Universitat Karlsruhe (TH)
Fakultat fur Informatik

Institut flir Mikrorechner und Automation
Prof. Dr.rer.nat U. Brinkschulte

Fluids, Poem

Application Programming Interface

\ersion 1.6 — June 2, 1997

Holger Vogelsang

public:

WW(boolean created, const char *abcl, long d1, long d2)

Chapter 2: Persistent objects

if(created) {
strcpy(abc, abcl);

d[0] = di;
d 1] = dz
y = a;
}
}
~WW(){}

static long Metatyp();

Dump();

: public Persistent, WW {

\2

Z;

xy[51
dr;

XX(long id) : Persistent(Address(), id, Metatyp()),

WW(Created(), "blubb", 31415, 27879 X

XX() : Persistent(Address(), Metatyp()),

WW(Created(), "blubb”, 31415, 27879)

~XX(O{ Update(); }

static long Metatyp();

void

h

class XX
short
long
char
long

public:
void

void

h

Address(){ return(this); }

Dump();

98

}

Table of contents

1 Man machine service
1.1 An overview
1.1.1 Symbols

1.2

1.1.2 Presentation objects
Predefined presentationobjects
1.1.3 Events and bindings for distributed systems
Interpreted functionsas eventhandler

114

1.1.5 Realization

1121

GUI and presentation objects . . .
Initialization: System class.

121

1211
121.2
1213
1214
1215
1.2.1.6
1217
1218
1.21.9
1.2.1.10
12111
1.2.1.12
1.2.1.13
12.1.14
1.2.1.15
1.2.1.16
1.2.1.17
1.2.1.18
1.2.1.19
1.2.1.20
12121
1.2.1.22
1.2.1.23
1.2.1.24

System

::System .

System::System.
:InitPersistentObjectSystem.
:ExitPersistentObjectSystem
wOpenDatabase.
iCloseDatabase.

System
System
System
System
System
System

2InitMms.
»ExitMms

MMS::MaxWidth .
MMS::MaxHeight
MMS::FirstSymbolType
MMS::NextSymbolType.
MMS::GetSymbolMetatype.
MMS::CreatePlane
MMS::DeletePlane.
MMS::FindPlane.

Guilist:
~GuiList .
Guilist::
Guilist::
Guilist::
Guilist::
Guilist:
Guilist::

Guilist:

:GuiList .

Metatyp .
FirstGui .
NextGui.
FindGui .
FindGui .
InsertGui

Table of contents 2.4 Example

1.2.1.25 GuiList:RemoveGui. 19 }
1.2.1.26 Guilist:Update 19 WW(long id) : Persistent(Address, id, Metatyp()){}
122 GUIL . oo e 20 ~WW({}
1221 GUIEGUL . v v o e 20
1.2.2.2 GUISGUI . . . o . 20 void PrintStatus(){ cout << Text << endl; }
1223 GUIEMEALYP . « « o o e 20 static long Metatyp(); _
1.2.2.4 GuizSimulateEvent 21 void *Address()f{ return(this); }
1225 GUIZChangeFOCUS. o o oo oo 21 g
1226 GuizExecute. 22
1.2.2.7 Gu!::Event 22 class XX : public Persistent{
1228 GuizShow 22
1229 Gui:CreatePrObject., 23 DoubleLinkedList<WW> ww_list;
1.2.2.10 Gui:DeletePrObject., 24
1.2.2.11 Gui:FirstPrObject. oL 24 public:
1.2.2.12 Gui:NextPrObject. 24
1.2.2.13 Gui:FindPrObject. L. 25 XX(long id) : Persistent(Address(), id, Metatyp()){}
1.2.2.14 Gui:CreateGuiWindow 25 XX() : Persistent(Address(), Metatyp()){}
1.2.2.15 Gui:DeleteGuiWindow 25
1.2.2.16 Gui:FirstGuiWindow. 26 ~XX({ ww_list.Update(); Update(); }
1.2.2.17 Gui:zNextGuiWindow 26
1.2.2.18 GuizFindGUIWINdOW. 26 static long Metatyp(); _
1.2.2.19 GuizCreateBinding 27 void *Address(return(this); }
1.2.2.20 Gui:DeleteBinding. 28 i
1.2.2.21 GuizFirstBinding. L 28 list operations
1.2.2.22 GuizNextBinding. 29 X
1.2.2.23 Gui:FindBinding. oL 29 void PrintStatus(){
12224 GuizSetName 29 WW *ww:
1.2.225 GuizGetName. 30 DLL_FORALL(ww._list, ww)
1.2.2.26 GUi::Update 30 ww->PrintStatus();
12227 lterators 30 }
1.23 GuiWindow 31
1.2.3.1 GuiWindow::GuiWindow. 31 void Insert(WW *obj){ ww_list.InsertFirst(obj); }
1.2.3.2 GuiWindowsGuiWindow 31 void Remove(WW *obj }{ ww_list.Remove(obj); }
1.2.3.3 GuiWindow::Metatyp. 31 b
1.2.3.4 GuiWindow::CreateBinding. 32
1.2.3.5 GuiWindow::DeleteBinding 33
1.2.3.6 GuiWindow:FirstBinding, 33
1.2.3.7 GuiWindow::NextBinding 34 24 Example
1.238 Gu!W!ndow::FmdBlndmg """""""""" 34 The following section of code shows a small example of persistent objects.
1.2.3.9 GuiWindow::Execute L. 34
1.2.3.10 GuiWindow::Show. 35 class WW {
1.2.3.11 GuiWindow::SetPosition 35
1.2.3.12 GuiWindow::GetPosition 35 char abe[7 ;
1.2.3.13 GuiWindow::Set. 35 long d 2 J;
1.23.14 GuiWindow:Get. L. 35 char y;
1.2.3.15 GuiWindow::SetName. 36

Chapter 2: Persistent objects

type * = first.GetPtr(), *II;
while (1) {
I = I->GetNext();
if(db_remove)
I->Delete();
delete |;
I =1
}

last = (type*)NULL;
first = (type*)NULL;
}

/*
destructor: remove list only from memory
*
~DoubleLinkedList() {
RemoveAll();
}
/*
Update entire list in database
*

void Update() {
type *elem;
for(elem = GetFirst(); elem; elem = GetNext(elem))
elem->Update();

}
h
/*
iterator for double-linked list
*/

#define DLL_FORALL(list,elem) \
for(elem = (list).GetFirst(); elem; \
elem = (list).GetNext(elem))

2.3.2 Example

The foolowing piece of code contains a small application example for double linked lists.

class WW : public Persistent, ListElement<WW> {
char Text[10];
public:

WW(char *s) : Persistent(Address(), Metatyp() X
strncpy(Text, s, sizeof(Text));

96

124

125

1.2.3.16
1.2.3.17
1.2.3.18
1.2.3.19
1.2.3.20
PrObject

1241

1242

1243

1244

1245

1246

1.24.7

1.2.4.8

1249

1.2.4.10
12411
1.2.4.12
1.2.4.13
1.24.14
1.2.4.15
1.2.4.16
1.2.4.17
1.2.4.18
1.2.4.19
1.2.4.20
1.2.4.21
1.2.4.22
1.2.4.23
1.2.4.24
1.2.4.25
1.2.4.26
1.2.4.27
1.2.4.28

Table of contents

GuiWindow::GetName.
GuiWindow::SetPlane.
GuiWindow::GetPlane.
GuiWindow::Update.
Iterators

PrObject::PrObject
PrObjectPrObject
PrObject:Metatyp.
PrObject::CreatePritem.
PrObject::DeletePritem.
PrObject::FirstPritem
PrObject::NextPritem
PrObject::CreateBinding
PrObject::DeleteBinding.
PrObject::FirstBinding.
PrObject::NextBinding.
PrObject::FindBinding.
PrObject:Execute.
PrObject:Show
PrObject::SetPosition.
PrObject::GetPosition.
PrObject::Set
PrObject:Get
PrObject::SetName
PrObject::GetName
PrObject:Mark.
PrObject:Marked L
PrObject::GetType.
PrObject:GetGui
PrObject::GetFocus.
PrObject::GetMetatyp.
PrObject::Update
lterators.

Pritem:

Pritem.

Pritem=Pritem

Pritem::
Pritem::
Pritem::
sFirstBinding.
“NextBinding.
Pritem::
Pritem::
Pritem::
Pritem::

Pritem
Pritem

Metatyp
CreateBinding.
DeleteBinding.

FindBinding.
Show.
SetPosition L.
GetPosition.

13

Table of contents

1.25.12 Pritem:Set. 51
12513 Pritem:zGet. 51
1.25.14 Prlitem:SetName 51
1.25.15 Pritem:GetName oL 52
1.25.16 Pritem:Mark. 52
1.25.17 Pritem:Marked Lo 52
1.25.18 Pritem:GetMetatyp 52
1.25.19 Pritem:Update. 52
12520 lterators e 53
126 Binding 54
1.2.6.1 Binding::Binding., 54
1.2.6.2 BindingsBinding 54
1.2.6.3 Binding::Metatyp. L. 55
1.2.6.4 Binding::Execute. 55
1.2.6.,5 Binding::SetName. 55
1.2.6.6 Binding::GetName., 55
1.2.6.7 Binding::GetPrObject 56
1.2.6.8 Binding::GetPritem 56
1.2.6.9 Binding::GetGuiWindow. 56
1.2.6.10 Binding::SetPrObject 56
1.2.6.11 Binding:SetPritem 56
1.2.6.12 Binding::SetGuiWindow. 56
1.2.6.13 Binding::GetFunction 57
1.2.6.14 Binding::SetFunction, 57
1.2.7 Methods—anoverview 58
Predefined strucuresandvalues. 59
1.3.1 mms_Sys_param. e e 59
1.32 EVENT_TYPE 59
133 EVENT . . . e 60
134 F_MODIFIER. e 61
135 PR_TYPE. e 61
1.3.6 POSITION e 62
1.3.7 DESIGN. 62
1.3.8 GuiCallback. 63
1.3.8.1 GuiCallback:GuiCallback. 64
1.3.8.2 GuiCallback::RegisterCallback. 64
1.3.8.3 GuiCallback::GetCallbackStatus. 64
1.3.8.4 GuiCallback::SetCallbackStatus 64
1385 Macros. 65
1386 Example 65
1.39 BINDING_FUNCTION. i 66
1.3.10 GUILEXEC _FLAG e 67
1.3.11 RPOSITION. o 68
1.3.12 WIN_ATTRIB. e 68
1313 Colours 70
1.3.14 PredefinedSymbols L 70
\

2.3 Double Linked List

return last element

*
inline type *GetLast() { return(last.GetPtr()); }
/*
return next list element of a given element
*
inline type *GetNext(type *obj) { return(obj->GetNext()); }
/*
return previous list element of a given element
*/
inline type *GetPrev(type *obj) { return(obj->GetPrev()); }
/*
return number of elements in list
*

inline short GetCount(){ return(count); }

/*
dequeue element from list, don’t remove
it from memory or database

*

void Disconnect(type *obj X

if(first == obj)
first = obj->GetNext();

if(last == obj)
last = obj->GetPrev();

obj->RemoveElement();

}

/*
dequeue element, delete it from memory and
(if db_remove set) from database

*

void Remove(type *obj, boolean db_remove = FALSE) {
if(db_remove)
obj->Delete();
Disconnect(obj);
delete obj;

}
/~k
remove entire list from memory and
(if db_remove set) from database
*

void RemoveAll(boolean db_remove = FALSE){

95

Chapter 2: Persistent objects Table of contents

obj->Getld()); 1.3.14.1 Predefined Symbol Attributes.

if(Mirst) 1.3.14.2 CharAttr
first = last; 1.3.14.3 SymbolStringAttr. L
count++; 1.3.14.4 SymbolShortAttr.
} 1.3.145 SymbOILONGALT o v o
p 1.3.14.6 SymbolFloatAttr.
insert a new element after a given list element 1.3.14.7 SymbolDoubleAttr.

