.80 3.80	3.80 3.80 3.80	3.80 3.80 3.80 3.80		
3 4	B B	2.8 x 65 3.1 x 80	helically threaded helically threaded	stainless stainless	2.80 3.10	3.20 3.60	2.50 2.80		
5 6 7 8 9	DIN 1151 DIN 1151 DIN 1151 DIN 1151 DIN 1151 DIN 1151	2.5 x 55 3.4 x 80 4.2 x 110 6.0 x 180 7.0 x 210	smooth smooth smooth smooth smooth	blank blank blank blank blank blank	2.50 3.40 4.20 6.00 7.00	2.50 3.40 4.20 6.00 7.00	2.50 3.40 4.20 6.00 7.00		
10 10a 11 12	0000	wire wire 4.0 x 75 6.0 x 100	smooth smooth annularly threaded annularly threaded	untreated untreated galvanized galvanized	6.00 3.96 4.02 6.07	6.00 3.96 4.38 6.47	6.00 3.96 3.62 5.70		
13 13a 14 14a 15 15a	D D D D D D	wire wire wire wire wire wire	smooth smooth smooth smooth smooth smooth	untreated stainless untreated stainless untreated stainless	3.09 3.08 3.98 3.97 5.98 5.98	3.09 3.08 3.98 3.97 5.98 5.98	3.09 3.08 3.98 3.97 5.98 5.98		
16 17 18 19	D D D D	4.0 x 75 4.0 x 50 6.0 x 100 6.0 x 80	annularly threaded annularly threaded annularly threaded annularly threaded	galvanized stainless galvanized stainless	4.02 4.07 6.04 5.98	4.32 4.34 6.34 6.38	3.75 3.53 5.62 5.52		
20 21	E	4.0 x 60 wire	annularly threaded smooth	galvanized untreated	3.99 3.99	4.36 3.99	3.70 3.99		
22	DIN 1151	3.1 x 65	smooth	blank	3.10	3.10	3.10		
23	В	2.8 x 65	helically threaded	stainless	2.80	3.20	2.50		
24 25	F	2.9 x 63 2.9 x 63	annularly threaded annularly threaded	sherardized stainless	2.90 2.90	3.20 3.20	2.50 2.50		
26	D	3.1 x 65	helically threaded	hot-dipped	3.01	3.07	2.05		
27	G	3.1 x 80	helically threaded	stainless	3.10	3.50	2.80		
28 29	DIN 1151 DIN 1151	2.5 x 60 4.2 x 110	smooth smooth	blank blank	2.50 4.20	2.50 4.20	2.50 4.20		
30 31 32	H H H	3.1 x 60 4.0 x 75 6.0 x 100	annularly threaded annularly threaded annularly threaded	galvanized galvanized galvanized	3.10 4.00 6.00	3.30 4.40 6.40	2.75 3.75 5.65		
33	DIN 1151	3.1 x 80	smooth	blank	3.10	3.10	3.10		

*) I = nail length [mm]

The test results are listed in <u>Table 2</u>, containing among others the mean values of the yield moments of the nails and its coefficient of variation. From the tested nail wires the tensile strength was determined in separate tests.

For all smooth round-wire nails the yield stress was calculated from the tested yield moment using the formula

$$f_y = M_y/W_y$$

with $W_y = d_n^3/6$.

It can be seen that these yield stress values are not identical with the yield stress of the wire found in regular wire tension tests. The yield stress values derived this way may even be higher than the regular tensile strength of the wire due to the different definition of these material properties.

The calculated yield stress of round wire nails according to the German nail standard DIN 1151 depends significantly on the nominal nail diameter. The single test values and the respective regression lines for the mean values and the 5-percentiles are shown in Fig. 7.

Fig. 7: Calculated yield stress f_y of nails according to DIN 1151 depending on diameter d_n

Series	Nail/ Manu- facturer	Size d _n x I ^{*)}	Nominal diameter	Number of tests	Tensile strength of nail wire	Yield moment of nail	Coefficient of variation	Calculated yield stress
	-		d _n		f _t	My	v	fy
			[mm]		[N/mm ²]	[Nm]	[%]	[N/mm ²]
1a 1b 2	A A A	3.8 x 105 3.8 x 105 3.8 x 120	3.8 3.8 3.8 3.8	5 5 10	-	20.10 19.84 18.92	3.5 2.1 5.1	2198 2170 2069
3 4	B B	2.8 × 65 3.1 × 80	2.8 3.1	10 10	-	3.70 5.17	1.6 2.3	1420 1413
5 6 7 8 9	DIN 1151 DIN 1151 DIN 1151 DIN 1151 DIN 1151 DIN 1151	2.5 × 55 3.4 × 80 4.2 × 110 6.0 × 180 7.0 × 210	2.5 3.4 4.2 6.0 7.0	10 10 10 10 10		2.35 5.02 8.83 23.28 36.20	3.5 3.0 2.1 11.7 5.3	902 767 715 647 633
10 10a 11 12	cccc	wire wire 4.0 x 75 6.0 x 100	6.0 3.96 4.02 6.07	5 5 10 10	705 723 -	27.51 8.05 7.24 26.46	0.9 1.4 2.2 4.1	777 775 916 857
13 13a 14 14a 15 15a	מסמממ	wire wire wire wire wire wire	3.09 3.08 3.98 3.97 5.98 5.98	535353	792 752 636 759 722 614	4.24 3.12 7.53 7.21 28.15 18.55	1.6 4.4 1.6 0.8 3.7	863 641 716 691 790 521
16 17 18 19		4.0 x 75 4.0 x 50 6.0 x 100 6.0 x 80	4.02 4.07 6.04 5.98	10 10 10 10	-	6.65 9.09 20.28 27.43	1.6 0.8 6.0 1.5	756 1240 686 978
20 21	E	4.0 × 60 wire	3.99 3.99	10 5	714	7.50 7.93	1.0 4.8	889 749
22	DIN 1151	3.1 × 65	3.10	5	-	4.08	6.0	821
23	В	2.8 x 65	2.8	5	-	3.86	3.0	1482
24 25	F	2.9 x 63 2.9 x 63	2.90 2.90	5 5	-	2.45 3.40	8.5 3.3	941 1306
26	D	3.1 x 65	3.1	5	-	3.47	1.2	1334
27	G	3.1 × 80	3.1	5	-	5.76	3.0	1574
28 29	DIN 1151 DIN 1151	2.5 × 60 4.2 × 110	2.50 4.20	5 5	-	2.64 8.02	6.4 1.7	1014 650
30 31 32	H H H	3.1 × 60 4.0 × 75 6.0 × 100	3.10 4.00 6.00	5 5 5	-	2.94 8.11 20.37	5.7 0.8 5.7	848 923 678
33	DIN 1151	3.1 × 80	3.10	5	•	4.07	1.8	819

Table 2: Test results

*) I = nail length [mm]

As a substantial result of these tests it can be stated that from the yield moment or the yield stress of the nail wire the effective yield moment of the nail made of this wire can not be derived. Thus, for round wire nails as well as for all types of nails with a profile shank the yield moment should be assessed by the nail bending test. The test procedure described turned out to be a good method and can be supported to become an international test standard. It is desirable to develop a test apparatus suitable to test the yield moment of dowel-type fasteners with diameters up to 30 mm. This task has been started. A report will be submitted at a given time.