% 1.3.14.8 SymbolSliderAttr. L
1.3.14.9 SymbolBitmapAttr.

void InsertAfter(type *obj, type *after) {
if(after->GetNext())
obj->AddElement(after, after->GetNext(), obj,

obj->Getld()): 131412 TOGGLE. .+« o o oo

else 131413 BITMAP . . . o o o
last = obj->AddElement(after, after->GetNext(), obj, 1.3.1414 HSLIDER.
obj->Getld()): 131415 VSLIDER. . .« « o oo

count++; 131416 LABEL . . o o o oooooe e
} L3147 TITEL. « o o oo oo oo
131418 AEDIT. . o o o oo oo

r _ _ N 132419 SEDIT. o o o oo
insert object at a given position, 131420 LEDIT . o o oo

O 2o It fem 131421 F-EDIT. . ..o
131422 D-EDIT. . o o o oo oo

*
void InsertAt(type *obj, short pos = 0) {
if(!pos || !count)
olse !{nsertFlrst(obj); 2 Persistent objects
) 2.1 Conceptofpersistentobjects
fi == -1 >= t
i pos) I (pos count)) 2.1.1 Characteristicsanddesign.

InsertLast(obj); e . :
else { 2.12 Inlt.lgllnze PerS|§tent Oby_ect System
short i =0 2.1.3 Exitialize Persistent ObjectSystem.
type *search = ﬁrst.GetPtr(); 2.1.4 Persistent.

do { 2.1.4.1 Persistent:Persistent 0L

i++; 2.1.4.2 PersistentiPersistent

search = search->GetNext(); 2.143 Persistent:Update.

} while(i < pos); 2.1.4.4 Persistent:Undo.
InsertAfter(obj, search); 2.1.45 Persistent:Delete

} 2.14.6 Persistent:Getld. L.

} 2.1.4.7 Persistent::Created
} 2.1.4.8 Persistent:GetDataObject

2.1.49 Persistent::GetDatabaseObject

2.2 Persistentpointers
2.2.1 Characteristicsanddesign.,
2.2.2 Multiplereferences.
2.2.3 PersistentPtr<type> Lo o

I* 2.2.3.1 PersistentPtr<type>:PersistentPtr.
2.2.3.2 PersistentPtr<typexPersistentPtr

/*
return first element
*
inline type *GetFirst() { return(first.GetPtr()); }

94 4

2.3

24

Table of contents

2.2.3.3 PersistentPtr<type>::Metatyp. 90
2.2.3.4 PersistentPtr<type>::Delete. 90
2.2.3.5 PersistentPtr<type>::Rescan. 90
2.2.3.6 PersistentPtr<type>::ExistsNonPresent. 90
2.2.3.7 PersistentPtr<type>::Getld 90
2.2.3.8 PersistentPtr<type>::GetPtr. 91
2.2.3.9 PersistentPtr<type>:Set 91
2.2.3.10 PersistentPtr<type>::operators. 91
Double Linked List 91
2.3.1 Classdefinition. 91
232 Example. 96
Example. 97

Vi

2.3 Double Linked List

*/
template <class type>
class DoubleLinkedList {

public:
AutoPersistentPtr<type> first, [* first element in list */
last; /* last element in list */
short count; I* number of elements */
static long mt; /* own metatyp */
DoubleLinkedList(){}
/*
create metatyp-definition
*/
static long Metatyp() {
if('mt) {
mt = mt_OpenMetaRecord(sizeof(DoubleLinkedList<type>)
"DoubleLinkedList");
DoubleLinkedList<type> *xptr = NULL;
mt_PushMetaVar(mt, xptr, &xptr->first,
AutoPersistentPtr<type>::Metatyp(), 1, "first");
mt_PushMetaVar(mt, xptr, &xptr->last,
AutoPersistentPtr<type>::Metatyp(), 1, "last");
mt_PushMetaVar(mt, xptr, &xptr->count, MT_SHORT, 1,
“count");
}
return(mt);
}
/*
insert element at list head
*/

void InsertFirst(type *obj){
first = obj->AddElement(NULL, first.GetPtr(), obj,
obj->Getld());

if(!llast)
last = first;
count++;
}

/~k

insert element at last position
*
/
void InsertLast(type *obj X
last = obj->AddElement(last.GetPtr(), NULL, obj,

93

Chapter 2: Persistent objects

prev; [* prev. entry
static long mt; /* metatyp-handle */
ListElement(){}
~ListElement(){}
static long Metatyp(){ /* define metatyp */

if(tmt) {

mt = mt_OpenMetaRecord(sizeof(ListElement<type>),

"ListElement");
ListElement<type> *xptr = NULL;
mt_PushMetaVar(mt, xptr, &xptr->next,
AutoPersistentPtr<type>::Metatyp(), 1, "next");
mt_PushMetaVar(mt, xptr, &xptr->prev,
AutoPersistentPtr<type>::Metatyp(), 1, "prev");
}
return(mt);

}

type *AddElement(type *last_el, type *next_el, type *this_el,
OBJECT_ID this_id) {

next = next_el;

prev = last_el;

if(next !'= NULL)
next->prev.Set(this_el, this_id);

if(prev != NULL)

prev->next.Set(this_el, this_id);
return((type*)this);
}

void RemoveElement() {
if(next !'= NULL)
next->prev.Set(prev.GetPtr(), prev.Getld());
if(prev != NULL)
prev->next.Set(next.GetPtr(), next.Getld());
}

inline type *GetNext() { return(next.GetPtr()); }
inline type *GetPrev() { return(prev.GetPtr()); }

h
class DoubleLinkedList

/*
can be used only in persistent objects !

92

*

Man machine service

1.1 Anoverview
1.1.1 Symbols

The basic idea of the man machine service is the introduction of symbols as state
structured objects of an application, e.g. process variables of a control unit. The use
symbols and their behavior on events very flexible with an interactive toolsyh&ol-e
Symbols are composed of base-symbols, such as lines, circles ... and other user-detf
As a result, symbols may contain a hierarchy of components. These are stored in a c
database for usage within the application. After the configuration or construction, the ¢
available in the application. To use them, they have to be connected with an object. |
value of this object leads to a different graphical representation. Changing the graphic
tation (e.g. the user moves a symbol interactive) leads to a different object value. Tl
between object values and the resulting images can be defined. This relation is eithel
where linear or logarithmic functions are provided, or discrete.

All symbols are arranged and positionedgfanes Each plane defines a unit of meas
respectively a scale. One symbol can only be assigned to one plane. Planes with all t
are displayed in windows, using a user defined scaling. It is possible to display multip
one window at the same time, using a stack of planes. On the other hand it is possible
a plane in more than one window at the same time.

1.1.2 Presentation objects

Symbols are used to visualize a big amount of user defined data typesrd$entation k
is introduced to offer the developer the facility to group symbols together and to creat
complex data type with a special semantic.

1.1.2.1 Predefined presentation objects

There are different types of presentation objects predefined:

Chapter 1: Man machine service

e A pictureis a set of symbols. This is used as an image for a set of application objects.
There are no restrictions concerning the object types. The picture is the basis for all other
presentation objects.

e A menuis an image for an object component of an enumeration type, each button shows a
selectable value. Any kind of symbol with a boolean state value is usable as a button.

¢ A maskis an image for an object or a structure of an application: Modifiable components
of the object can be changed by the manipulation of the corresponding symbols (sliders,
buttons, text fields, ...).

¢ A tableis an image of an array of objects or structures.

e A text-documents a picture with a special semantic and behavior.
e A help-documenis a set of text-documents, connected together.

o A hierarchical grapfis a set of pictures with a predefined behavior.

Some presentation objects can be build automatically by the service if the type of the correspond-
ing object is known at runtime.

1.1.3 Events and bindings for distributed systems

Presentations objects themself are useful for the manipulation and visualization of objects. But
to allow the user a communication with an application, he must be able to interact with the entire
system by creating events. In traditional user interfaces, the application needs an event-loop to
recognize such events. The system is build "around" this loop. This design is not very practicable
in service-oriented applications due to the fact, that a service can be composed of many light-
weight processes. To overcome this problem, a new mechanismjritiieag is introduced. A

binding is defined as a connection between an operation and an event on a component of the user
interface. The execution of the bounded operation is triggered by the event.

The main properties of this approach are:

e Many internal operations of the man machine service can be bound to events, so that typical
user interactions with the system are definable by an interactive GUI tool (see below) without
writing any line of code in the application.

¢ Presentation objects can be bound together to create hierarchical menus, masks and tables.

¢ User defined operations can be connected to events to create callback functions or methods
(in C++). An application is able to catch an event using this technique.

¢ The interaction with the application is event-driven without the need of an event-loop. The

mechanism is not limited to a local computer, it is available system-wide. This contains
global call-back functions (or methods in C++) to remote systems.

10

2.3 Double Linked List

2.2.3.8 PersistentPtr<type>::GetPtr
type *PersistentPtr<type>::GetPtr();

GetPtrreturns the pointer to the refered object, if the object is in memory.

2.2.3.9 PersistentPtr<type>:..Set
void PersistentPtr<type>::Set(type *ptr, OBJECT_ID id);

Setsets the references object.

ptr
address of the refered object, StJLL

id
identification of the refered object

2.2.3.10 PersistentPtr<type>:.operators

type *PersistentPtr<type>::operator->();

bool PersistentPtr<type>::operator!();

bool PersistentPtr<type>::operator==(void *ptr);

bool PersistentPtr<type>::operator==(PersistentPtr ptr);
type *PersistentPtr<type>::operator=(PersistentPtr ptr);

type *PersistentPtr<type>::operator=(void *ptr);

bool PersistentPtr<type>::operator!=(void *ptr);

bool PersistentPtr<type>::operator!=(PersistentPtr ptr);

2.3 Double Linked List

The file list.h contains the definition of a double linked list with persistent objects. T
implemented as a template class and must be located in a persistent object. An obj

placed into a double linked list, must be derived from the clastElement!

2.3.1 Class definition

class ListElement

template <class type>
class ListElement {

public:

AutoPersistentPtr<type> next, /* next entry */

91

Chapter 2: Persistent objects

2.2.3.2 PersistentPtr<type>:i-PersistentPtr

PersistentPtr<type>::~PersistentPtr();

The pointer object is removed from memory, the referred object is kept.

2.2.3.3 PersistentPtr<type>::Metatyp
long PersistentPtr<type>::Metatyp();

Metatypreturns the metatyp handle for the class itself.

2.2.3.4 PersistentPtr<type>:.Delete

void PersistentPtr<type>::Delete();

Deleteremoves the referred object from memory, not database.

2.2.3.5 PersistentPtr<type>::Rescan
LOAD_STATE PersistentPtr<type>::Rescan();

Rescarloads the referred object to memory.

Return
The return-value contains the load state of the object:

NO_OBJECT: There is no object refered.
OBJECT_LOADED : Object is loaded to memory.

OBJECT_FOUND: Object was allready loaded to memory. Only the reference count

was increased.
OBJECT_CREATED: not used here

2.2.3.6 PersistentPtr<type>::ExistsNonPresent

boolean PersistentPtr<type>::ExistsNonPresent();

ExistsNonPresertetermins, if on object is refered but not in memory.

2.2.3.7 PersistentPtr<type>::Getld
OBJECT_ID PersistentPtr<type>::Getld();

Getldreturns the identification code of the referred object.

90

1.1 Anoverview

ST "Tos---__ Interaction i~ Ty
Event x 4 ! = Signal Event x RN
Application Fluids End-u

Figure 1.1: User interaction

Binding »> indi
Symbol 1 g 0..n Interactor 0.n < I?nndmg L Window

\
\
l

1 use 0...n
Interpreter > Callback

i
|

Figure 1.2: Behavior model

e The bindings are changeable during runtime with the goal to allow permaner
modifications of the GUI behavior.

¢ The dynamic behavior model is a portably described for different hardware ar
without the need of recompilation.

e The handling of all unbound events is simplified by applying default-bindings for th
of events. These means, that bindings are definable on more than one type of ev
ery unbound event. Furthermore, unbound components of the user interface can |
by bindings to implement a default-handler.

Presentation objects with a predefined behavior on events are implemented using bi
jects of a higher level, which are using presentation objects like pictures, must supply
ponents with task-specific binding functions to have control over the event responding
An interactive GUI editor allows the developer to create user interfaces, consisting of f
objects and windows together with bindings in a comfortable way. For runtime or &
defined interfaces a GUI creation or modification by the service APl is possible.

1.1.4 Interpreted functions as event handler

Picture 1.2 shows the simplified system structure of the behavior model using UML nc

11

Chapter 1: Man machine service

Interpreter

>I

‘ Interpreter_FIuids‘ ‘Interpreter_Appl_JL

Interpreter_Appl_2

Figure 1.3: Interpreter usage

The user causes events by symbol or window manipulation. If an interactor object is bound to
this symbol and the binding condition concerning the event type is true, the specified interactor is
called. This function is either coded in a Pascal-like syntax and executed by a built-in interpreter,
or a precompiled callback function of the application or man-machine service Fluids. The inter-
preter normally “knows” a basic set of built-functions, which are now extended by the methods
defined on the user interface components. Since every application needs some kind of commu-
nication with its user interface, applications can register callback-methods to their own objects
to allow asynchronous event notification. These callback-methods are available in the interpreter
as ordinary functions. The class-hierarchy makes a distinction between callback- and interpreter
interactors to allow an uninterpreted fast call of time-critical callbacks. Special application func-
tionality, which could be required for text editors, is added using this technique. Picture 1.3 shows
the scheme:

The basic interpreter has only a core functionality. Derived interpreter classes add more functions
for special tasks. The user interface management service builds its own extended interpreter, while
special application-dependent interpreters are either derived from the user interface interpreter, if
this functionality must be available to the end user too, or directly from the basic interpreter.
Because this work is based on the distributed environr@»RBA, callback-functions are not
limited to platform boundaries. For this reason, the interpreter is also able to call remote functions
or methods, if their callbacks are registered.

The interpreter and its Pascal-like language are not discussed in detail in this paper, because it is
based on thé UA interpreter of the th@eCGraf-Grupo de Tecnologia em Computacao Grafica

in Rio de Janeiro. This interpreter is freely available for commercial and non-commercial appli-
cations. More information is also available in the LUA-manual.

1.1.5 Realization

MMS is written in C++ language for manipulating symbols, planes and windows. The platform
dependent parts of the MMS are based upon an uniform interface provided by a window ser-
vice. The functions of this service are grouped in two parts: window manipulations and graphical
drawing primitives in windows. This is implemented using distributed objects. The new defined
standard for distributed objects "Corba" is not used due to its requirement for a TCP/IP layer. This

12

2.2 Persistent pointers

know whether the referred object is in main memory, only in database or not present (I
importantto know this, because the mechanism is completely under the control of the g
He has to request a persistent pointer to reload the referred object or to preemptit. Th
very complex task for large data structures, so that there is a slightly modified pointersa
AutoPersistentPtAn object of this class reloads the referred object during its own (ret
This implies, that data structures, connected by this pointer, are reloading themselves
kinds of base or root objects have to be reloaded on demand. The following sequenc
starts after reloading the root object:

If the loaded object contains a&utoPersistentPtas a component, this object is cre
the language’s runtime control and initialized by the persistent object system.

The constructor of the created pointer object recreates the referred object if it
sequence continues at step 1 until there is no referred object left.

To stop this mechanism, a large data structure should be divided into self loading sut
which are connected together BgrsistentPtas a breakpoint. There are two major strate
for large persistent data structures:

Objects, which are used together, should be kept in self- loading structures.

Breakpoints separate such groups to keep the memory utilization small.

2.2.2 Multiple references

Introducing relations between persistent objects leads to one problem: How are me
ences to one object handled ? Assume, there are two objects A and B referring an ot
happens when both of them are reloading or preempting C ? The first creation attemy
in main memory. All other creation-accesses only determine the memory address of (
it. C is not multiply loaded. This requires a reference counter, which is used to free anc
if no references byPersistentPtexist. This is not a common solution since there can b
copy of aPersistentPtwithout informing the persistent object system.

2.2.3 PersistentPtr<type>

Persistent references between different databases are not supported in the current
persistent object system is not able to determine such illegal constructions !

2.2.3.1 PersistentPtr<type>::PersistentPtr
PersistentPtr<type>::PersistentPtr(DatabaseObject *db = NULL);

The pointer refers an oject of the given database object.

db
Database handle &WULL, if the referred object is placed in the default database.

89

Chapter 2: Persistent objects

perS|stnt class 1 persistent class prpIication

useg

class PersistentP—Sconnected | Dersistent
with ' Object
' System

Figure 2.2: Persistent pointer

2.1.4.8 Persistent::GetDataObject
void *Persistent::GetDataObject();

GetDataObjecteturn the address of the passive data object, assigned to this persistent object, if
this data object exists. The memory can be overwritten or read.

2.1.4.9 Persistent::GetDatabaseObject
DatabaseObject *Persistent::GetDatabaseObiject();

GetDatabaseObjeceturn the database handle.

Return
Database handle &WULL, if the object is assigned to the default database.

2.2 Persistent pointers

In most object-oriented applications it is necessary not only to keep objects persistent, but to hold
the relations between objects. A very simple example is a doubly-linked list of persistent objects,
which has to be saved as a totality. Relations between objects sometimes lead to very large data
structures, of which not every part is used in any situation. To ensure an efficient main memory
utilization a mechanism for a dynamic load and preemption of structure compo- nents should be
available. An example is the above mentioned man machine service: It holds only the visible user
interfaces in main memory.

2.2.1 Characteristics and design

Relations between non-persistent objects are normally realized by pointers. The main idea be-
hind the construction of persistent relations is the introduction of a special pointer class, called
PersistentPtin addition to the pointer, which is only valid in main memory, it contains the desti-
nation object’s identification code too. Therefore this pointer class can be used only for persistent
objects. The next picture shows the class structure in OMT notation for persistent pointers.

The use of a real pointer together with the identification number is important for an additional
facility: The mechanism for a dynamical reload and preemption of persistent objects needs to

88

1.2 GUI and presentation objects

Gui

\ \
PrObject ‘ ‘GUIWindow‘

Graph H Textdoc. ‘

AN

Helpsystem

Figure 1.4: Realized class hierarchie

is not possible in some kind of automation applications.

GUI's are stored in a database, using persistent objects, to ensure reuseability in diffe
and to allow the unmodified use on other hardware platforms.

Figure 1.4 presents the internal structure of the service without the persistent object I

1.2 GUI and presentation objects

The following sections describe the C++ API for the man machine service.

1.2.1 |Initialization: System class

It is important to do some initialization before using the MMS API. ThestemClass ha
most initializations.

1.2.1.1 System::System

System::System(const char *name,
boolean network = FALSE,
boolean Ilwp = TRUE);

This operation starts the internal system, including task switching and networking.

name
Name of this computer.

network
TRUE, if networking is needed

13

Chapter 1: Man machine service

Iwp

If Iwp is TRUE, internal processes are created as lightweight processes. If this flas is not
set, heavy-weight processes are used. In the current version, this flag is only needed for
UNIX-systems. On all other systems it should be sefRUE

1.2.1.2 SystemzSystem
System::~System()

This operation stops the internal system, including task switching and networking.

1.2.1.3 System::InitPersistentObjectSystem

void System::InitPersistentObjectSystem(const char *def_database);

InitPersistentObjectSysteim invoked after the system creation. This operation starts the persis-

tent object system and loads or creates the default database. There is no database handle returned,
since all persistent object operations provide a default parameter for the default database. This
database can't be switched during the lifetime of the application.

def_database

Name of the default database

1.2.1.4 System::ExitPersistentObjectSystem
void System::ExitPersistentObjectSystem();
EXxitPersistentObjectSysterarminates the persistent object system and closes all open databases.

This operation mulst be called deleting the system-object.

1.2.1.5 System::OpenDatabase

DatabaseObject *System::OpenDatabase(const char *name);

OpenDatabasepens an addtional database, which can be used for persistent objects. A total of 4
databases can be kept open at the same time. If no database with the given exists, a new will be
created.

name
database name

Return
database handle, which is used as a parameter for persistent objects

14

2.1 Concept of persistent objects

2.1.4.2 Persistent:i-Persistent

Persistent::~Persistent();

The object is removed from memory, not from database.

2.1.4.3 Persistent::Update

void Persistent::Update();

Updatewrites the object’s contents into the database, using the local stub to convet
into a unique database format.

2.1.4.4 Persistent::Undo

void Persistent::Undo();

Undo overwrites the object’s contents with the value in the database.

2.1.4.5 Persistent::Delete

void Persistent::Delete();

Deleteremoves the object only from the database, but not from the memory. The ap
UndoandUpdateon this object is disabled after a removal.

2.1.4.6 Persistent::Getld
OBJECT_ID Persistent::Getld();

Getldreturns the unique identification code.

Return
unique object handle

2.1.4.7 Persistent::Created

boolean Persistent::Created();

Createdis used to determine whether this object is newly created or loaded from the
This method is useful in a constructor of a persistent class to do some initializatio
newly created objects.

87

Chapter 2: Persistent objects

an optional identification number and

a reference to a database stub.

The type-id is necessary to enable the object system to access the metatype information. If no
identification is given during the first creation, a unique one will be determined. The con nection

with a database server is managed through the referenced stub object, which has to be created first.

The behavior of persistent objects is controllable through the interface of theRdasistent
The initialization and database access for persistent objects is described in 1.2.1.3.

2.1.4.1 Persistent::Persistent

Persistent::Persistent(void *addr, OBJECT_ID id, long metatyp,
DatabaseObject *db = NULL);

Persistent::Persistent(void *addr, long metatyp,
DatabaseObject *db = NULL);

Only for compatibility with older version, the old constructors are still active. Note: Using the old
constructors, virtual functions are not allowed in persistent classes !
Persistent::Persistent(OBJECT_ID id, long metatyp,

DatabaseObject *db = NULL);

Persistent::Persistent(long metatyp,
DatabaseObject *db = NULL);

The first constructor is used to create a new persistent object, its identification code is determined
automatically. The second one creates a local copy of an existing object and reloads its contents

or creates a new one with the given id, if no object with this id exists. Itis possible to omit a stub,
if one of the stubs is marked as default.

addr
Object address has to be set, because in classes with virtual function, the address cannot be
determined by the persistent class itself.

id
object identification
metatyp

Metatyp information for the corresponding class: This parameter is not required, it can be
replaced by a macro, which determins the size of the object in main memory:

MT_EMPTY_OBJECT(x) : The object does not have metatyp information.

MT_EMPTY_DATA : An object is created frorRersistentonly a passive data object is
bound to the persistent object. No metatyp information for the data object is available.

MT_DATA : An object is created frorRersistentonly a passive data object is bound to
the persistent object. Metatyp information for the data object is available.

db
Database handle, if the object is not stored in the default databasg/Ldr, if the default
database is used.

86

1.2 GUI and presentation objects

1.2.1.6 System::CloseDatabase
void System::OpenDatabase(DatabaseObject *db);

CloseDatabaseloses an addtional database. The default database cannot be clos
persistent object system is ended.

db
database handle

1.2.1.7 System::InitMms

MMS *System::InitMms(const char *esa, short x, short y);

InitMms starts the man machine service. This method must be called after creating
object and starting the persistent object system.

esa
base name of the file, containing the symbol descriptions

X,y
These paramaters are used in the current version to set the default size of the n

of the application.

Return
handle to the man machine service

1.2.1.8 System::ExitMms
void System::ExitMms();

ExitMms terminates the man machine service. Since there can be only one servicer
current version, no handle has to be supplied.

1.2.1.9 MMS::MaxWidth

coord MMS::MaxWidth();

MaxWidth determins the maximum width of the main window. This method does not ir
sense in window systems like X-Windows since the window size may change. |If t
underlying window system (e.g. in DOS), this method returns the screen resolution.

Return
x-coord, given inSystem::InitMmscall.

15

Chapter 1: Man machine service

1.2.1.10 MMS::MaxHeight
coord MMS::MaxHeight();

MaxHeight determins the maximum height of the main window. This method does not make
much sense in window systems like X-Windows since the window size may change. If there is no
underlying window system (e.g. in DOS), this method returns the screen resolution.

Return
y-coord, given inSystem::InitMmscall.

1.2.1.11 MMS::FirstSymbolType
short MMS::FirstSymbolType(char *type);
FirstSymbolTypdinds the first defined symbol type.

MetatypContainer

2.1 Concept of persistent objects

db

database handI&NULL for the default database, or the handle returned f@penDat

The following sequence of lines does all necessary initializatansistentObjectSysteinia
ternal global variable which must be set in order to ensure a correct handling of persis

*MetatypServer] MAX_OPEN_DATABASES |;

void InitPersistentObjectSystem(char *def_database) {

for(short i = 0; i < MAX_OPEN_DATABASES; i++)
MetatypServer[i] = NULL;

PersistentObjectSystem = new DatabaseContainer(def database);

MetatypServer[0] = new MetatypContainer();

type
typereturns the name of the first symbol type, or an empty string, if no symbol is found.

Return
Index number, used for calls tdextSymbolType

2.1.3 Exitialize Persistent Object System

The following sequence of lines does all necessary exitialization after updating the da

void ExitPersistentObjectSystem() {

1.2.1.12 MMS::NextSymbolType
short MMS::NextSymbolType(short index, char *type);
NextSymbolTypdinds the next defined symbol type.

index
index contains the index of the previously found symbol type.

type
type returns the name of the found symbol type or an empty string, if no more symbols are
predefined.

Return
Index number, used for more callsMextSymbolType

1.2.1.13 MMS::GetSymbolMetatype

for(short i = 0; i < MAX_OPEN_DATABASES; i++) {
if(MetatypServer[i 1) {
MetatypServer[i]->Update();
delete MetatypServer[i J;
MetatypServer[i] = NULL;
}
}

if(PersistentObjectSystem) {
delete PersistentObjectSystem;
PersistentObjectSystem = NULL;
}

long MMS::GetSymbolMetatype(const char *symbol_type);
GetSymbolMetatypeeturns the metatyp handle for the given symbol type.

symbol_type
name of the symbol type

Return

Metatype handle oMT_UNDEF, if the symbol type is unknown. The return value may not

the same in different runs of the application.

16

2.1.4 Persistent

The described approach for persistent objects is totally embedded into C++. As wri
every persistent class is derived from the internal class "Persistent”. Since versior
functions in persistent classes are allowed.

The constructor is provided with

the address of the corresponding class,

the type-id of the corresponding class,

85

Chapter 2: Persistent objects

each program execution cycle. As a solution, every persistent object is provided with a
unique identification code. This is either granted by the internal system during the first
dynamical creation of the object or given out by the programmer for static objects. This
second mechanism for static objects is necessary to allow the storage of an object’s reference
in the program code.

Runtime type information

The next problem is the desired platform independence for persistent objects. Since the se-
lected programming language C++ does not provide full runtime type information, a more
mighty mechanism has to be created. A persistent class has an internal method called
"Metatyp" that is first internally called by the object itself to specify its own type information
and second used by other objects to determine the metatyp of this object. This method uses
a local metatype server to store its type information. First, it creates a new metatype with its
own class-name. Within the next steps it describes each class component using

its name,
its position relative to the object together with its size and

its type.

"Metatyp" is automatically created for persistent classes by a precompiler to reduce the pro-
gramming overhead and avoid errors. If the persistence is limited to one hardware plat form,
the type information can be omitted.

The database stub uses this method to get the full type information for a persistent object
when the object is stored or loaded. Therefore the object can be stored in a unique data base
format.

2.1.2 |Initialize Persistent Object System

DatabaseContainer::DatabaseContainer(char *def_database);

Creating a database container object initializes the persistent object system and opens or creates
the given database as the default database for all other accesses. More databases can be accessed
by usingOpenDatabasénly one database container should be activ.

def_database
name of the default database

Return
handle to a database container, used to create additional databases

MetatypConatiner::MetatypContainer(DatabaseObject *db = NULL);

A new metatype server is created in or reloaded from a database. If no database is given, the
metatype server is built for the default database.

84

1.2 GUI and presentation objects

1.2.1.14 MMS::CreatePlane

plane MMS::CreatePlane(const char *plane_name);

CreatePlanereates a new plane with a given name. A unique handle is returned. If a
this name exists already, only the handle is returned and the internal reference count
This method is not used in normal application programs.

The following constants represent the characteristics of planes:

MAX_SIMU_PLANE : maximum number of simultaneously used planes
MAX_PLANE_NAME : maximum plane name length
The method parameters are:

plane_name
unigue plane name

Return
plane handle or one of the followeing error-codes:

MMS_TOO_MANY_PLANES : The number of simultaneously used planes
MAX_SIMU_PLANE.

MMS_PLANE_NOT_FOUND: This return code is only used in the find-metl
is set, if a plane can not be found.

1.2.1.15 MMS::DeletePlane
void MMS::DeletePlane(plane handle);

DeletePlanelecrements the reference count and removes the plane, if no more refere

handle
unique plane handle, return &§reatePlane

1.2.1.16 MMS::FindPlane

plane MMS::FindPlane(const char *name);
char *MMS::FindPlane(plane handle);

FindPlanesearches for a plane with the given name or handle.

handle
unique plane handle, return l&§reatePlane

name
ungiue plane name

Return
name or handle

17

Chapter 1: Man machine service

1.2.1.17 GuilList::GuiList
GuiList::GuiList(DatabaseObject *db = NULL);

A GuiList contains a directory of every gui in the given database or the main database. If no
GuiList object is found in the database, an empty object is created. There can be only one of such
directories in the same database.

db
database handle

1.2.1.18 GuiList::~GuiList
GuiList::~GuiList();

Deleting such object removes the directory from main memory. The contents is not written to the
database.

1.2.1.19 GuiList::Metatyp
static long GuiList::Metatyp();

Metatypgets the metatype handle for the gui list itself.

Return
metatype handle

1.2.1.20 GuiList::FirstGui
OBJECT_ID GuiList:FirstGui();

FirstGui returns the unique identification code of the first gui in the directory. The gui is not
loaded to memory.

Return
unique gui handle

1.2.1.21 GuilList::NextGui
OBJECT_ID GuiList::NextGui(OBJECT_ID last_gui);

NextGui returns the unique identification code of the next gui in the directory. The gui is not
loaded to memory.

last_id
previous gui id

Return
unique gui handle of the next gui

18

2.1 Concept of persistent objects

persistent class

' Application

,,,,,,,, is derived from __
is connected) ! Pe(sistent

Persistent |- With DatabaseStull <2 Database Server Obiect

‘ J stub for ?’ System

uses

HashTable

Figure 2.1: Internal data structure

of full type information at runtime, which could not be derived from RTTI in C++
object can provide the persistent object system with its own type description.

Realtime access
This solution allows realtime access to the database if the underlying operating
realtime capabilities.

2.1 Concept of persistent objects

As mentioned above, the main goal in the introduction of persistent objects is a "natul
ding into a given object-oriented programming language (here C++). The intention is it
of the additional functionality from the programmer by applying a clear object-orient
Persistent objects should be usable like any other non- persistent object.

2.1.1 Characteristics and design

Persistent objects are realized by declaring the corresponding class as persistent. Tl
deriving these classes from the internal class "Persistent” on the applications side. Or
internal side every persistent object is connected to one (of several possible) database
acts as a stub for the real local or remote database server in a heterogeneous net of cc
connection to a stub is dynamically changeable so that an object’s content can be loe
stored to different databases. The advantage of this design is that a persistent object
anywhere on a net. No object has to know its own storage place. Only the reference
stub is kept. All database stubs share the same machine-dependent hash table ford
First, to determine whether an object is already in memory and second, to find the men
for a given object identification. The following picture shows the internal structure tog
the application interface. The diagram uses the OMT notation for data structures.
The following two attributes are characteristics of persistent objects:

Unique identification

The first problem in persistence that has to be solved is the unambiguous iden
objects in external and internal memory, because internal memory addresses ¢

83

Persistent objects

In the above mentioned man machine service every component of the user interface is represented
by an object. Their dependencies and links are expressed by relations between objects. The major
problem that arises from such a design is, that there is no standard way to keep the contents of
objects together with their relations persistent without giving up a clear object oriented design.
Persistent objects are objects in a programming language, which are able to survive a program
execution cycle. This means, that their content is not lost after a program crash or normal termi-
nation because it is saved in application defined periods of time in an external memory. To assure
this functionality in traditional systems, often an application dependent store-and- load mecha-
nism is used to write and restore the object’s contents. This can be done by placing persistent
objects into a special container object, which itself is responsible for the object management. This
has one major disadvantage: persistent objects cannot be treated like other non-persistent objects.
A much better approach is to request an object to save its own state or to restore it, because of the
following main advantages:

Embedding
The access to persistent objects is identical to non- persistent objects. There are only addi-
tional functions to control the load/save mechanism.

Ease of use
The programmer can reuse this mechanism in every application without any change. The
object interface is identical.

State dependence

The states of critical or other important objects must be accessible even after a program crash
either to find the problem by examining the last state values or to reinitialize the program
during a new-start. An object is able to request itself to save its own state after major or
important changes.

Platform independence

A major problem in the above mentioned man machine service was the reuse of user inter-
faces on different hardware platforms like Sparc-Workstations and Intel-PC’s with a variety

of compilers. As aresult, there was no guarantee that saved objects on one system are usable
on other systems due to alignment and byte-order problems. This requires the availability

1.2 GUI and presentation objects

1.2.1.22 GuiList::FindGui
OBJECT_ID GuiList::FindGui(const char *name);

FindGuireturns the unique identification code of the gui with the given name or 0, if n
exists.

name
gui name

Return
Unique gui handle or 0, if no gui was found with this name.

1.2.1.23 GuiList::FindGui
const char *GuiList::FindGui(OBJECT_ID id);

FindGuireturns the name of gui, for which the unique identification code was given.

id
gui handle

Return
Gui name, or an empty string, if the mentioned gui is not in the directory.

1.2.1.24 Guilist::InsertGui
void GuiList::InsertGui(Gui *gui);

InsertGuiinserts the given gui into the directory.

gui
gui to insert

1.2.1.25 GuilList::RemoveGui

void GuiList::RemoveGui(Gui *gui);
RemoveGuiremoves the given gui from the directory.

gui
gui to remove

1.2.1.26 GuiList::Update
void GuiList::Update();

Updatewrites the directory to the database.

19

Chapter 1: Man machine service

122 Gui

The container class for all other user interface objects isatie'. It groups the interface objects
for a special task of the application.

1.2.2.1 Gui:Gui

Gui::Gui(const char *name, DatabaseObject *db = NULL);
Gui::Gui(Gui *copy_gui, DatabaseObject *db = NULL);
Gui::Gui(long db_id, DatabaseObject *db = NULL);

The gui-object is created with a given unique database identification to reload an existing gui from
the database or to create one with a special id. To create a new, empty gui with an automaticly
assigned id, the constructor should be used in its third form. The second constructor is needed to
build a new gui as a copy from an existing one. All Bindings and Components are copied too !

db
If given, an other as the default database can be specified.

name
(unique) name for the gui

db_id
unique database id

copy_guiExisting gui, which is used as a template for the new one
1.2.2.2 Gui:~Gui
Gui::~Gui();
The gui object is removed from memory, but not from the database.
1.2.2.3 Gui::Metatyp
static long Gui::Metatyp();

This operation returns a unique metatyp handle for the gui class itself. The handle is only valid
for a single run of an applicatiomn an other run, the value can be different

1Gui = graphical user interface

20

1.3 Predefined strucures and values

1.3.14.16 LABEL

LABEL is a predefined symbol for a structure of tygmbolStringAttr The global objecE
bolLabelAttrcan be used to initialize a label with standard fonts and font attributes.

1.3.14.17 TITEL

TITEL is a predefined symbol for a structure of tyBgmbolStringAttr The global object
bolTitelAttr can be used to initialize a label with standard fonts and font attributes.

1.3.14.18 A-EDIT

A-EDIT is a predefined symbol for a structure of ty@embolStringAttr The global objecE
bolEditAttr can be used to initialize a label with standard fonts and font attributes.

1.3.14.19 S-EDIT
S-EDIT is a predefined symbol for a structure of tyggmbolShortAttr

1.3.14.20 L-EDIT
L-EDIT is a predefined symbol for a structure of tygmbolLongAttr

1.3.14.21 F-EDIT
F-EDIT is a predefined symbol for a structure of ty@gmbolFloatAttr

1.3.14.22 D-EDIT
D-EDIT is a predefined symbol for a structure of tyembolDoubleAttr

81

Chapter 1: Man machine service

Button Button

Figure 1.5: Button symbol, released and pressed state

O ®

Figure 1.6: Switch symbol, passive and active state

Selected
Selection stateTRUE or FALSE)

Name
Name of the BMP-File, representing the symbol

1.3.14.10 Symbols
1.3.14.11 BUTTON
BUTTON is a predefined symbol for a structure of tyggmbolStringAttr

1.3.14.12 TOGGLE

TOGGLE is a predefined symbol for a structure of typeolean It looks like a button, used to
switch between the two possible values.

1.3.14.13 BITMAP

BITMAP is a predefined symbol for a structure of typgmbolBitmapAttr It is displayed using
a BMP-File.

1.3.14.14 HSLIDER

HSLIDER is a predefined symbol for a structure of tyfgmbolSliderAttr 1t looks like a hori-
zontal slider, used to select a float value between two boundaries.

1.3.14.15 VSLIDER

VSLIDER is a predefined symbol for a structure of typgmbolSliderAttr It looks like a vertical
slider, used to select a float value between two boundaries.

80

1.2 GUI and presentation objects

1.2.2.4 Gui::SimulateEvent

void Gui::SimulateEvent(const PrObject *object,
const Pritem *item,
const GuiWindow *gui_win,
EVENT_TYPE event, long value,
WeltKoord mouse_x, WeltKoord mouse_y);

SimulateEveninitiates an event on an user interface object. During normal operationg
only generated by the gui thread (event handler) and transmitted to the destination obj
rare cases — internal: bindings — it can be necessary for an object to simulate eve
objects.

object
the destination object, which receives the event

item
the item in the destination object, which receives the event (this parameter S&iLl

gui_win
the given window receives the event

event
the type of the event, refer 1.3.2 for details.

value
The value of an event depends on the event type: For example, a mouse-click
the value of the pressed mouse button. See 1.3.3 for details.

mouse_x, mouse_y
The position of the mouse pointer during the event-dr if not required.

1.2.2.5 Gui::ChangeFocus

void Gui::ChangeFocus(PrObject *object, Pritem *item,
WeltKoord x_pos = -1,
WeltKoord y_pos = -1);

In the current versionChangeFocuss only defined for mask, menu and table objects 1
the keyboard focus between different items. The gui initiates firdE@BNT_LEAVE_FQX
event on the object and item, which will loose the focus and secotV&NT_ENTER_FQ
on the new object and item. These events are normally interpreted in the user interfac
discarded in normal applications when not required for other purposes.

object
address of the object, which receives the focus

21

Chapter 1: Man machine service 1.3 Predefined strucures and values

item float value,
address of the item afbject which receives the focus. Both -ebjectanditem — must be minimum,
non zero values to set a new focusobjector item are NULL, the focus is only removed. maximum;
public:
X_pos, y_pos)
In addition, the position of the mouse pointer can be supplied to allow the recalculation of SymbolSliderAttr(float val = 0.0,
the cursor position for textfield items. If the position is not given, the cursor is set on the first I:Oai mint = 10%%')
item. On other input symbols, the behaviour is similar or the position is not interpreted. oat maxi = 100.
putsy P P SymbolSliderAttr(double val,
double mini = 0.0,
double maxi = 100.0);
1.2.2.6 Gui:Execute ~SymbolSliderAttr(){}
void Gui::Execute(GUI_EXEC_FLAG flag = GUI_EXEC_EXECUTE),
float Value();
This operation is used to switch the event generation for a given gui on or off. After the (re- void Value(float val);
)creation, the gui is not generating events, until this method is called. float Minimum();
void Minimum(float mini);
flag
flag specifies the execution level, refer 1.3.10 for details. flbat Maximum();
void Maximum(float maxi);
. h
1.2.2.7 Gui:Event
Value
boolean Gui::Event(EVENT *ev, boolean wait = TRUE); Value contains the displayed value.
Eventdetermines, whether a new event for the gui is available or not. Minimum, Maximum
Minimum and maximum values with the following condition:
ev Minimum < Value< Maximum
If a new event is available, this parameter is filled with the event specification. See 1.3.3 for
details.

1.3.14.9 SymbolBitmapAttr

wait This type represents a bitmap symbol, no editing is possible (only selection).

If waitis set, the execution is suspended, until an event has occured.)
class SymbolBitmapAttr {

Return
. . . . short selected;
The return value iFRUE, when an event is available, BALSE, if not. char name[MAX_INPUT LEN I;
public:
1.2.2.8 Gui:Show SymbolBitmapAttr(const char *name = NULL);
void Gui:Show(boolean flag = TRUE); ~SymbolBitmapAttr(){}

Showshows or hides a user interface. short Selected();

void Selected(short sel);
flag char *Name();
Specifies, whether the gui should be shown or hidden. If the gui is not shown, the event void Name(const char *nn):

generation for this gui is switched off. It will not be switched on automaticly after a redisplay. 8

22 79

Chapter 1: Man machine service

~SymbolDoubleAttr(){}

short Selected();

void Selected(short sel);
float Float();

void Float(float f);

short HighlightSymbol();

void HighlightSymbol(short his);
ushort EditAttributes();

void EditAttributes(ushort ea);
ushort MaxLen();

void MaxLen(ushort ml);
short CrsrPos();

void CrsrPos(short cp);
short RelXCrsrPos();

void RelXCrsrPos(short rel);
short Font();

void Font(short f);

short FontSize();

void FontSize(short s);
short FontColor();

void FontColor(short ¢);
short FontAttributes();

void FontAttributes(short a);

b

Most components are explained in 1.3.14.3. Individual attributes for every character are not sup-

ported. The font attributes are explained in 1.3.14.2.

Double

Doublecontains the displayed value.

1.3.14.8 SymbolSliderAttr

This type represents a symbol for a float value, displayed and edited in slider representation.

class SymbolSliderAttr {

78

1.2 GUI and presentation objects

1.2.2.9 Gui::CreatePrObject

PrObject *Gui::CreatePrObject(PR_TYPE pr_type,
const char *name,
DESIGN *design,
const char *plane_name,
long data_type_mt,
boolean empty,
const char *back_symbol);
PrObject *Gui::CreatePrObject(const PrObject copy po);

CreatePrObjedtreates a new user interface object in the given gui. The second constru
a new object as a copy of an existing object. All Bindings and items are copied too.

pr_type
the type of the object (mask, menu etc.), refer 1.3.5 for details.

name
optional name for the object through which the object can be searched. An emy
also valid.

design
position, size and orientation of the object, refer 1.3.7 for details. Menus, maskd
which are created using the metatype, return the calculated position and size of t

plane_name

The plane name, in which the object is shown. An object can be created in its o
using the macr@WN_WINDOW. In this case, the object is placed in the lower le
of the window. All sizing commands modify the window position. The plane gets
of the PrObject (see parameteamg. In this case, it is required to seame

data_type_mt
the metatyp handle for the corresponding object of the applicationlgrf the intel
object is not a picture for an application object (like PR_PICTURE f.e.).

empty

If emptyis set, the object is not generated with all items, using the type informel
type_mt If emptyis set, the object is build with a standard design and behaviom
metatyp description.

back_symbol

The name of an optional background symbol for this object. The symbol shouldn
any state variable, since these are not set.

copy_po
Original object, which is not modified

23

Chapter 1: Man machine service

1.2.2.10 Gui::DeletePrObject

void Gui::DeletePrObject(PrObject *object);
void Gui::DeletePrObject(F_MODIFIER fmod);

DeletePrObjectemoves an object from the gui and database. This object cannot be accessed any

longer. The second form deletes all objects with a given attribute (see section 1.3.4).

object
address of the object &WULL, if all objects of this gui are to be deleted

fmod

Unique identifier (e.g.: marked)

1.2.2.11 Gui::FirstPrObject
PrObject *Gui::FirstPrObject(F_MODIFIER fmod = F_ALL);

FirstPrObjectreturns the first object out of the list of objects in the gui. The selection can be
bound to objects of a given type (see section 1.3.4).

Return
address, if such an object exists,ULL

fmod

attribute, default: ignore attribute (F_ALL)

1.2.2.12 Gui::NextPrObject

PrObject *Gui::NextPrObject(PrObject *object,
F_MODIFIER fmod = F_ALL);

NextPrObjectreturns the next object out of the list of objects in the gui. The selection can be
bound to objects of a given type (see section 1.3.4).

object
previous object

Return
address, if a next object exists, NULL

fmod
attribute, default: ignore attribute (F_ALL)

24

1.3 Predefined strucures and values

void EditAttributes(ushort ea);

ushort MaxLen();
void MaxLen(ushort ml);

short CrsrPos();
void CrsrPos(short cp);

short RelXCrsrPos();
void RelXCrsrPos(short rel);

short Font();
void Font(short f);

short FontSize();
void FontSize(short s);

short FontColor();
void FontColor(short ¢);

short FontAttributes();
void FontAttributes(short a);
b

Most components are explained in 1.3.14.3. Individual attributes for every character ¢
ported. The font attributes are explained in 1.3.14.2.

Float
Float contains the displayed value.

1.3.14.7 SymbolDoubleAttr

This type represents a symbol for a double value, displayed and edited in string repra
created object is initialized with reasonable values as font attributes.

class SymbolDoubleAttr {

double _double;
short selected;
CharAttr cattr;
unsigned short edit_attributes,
max_len;

signed short crsr_pos,
highlight_symbol,
rel_x_crsr_pos;
public:

SymbolDoubleAttr(double val = (double)0.0);

7

Chapter 1: Man machine service

void Font(short f);

short FontSize();
void FontSize(short s);

short FontColor();
void FontColor(short ¢);

short FontAttributes();
void FontAttributes(short a);

I

Most components are explained in 1.3.14.3. Individual attributes for every character are not sup-
ported. The font attributes are explained in 1.3.14.2.

Long

Long contains the displayed value.

1.3.14.6 SymbolFloatAttr

This type represents a symbol for a float value, displayed and edited in string representation. A
created object is initialized with reasonable values as font attributes.

class SymbolFloatAttr {

float _float;

short selected,;

CharAttr cattr;

unsigned short edit_attributes,
max_len;

signed short crsr_pos,
highlight_symbol,
rel_x_crsr_pos;
public:

SymbolFloatAttr(float val = 0.0);
~SymbolFloatAttr()}{}

short Selected();
void Selected(short sel);

float Float();
void Float(float f);

short HighlightSymbol();
void HighlightSymbol(short his);

ushort EditAttributes();

76

1.2 GUI and presentation objects

1.2.2.13 Gui::FindPrObject

PrObject *Gui::FindPrObject(const char *name);
FindPrObjecsearches for an object with the given name in the gui.

name
name of the object

Return
address, if such an object exists,lULL

1.2.2.14 Gui::CreateGuiWindow

GuiWindow *Gui::CreateGuiWindow(const char *name,
const WIN_ATTRIB *wa);
GuiWindow *Gui::CreateGuiWindow(GuiWindow *copy_guiw);

CreateGuiWindovcreates a window in the given gui. A copy of an existing window is
using the second form.

name
optional name for the window through which the window can be searched. An er
is also valid.

wa
position, size and other window attributes, refer 1.3.12 for details.

copy_guiw
template for the new window

1.2.2.15 Gui::DeleteGuiWindow

void Gui::DeleteGuiWindow(GuiWindow *win);

DeleteGuiWindowemoves a window from the gui and database. This window cannot b
any longer.

win
address of the window

25

Chapter 1: Man machine service

1.2.2.16 Gui::FirstGuiwindow
GuiWindow *Gui::FirstGuiWindow(F_MODIFIER fmod = F_ALL);

FirstGuiWindowreturns the first window out of the list of windows in the gui. The selection can
be bound to windows of a given type (see section 1.3.4).

Return
address, if such a window exists, NtJLL

fmod
attribute

1.2.2.17 Gui::NextGuiWindow

GuiWindow *Gui::NextGuiWindow(GuiWindow *win,
F_MODIFIER fmod = F_ALL);

NextGuiWindowreturns the next window out of the list of windows in the gui. The selection can
be bound to windows of a given type (see section 1.3.4).

win
previous window

Return
address, if a next window exists, MULL

fmod
attribute

1.2.2.18 Gui::FindGuiWindow

GuiWindow *Gui::FindGuiWindow(const char *name);

FindGuiWindowsearches for a window with the given name in the gui.

name
window name

Return
address, if such a window exists, NtJLL

26

1.3 Predefined strucures and values

Most components are explained in 1.3.14.3. Individual attributes for every character ¢
ported. The font attributes are explained in 1.3.14.2.

Short

Shortcontains the displayed value.

1.3.14.5 SymbolLongAttr

This type represents a symbol for a long value, displayed and edited in string repree
created object is initialized with reasonable values as font attributes.

class SymbolLongAttr {

long _long;

short selected;

CharAttr cattr;

unsigned short edit_attributes,
max_len;

signed short crsr_pos,
highlight_symbol,
rel_x_crsr_pos;

public:
SymbolLongAttr(long val = (long)0);
~SymbolLongAttr(){}
short Selected();
void Selected(short sel);
long Long();

void Long(long |);

short HighlightSymbol();
void HighlightSymbol(short his);

ushort EditAttributes();
void EditAttributes(ushort ea);

ushort MaxLen();
void MaxLen(ushort ml);

short CrsrPos();
void CrsrPos(short cp);

short RelXCrsrPos();
void RelXCrsrPos(short rel);

short Font();

75

Chapter 1: Man machine service

class SymbolShortAttr {

short

CharAttr

_short,
selected;
cattr;

unsigned short edit_attributes,

max_len;

signed short crsr_pos,
highlight_symbol,
rel_x_crsr_pos;

public:

SymbolShortAttr(short val = 0);

~SymbolShortAttr(){}

short Selected();

void Selected(short sel);

short Short();

void Short(short s);

short HighlightSymbol();

void HighlightSymbol(short his);

ushort EditAttributes();

void EditAttributes(ushort ea);

ushort MaxLen();

void MaxLen(ushort ml);

short CrsrPos();

void CrsrPos(short cp);

short RelXCrsrPos();

void RelXCrsrPos(short rel);

short Font();

void Font(short f);

short FontSize();

void FontSize(short s);

short FontColor();

void FontColor(short ¢);

short FontAttributes();

void FontAttributes(short a);

74

1.2 GUI and presentation objects

1.2.2.19 Gui::CreateBinding

Three types of bindings can be distinguished: Bindings to interpreter functions, bindin
in functions and bindings to external callback function. A binding is created and assi
object. It is triggered by events on the object, that contains the binding.

Define a binding to an interpreter function:

Binding *Gui::CreateBinding(const char *name,
const char *inter_func,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Define a binding to an external callback function:

Binding *Gui::CreateBinding(const char *name,
const char *callback_obj,
const char *callback_func,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Define a binding to an internal function:

Binding *Gui::CreateBinding(const char *name,
BINDING_FUNCTION bf,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Create a binding as a copy of an existing binding:

Binding *Gui::CreateBinding(Binding *copy_bi,
DatabaseObject *db = NULL);

name
A binding can have a (unique) name to allow an identification.

inter_func
Name of the interpreter function.

callback_obj
Name of the external callback object. This mechanism is discussed in detail in se

callback_func

Name of the external callback methodaafilback _ohj This mechanism is discussed
in section 1.3.8.

27

Chapter 1: Man machine service

po
Destination object, on which the function is execut@d.contains its reference. Only one
of the parameterpo or pi can be set t&WULL, when using internal functions. External and
most interpreter functions do not need both parameters. h

pi
Destination item, on which the function is executpdcontains this reference.

gui_win
Destination window, if the function is executed on a window.

ev_type
ev_typecontains the type of the event, on which the corresponding function is activated.
Refer 1.3.2 for details.

value

Most events have additional values, specifying the events in detail (e.g., @ mouse event sets
the value to the pressed mouse butta@uedefines the requiered value to start the function

or contains—1, if the value should be ignored.

bind_func
This parameter contains the identification for an internal function. These functions are called
when the trigger conditions are fulfilled. Refer 1.3.9 for details.

db
Database handle, if the object is not stored in the default database.

copy_bi

template binding as copy source

1.2.2.20 Gui::DeleteBinding
void Gui::DeleteBinding(Binding *bind = NULL);

This operation removes a binding from this gui. The binding object is removed from memory and
database.

bind
pointer to binding objectNULL, if all bindings should be removed

1.3 Predefined strucures and values

short FontAttributes();
void FontAttributes(short a);

String
string value, displayed in the symbol

Selected
Selectectontrols the additional state value of the corresponding symbol: If it is no
symbol is shown in selected state. Not every symbol interprets this component.

Cattr
font attributes, see above for details

StringAttributes

If no default font is selected i€attr, this component contains a font attribute for evel
character. The attribute at ind@xmatches the character Btringat the same positiol
not possible to select different fonts or sizes for characters of the same string.

EditAttributes
Attributes, used for interactively inserted characters. This component is examir
no default attributes are specified.

MaxLen
max. input size for string

CrsrPos
Input- and output value: index of the current cursor position

HighlightSymbol

One symbol in a string can be highlighted, using the underline-attribute even if
ters use the same attributes. The intention of this is to allow the highlightning |
characters in buttons. If no such symbol exists, this value shouldlbe

RelXCrsrPos
Offset of cursor position, relativ to symbol (giventeltKoord

The font attributes are explained in 1.3.14.2.

1.2.2.21 Gui::FirstBinding
Binding *Gui::FirstBinding(BINDING_FUNCTION bf = -1);

1.3.14.4 SymbolShortAttr

This class represents a symbol for a short value, displayed and edited in string repre
FirstBindingreturns the first binding of the object. created object is initialized with reasonable values as font attributes.

28

73

Chapter 1: Man machine service 1.2 GUI and presentation objects

class SymbolStringAttr { bf
bf specifies the binding type: Bf 4 —1, all bindings are examines, else only bin
char string] MAX_INPUT_LEN J; the given type are used.
short selected;
CharAttr cattr; Return
unsigned short string_attributes[MAX_INPUT_LEN], pointer to binding object, oNULL, if no binding (of the given typéf) is assigned.
edit_attributes,
max_len;
signed short crsr_pos, 1.2.2.22 Gui:NextBinding
highlight_symbol,
rel_x_crsr_pos; Binding *Gui::NextBinding(Binding *bind,
public: BINDING_FUNCTION bf = -1);
SymbolStringAttr(const char *string = NULL, short hils = -1); NextBindingreturns the next binding of this object.
~SymbolStringAttr(){}
bind
short Selected(); previous binding
void Selected(short sel);
bf

char *String();

f specifies the binding type: Hf £ —1, all bindi i Ise only bi
void String(const char *str): bf specifies the binding type: HBf # —1, all bindings are examines, else only bin

the given type are used.

ushort *StringAttributes();

void StringAttributes(ushort *attr); Return

pointer to the next binding object, &tULL, if no binding is assigned

short HighlightSymbol();

void HighlightSymbol(short his); 1.2.2.23 Gui"FindBinding

ushort EditAttributes(); Binding *Gui::FindBinding(const char *name);
void EditAttributes(ushort ea);
FindBindingreturns the binding with the given nameMt/LL, if no such binding exists c

ushort MaxLen(); object.

void MaxLen(ushort ml);

name

hort CrsrP ; L
shor rsrPos() name of the binding

void CrsrPos(short cp);

short RelXCrsrPos(); Re_turn - . . L
void RelXCrsrPos(short rel); pointer to the binding object, d¢ULL, if no binding found

short Font(); .
void Font(short f); 1.2.2.24 Gui::SetName
i i::SetN t char * ;
short FontSize(): void Gui::SetName(const char *name);
void FontSize(short s); .
() SetNamesets a new name to the gui.
short FontColor();

void FontColor(short ¢); name _
new gui name

72 29

Chapter 1: Man machine service

1.2.2.25 Gui::GetName

char *Gui::GetName(char *name = NULL);

GetNamereturns the gui's name.

1.2.2.26 Gui::Update
void Gui::Update();

Updateupdates or creates the complete gui with all components in the database.

1.2.2.27 lterators

For some operations of an application it is necessary to access every component of the gui. For
this purpose three iterator macros are defied]_FORALL_POis a for-loop, which determines

every presentation object in the gutUl_FORALL_WIN determines every window of the gui.

The last macro examins all bindings of the gui object.

#define GUI_FORALL_PO(gui,po) \
for(po = (gui)->FirstPrObject(); po; \
po = (gui)->NextPrObject(po))

#define GUI_FORALL_GUIWIN(gui,win) \
for(win = (gui)->FirstGuiWindow(); win; \
win = (gui)->NextGuiWindow(win))

#define GUI_FORALL_BINDING(gui,bi) \

for(bi = (gui)->FirstBinding(); bi; \
bi = (gui)->NextBinding(bi))

30

1.3 Predefined strucures and values

Color(short c);

short Attributes();

Attributes(short a);

Font The following fonts are available:

F_FIXED_SYSTEM: fast system font for menues etc., probably not sizable
F_PROP_SYSTEM same thing but proportional

F_BOOK: bookstyle for long text, sizable proportional with serifes
F_TYPEWRITER : a typewriter like style

F_NOTE: sizable proportional font without serifes

Size
Font size, given in points (current version uses pixel size for DJGPP).

Attributes
Or-combination of the listed font attributes:

FONT_BOLD: boldface font

FONT_ITALIC : italic style font

FONT_UNDERLINED : underlined font

FONT_STRIKEOUT : not available for DJGPP in the current version

Some attributes are predefined for special solutions:

FONT_NO_DEFAULT : This is used only for string symbols: There is no def:
for all characters, instead, every character has it's own style. See 1.3.14.18 f

FONT_DEFAULT : no additional attributes
FONT_MENU_DEFAULT : no additional attributes

Color
Font color, see 1.3.13

1.3.14.3 SymbolStringAttr

This class represents a string symbol with individual attributes for every character.
object is initialized with reasonable values as font attributes.

71

Chapter 1: Man machine service

1.3.13 Colours

typedef enum{ WHITE = WEISS,
YELLOW = GELB,
VIOLET = VIOLETT,
RED = ROT,
CYAN = TUERKIS,
GREEN = GRUEN,
BLUE = BLAU,
BLACK = SCHWARZ,
LIGHT_WHITE = HELLWEISS,
LIGHT_YELLOW = HELLGELB,
LIGHT_VIOLET = HELLVIOLETT,
LIGHT_RED = HELLROT,
LIGHT_CYAN = HELLTUERKIS,
LIGHT_GREEN = HELLGRUEN,
LIGHT_BLUE = HELLBLAU,
GRAY = GRAU } MMS_COLOURS;

1.3.14 Predefined Symbols

Since the basic service does not allow the interactive symbol manipulation in the current version,
some modifyable symbols are predefined. This section describes the state values of all predefined
symbols. First, some common structures for fonts are explained.

1.3.14.1 Predefined Symbol Attributes
1.3.14.2 CharAttr

This class describes font, size and attributes of a string symbol.

class CharAttr {
unsigned short font,

size,
color,
attributes;
public:
CharAttr(short f, short s, short c, short a);
CharAttr();
~CharAttr(){}

short Font();
void Font(short f);

short Size();
void Size(short s);

short Color();

70

1.2 GUI and presentation objects

1.2.3 GuiWindow

The GuiWindowis the window class. Itis used to keep the attributes and methods i
windows. Windows are created using the gui metliwdateWindow

1.2.3.1 GuiWindow::GuiWindow

GuiWindow::GuiWindow(const char *name, const WIN_ATTRIB *wa,
DatabaseObject *db = NULL);

GuiWindow::GuiWindow(long db_id,
DatabaseObject *db

GuiWindow::GuiWindow(GuiWindow *copy_guiw,
DatabaseObject *db = NULL);

NULL);

The gui window is created with a given unique database identification to reload an e
from the database or to create one with a special id. To create a new window with ant
assigned id, the first constructor should be used. To assure, that windows are assig
windows must created using the gui meth@eate Window

name
optional window name or empty string

wa
initial window attributes, for details see 1.3.12.

db_id
unique database id

db
database handle, if object is not created in the default database

copy_guiw
template window

1.2.3.2 GuiWindow::~GuiWindow
GuiWindow::~GuiWindow();

The constructor removes the window from memory, not from datal#eeéndow object shc
only be destroyed using the gui methodeleteWindow. This ensures, that no pending
ences to this window object are left in a gui object.

1.2.3.3 GuiWindow::Metatyp
static long GuiWindow::Metatyp();

This operation returns a unique metatyp handle for the window class itself. The har
valid for a single run of an applicatioin an other run, the value can be different

31

Chapter 1: Man machine service

1.2.3.4 GuiWindow::CreateBinding

Three types of bindings can be distinguished: Bindings to interpreter functions, bindings to built-
in functions and bindings to external callback function. A binding is created and assigned to the
object. It is triggered by events on the object, that contains the binding.

Define a binding to an interpreter function:

Binding *GuiWindow::CreateBinding(const char *name,
const char *inter_func,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Define a binding to an external callback function:

Binding *GuiWindow::CreateBinding(const char *name,
const char *callback_obj,
const char *callback_func,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Define a binding to an internal function:

Binding *GuiWindow::CreateBinding(const char *name,
BINDING_FUNCTION bf,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Create a binding as a copy of an existing binding:

Binding *Gui::CreateBinding(Binding *copy_bi,
DatabaseObject *db = NULL);

name
A binding can have a (unique) name to allow an identification.

inter_func
Name of the interpreter function.

callback_obj
Name of the external callback object. This mechanism is discussed in detail in section 1.3.8.

callback_func
Name of the external callback methodaafilback_ohj This mechanism is discussed in detail
in section 1.3.8.

32

The

1.3 Predefined strucures and values

pos
window position, given in screen coordinates

type
window type:

WINDOW_TYPE_EMPTY : window frame and title are not visible
WINDOW_TYPE_BORDER : window has a small frame, but not title
WINDOW_TYPE_SMALL_FRAME : window has a small frame and a title
WINDOW_TYPE_BIG_FRAME : window has a big frame and a title

frame_c
frame color, if window has a frame

back_c
background color

title_c
color of the title backgound

text_c
color of the title text string, if the window has a title

text
text string of the window title, if the window contains a title

vis
visibility of the window: If vis not zero, the window is visible.

following values are only return values. They can’t be set by an application.

used_dx,used_dy
size of the window, available for an application (window size minus frame and titl

match_left, match_bottom
offset of a plane, assigned to the window, in the lower left window corner

match_right, match_top
visible size of a plane

69

Chapter 1: Man machine service

GUI_EXEC_EXECUTE
Events are generated, the symbol manipulation is controlled by the design of the correspond-
ing symbol. E.g., text fields can be edited, etc. This mode is used during the execution of a

gui.

GUI_EXEC_MODAL
same as GUI_EXEC_EXECUTE, but the object is handled in a modal way (no other objects
receive events until this flag is reset). This flag is not implemented now.

1.3.11 RPOSITION

RPOSITIONIs a base type, containing position and size of a window.

typedef struct {

short left;

short top;

short right;

short bottom;
} RPOSITION;

left, top

upper left corner of the window relative to the main window

right, bottom
lower right corner of the window relative to the main window

1.3.12 WIN_ATTRIB

WIN_ATTRIB contains all attributes of a window.

typedef struct {
RPOSITION pos;

short type;
short frame_c;
short back_c;
short title_c;
short text_c;
char title[128];
boolean vis;

short used_dx;
short used_dy;

WeltKoord match_left;
WeltKoord match_bottom;
WeltKoord match_right;
WeltKoord match_top;

} WIN_ATTRIB;

68

1.2 GUI and presentation objects

po
Destination object, on which the function is executgd.contains its reference. Or
of the parametergo or pi can be set t&6WULL, when using internal functions. Exter
most interpreter functions do not need both parameters.

pi
Destination item, on which the function is executgdcontains this reference.

gui_win
Destination window, if the function is executed on a window.

ev_type
ev_typecontains the type of the event, on which the corresponding function is
Refer 1.3.2 for details.

value

Most events have additional values, specifying the events in detail (e.g., a mous
the value to the pressed mouse butta@juedefines the requiered value to start the
or contains-1, if the value should be ignored.

bind_func
This parameter contains the identification for an internal function. These functiore
when the trigger conditions are fulfilled. Refer 1.3.9 for details.

db
Database handle, if the object is not stored in the default database.

copy_bi

template binding as copy source

1.2.3.5 GuiWindow::DeleteBinding
void GuiWindow::DeleteBinding(Binding *bind = NULL);

This operation removes a binding from this gui window. The binding object is remc
memory and database.

bind
pointer to binding object, aWULL, if all bindings to this object should be removed.

1.2.3.6 GuiWindow::FirstBinding
Binding *GuiWindow::FirstBinding(BINDING_FUNCTION bf = -1);

FirstBindingreturns the first binding of the object.

33

Chapter 1: Man machine service

bf

bf specifies the binding type: bf £ —1, all bindings are examines, else only bindings of

the given type are used.

Return
pointer to binding object, aNULL, if no binding (of the given typ#f) is assigned.

1.2.3.7 GuiWindow::NextBinding

Binding *GuiWindow::NextBinding(Binding *bind,
BINDING_FUNCTION bf = -1),

NextBindingreturns the next binding of this object.

bind
previous binding

bf

bf specifies the binding type: Bf # —1, all bindings are examines, else only bindings of

the given type are used.

Return
pointer to the next binding object, &fULL, if no binding is assigned

1.2.3.8 GuiWindow::FindBinding

Binding *GuiWindow::FindBinding(const char *name);

FindBindingreturns the binding with the given nametLL, if no such binding exists on this
object.

name
name of the binding

Return
pointer to the binding object, dWULL, if no binding found

1.2.3.9 GuiWindow::Execute
boolean GuiWindow::Execute(GUI_EXEC_FLAG flag = GUI_EXEC_EXECUTE);

This operation is used to switch the event generation for a given window on or off. After the

(re-)creation, the window is not supplied with events, until this method is called.

flag
Specifies, which kind of event generation is used, refer 1.3.10 for details.

34

1.3 Predefined strucures and values

BIND_INTERPRETER
binding is linked to an interpreted function

BIND_SUBOBJECT

The destination object is treated as a subobject of the caller (e.g.: submasks).
linked to such a function, has to be created with the presentation object paramet
to NULL. When executing this function, first, the state of the subobject is saved a
the subobject is shown and monitored.

BIND_HIDE_SUBOBJECT
Hide subobject, bound witBIND_SUBOBJECT The subobject uses this binding to
back to the main object.

BIND_HIDE_SUBOBJECT_AND_RESTORE
Hide subobject, bound witBIND_SUBOBJECTand restore original state of the sul
which is saved during the executionBfND_SUBOBJECT

BIND_CHANGE_FOCUS
Change the keyboard focus to the destination item.

BIND_DEFAULT_EVENT
Delivers all events to the standard event handler of the PrObject. This binding sk
on all presentation objects.

BIND_HIDE_MENU_SUBOBJECT
Only used for menu objects: The same functionalityg8D_HIDE_SUBOBJECT

BIND_EMBED
The refered object is a embedded into the referring PrObject. It's position is defik
to the container object. BIND_EMBED is a special version of BIND_SUBOBJEC

BIND_SIMULATE_EVENT_OK

BIND_SIMULATE_EVENT_CANCEL

These bindings can be linked to buttons to simulate EVENT_OK or EVENT _(
events. This mechanism allows the easy recognition of events on ok or cancel bt

1.3.10 GUI_EXEC_FLAG

GUI_EXEC_FLAGcontrols the generation of events on the specified object.

GUI_EXEC_NONE
No events are generated for this object.

GUI_EXEC_MONITOR

Events are generated for the object, but not executed. This means, symbols are
on user interactions. This mode is intended for a construction of user interfaces g
application control on events.

67

Chapter 1: Man machine service

SetCallbackStatus("EventHandler", CBS_INACTIVE);

}
boolean EventHandler(const EVENT *ev);
h
/*
event catching
*/

boolean HandleCallback::EventHandler(const EVENT *ev) {

/I do some event handling
return(TRUE);
}

/*
create callback handler
*
HandleCallback *hcb = new HandleCallback("Callbackl");

To use this object as a callback, a binding object with the name of the GuiCallback-object has to
be created on a gui-object:

pi->CreateBinding("Bindingl", "Callbackl", "EventHandler",
EVENT_NEW_VALUE, -1);

These bindings are restored after a reload of the gui. Callbacks are executed, when the linked
application object (here: hcb) is restored in memory. This is under the control of the application.
Itis possible to use the gui, even if the callback objects are not reloaded. Itis important to disable
the callback method before destroying the callback object (see destructor).

1.3.9 BINDING_FUNCTION
BINDING_FUNCTION is an enumeration type, describing an internal MMS function.

BIND_SHOW
The binding is linked to an internal function, which shows the destination object when exe-
cuted.

BIND_HIDE
The binding is linked to an internal function, which hides the destination object when exe-
cuted.

BIND_DELETE
not implemented in the current version

BIND_CALLBACK
binding is linked to an external function

66

1.2 GUI and presentation objects

1.2.3.10 GuiWindow::Show
void GuiWindow::Show(boolean flag = TRUE);

Showshows or hides a window.

flag

Specifies, whether the window should be shown or hidden. If the window is not
event generation for this window is switched off. It wilbt be switched on automatict

aredisplay.

1.2.3.11 GuiWindow::SetPosition
void GuiWindow::SetPosition(const POSITION *pos);

SetPositiormoves or resizes a window.
pos

new position or size and mode, refer 1.3.6 for details.

1.2.3.12 GuiWindow::GetPosition
void GuiWindow::GetPosition(POSITION *pos);

GetPositiorreads the window size and position.
pos

position and size of the window, refer 1.3.6 for details.

1.2.3.13 GuiWindow::Set
void GuiWindow::Set(const WIN_ATTRIB *wa);

Setoverwrites all window attributes.
wa

new attributes, refer 1.3.12 for details.

1.2.3.14 GuiWindow::Get
void GuiWindow::Get(WIN_ATTRIB *wa);

Getreads all window attributes.

wa
attributes, refer 1.3.12 for details.

35

Chapter 1: Man machine service

1.2.3.15 GuiWindow::SetName

void GuiWindow::SetName(const char *name);
SetNamesets a new name to the window.
name

new window name

1.2.3.16 GuiWindow::GetName

char *GuiWindow::GetName(char *name = NULL);
GetNamereturns the window name.

name
returned window name, can be\NdJLL reference

Return
returned window name

1.2.3.17 GuiWindow::SetPlane

void GuiWindow::SetPlane(const char *plane_name,
WeltKoord x, WeltKoord v,
WeltKoord w, short detail = 10);

SetPlaneassignes a plane to a window. The scaling factor is calculated. In the current version of
the base service, only one plane can be assigned to one window. But one plane can be assigned to

multiple (different) windows.

plane_name
plane to assign

X,y
coordinates of the origin in the plane, which is placed in the lower left corner of the window.

w
w is the width of the visible plane section, which should fit into the window. This value is
used to calculate the scaling factor between window and plane.

detail
A plane can consist of symbols with a different level of detail. This parameter determines,

which of these symbols are shown in the window. Since these parameter is not (now) used

in the high-level MMS functions, the value should be high(0) or omitted.

36

1.3 Predefined strucures and values

1.3.8.5 Macros

To ease the registration process, four macros are defined:

#define REGISTER_FUNCTION_PLAIN(funcName, status) \
RegisterCallback(#funcName, (status), CB_F_PLAIN, \
(TCbAdress)& funcName)
#define REGISTER_FUNCTION_EVENT(funcName, status) \
RegisterCallback(#funcName, (status), CB_F_EVENT, \
(TCbAdress)& funcName)
#define REGISTER_MEMBER_PLAIN(funcClass, funcName, status) \
RegisterCallback(#funcName, (status), CB_M_PLAIN, \
(TCbAdress)(TMCbPIlain)& funcClass :: funcName
#define REGISTER_MEMBER_EVENT(funcClass, funcName, status) \
RegisterCallback(#funcName, (status), CB_M_EVENT, \
(TCbAdress)(TMCbEvent)& funcClass :: funcName

REGISTER_FUNCTION_PLAIN
Register pure C-function as callback handler, the function is not provided with
value

REGISTER_FUNCTION_EVENT
Register pure C-function as callback handler, the function is provided with the ev

REGISTER_MEMBER_PLAIN
Register C++-member as callback handler, the function is not provided with the ¢

REGISTER_MEMBER_EVENT
Register C++-member as callback handler, the function is provided with the even

1.3.8.6 Example

Callbacks are used in an application, using the o&g&Callback Events are directed to al
tion defined classes, which are derived from the c@sfCallback The following piece of
shows an example application:

class HandleCallback : public GuiCallback {

char name[30 J;
public:

HandleCallback(char *nn) : GuiCallback(nn) {
strncpy(name, nn, sizeof(name));
REGISTER_MEMBER_EVENT(HandleCallback,
EventHandler,
CBS_ACTIVE),

}
~HandleCallback(){

65

Chapter 1: Man machine service

1.3.8.1 GuiCallback::GuiCallback

GuiCallback::GuiCallback(const char *name);

name
The name must be unique for all external callback handler objects, since it is used in the
event handler (Binding class) to determine the callback receiving object.

1.3.8.2 GuiCallback::RegisterCallback

RegisterCallbacks called to register either a function or member callback. This method is not
explained, because four macros should be used to ease the access (see: 1.3.8.5).

short GuiCallback::RegisterCallback(TCB_CPNAME name,
TCB_STATUS status,
TCB_TYPE type,
TCbAdress adress);

1.3.8.3 GuiCallback::GetCallbackStatus
Determine the current status of a callback handler.
TCB_STATUS GuiCallback::GetCallbackStatus(TCB_CPNAME name);

name
Unique callback function or member name

Return
Status:

CBS_NOTINLIST : nameis not a registered callback
CBS_INACTIVE : The callback is not active.
CBS_ACTIVE: The callback is active and able to process events.

1.3.8.4 GuiCallback::SetCallbackStatus
Modify the current status of a callback handler.

void GuiCallback::SetCallbackStatus(TCB_CPNAME name,
TCB_STATUS status);

name
Unique callback function or member name

status
New status value:

CBS_INACTIVE : The callback is not longer active.
CBS_ACTIVE: The callback is set in an active state, it able to process events.

64

1.2 GUI and presentation objects

1.2.3.18 GuiWindow::GetPlane

void GuiWindow::GetPlane(char *plane_name,
WeltKoord *x, WeltKoord *y,
WeltKoord *w, short *detail);

GetPlanaeads the plane parameters for this window. Please refer 1.2.3.17 for a desci
parameters.

1.2.3.19 GuiWindow::Update
void GuiWindow::Update();

Updateupdates or creates the window attributes in the database. This method ist
Gui::Update

1.2.3.20 lterators

For some operations of an application it is necessary to access every component oft
For this purpose one iterator macro is defin6d//WINDOW_FORALL_BINDING is a for-I
which determines every binding object in the window.

#define GUIWINDOW_FORALL_BINDING(guiw,bi) \

for(bi = (guiw)->FirstBinding(); bi; \
bi = (guiw)->NextBinding(bi))

37

Chapter 1: Man machine service

1.2.4 PrObject

The presentation object — or in it's short form tReObject— is the main container class. It
is used to define the behaviour of gui objects PAObjectis created using the gui methdzte-
atePrObject

1.2.4.1 PrObject::PrObject

PrObject::PrObject(const Gui *gui, PR_TYPE pr_t,
const char *name,
DESIGN *design,
const char *plane_name,
long data_type_mt, boolean emtpy,
const char *back_symbol,
DatabaseObject *db = NULL);
PrObject::PrObject(long id,
DatabaseObject *db = NULL);
PrObject::PrObject(PrObject *copy_po,
DatabaseObject *db = NULL);

The object is created with a given unique database identification to reload an existing object from
the database. To create a new object with an automaticly assigned id, the first constructor should
be used. To assure, that presentation objects are assigned to guis, they must be created using the
gui methodCreatePrObjectThe paramaters are explained in 1.2.2.9 presentation object

should not be created without the gui methods.

1.2.4.2 PrObject:~PrObject
PrObject::~PrObject();

This destructor removes the object from memory. To assure a correct reference handling, presen-
tation objects should only be removed using the gui mefekktePrObject

1.2.4.3 PrObject::Metatyp
static long PrObject::Metatyp();

This operation returns a unique metatyp handle for this class itself. The handle is only valid for a
single run of an applicatiorn an other run, the value can be different

1.2.4.4 PrObject::CreatePritem

Pritem *PrObject::CreatePrltem(const char *name,
DESIGN *design,
const char *symbol_name,
const void *def_attr,

38

1.3 Predefined strucures and values

pos
position, size and interaction mode, refer 1.3.6 for details

orient
orientation of a presentation object:

O_LEFT: The items in the object are placed from right to left (f.e. menu).
O_RIGHT : The items in the object are placed from left to right.

O_UP: The items in the object are placed from down to up.

O_DOWN: The items in the object are placed from up to down.
O_CENTER: An item is centered (only for internal use).

O_ALT_START_DOWN : Hierarchical menus are created alternating: The fik
chical level withO_DOWN the next withO_RIGHT,

O_ALT_START_RIGHT : Hierarchical menus are created alternating: The fik
chical level withO_RIGHT, the next withO_DOWN,

1.3.8 GuiCallback

Callback functions can be bound to events to catch gui-events in an application. T
describes the technique.

typedef enum { CBS_NOTINLIST, CBS_INACTIVE,
CBS_ACTIVE, CBS_MAXNUM } TCB_STATUS;
typedef enum { CB_F_PLAIN, CB_F_EVENT, CB_M_PLAIN,
CB_M_EVENT, CB_MAXNUM } TCB_TYPE;
extern "C"{
typedef short (*TCbPlain)(void);
typedef short (*TCbEvent)(const EVENT *);

}

typedef short (GuiCallback::*TMCbPIlain)(void);
typedef short (GuiCallback::*TMCbEvent)(const EVENT *);

class GuiCallback {

public:
GuiCallback(const char *name);
~GuicCallback();

short RegisterCallback(TCB_CPNAME name, TCB_STATUS status,
TCB_TYPE type, TCbAdress adress)
TCB_STATUS GetCallbackStatus (TCB_CPNAME Name) const;
TCB_STATUS SetCallbackStatus (TCB_CPNAME Name,
TCB_STATUS status);

63

Chapter 1: Man machine service 1.2 GUI and presentation objects

136 POS|T|ON short offset, short length,
. - " . GUI_EXEC_FLAG flag);
POSITIONis a base type, containing position and size of a symbol. Pritem *Prbject::CreatePritem(Pritem *copy_ pi):
typedef struct {
WeltKoord left;
WeltKoord top;
WeltKoord right;

This operation creates a new Prltem object and assignes it to this presentation object

WeltKoord bottom; name
short mode; item name
} POSITION;
left, top design
upper left corner of the symbol relative to the plane position, size and creation mode for the item. See 1.3.7 for details.

right, bottom

lower right corner of the symbol relative to the plane symbol_name

name of the symbol, representing the item in the plane (screen)

mode
modespecifies the interaction method with the service: def_attr

]]) default attributes (values), used to display the corresponding symbol
MMS_NOT_IA : symbol is placed non-interactive

MMS_LEFT_IA : position left is placed interactively, all other coordinates are taken offset,length

from the structure. Ifthe created item visualizes a component of a data structure of the presentationa
MMS_UP_IA: positionup is placed interactively, all other coordinates are taken from contains the offset of the component from the startaddress of the structuesgtfecon
the structure. the size of the component. If the presentation object does not visualize a data st

for simple pictures) or if the item is not part of the structure (f.e. a buttoffi§et mu:

MMS_RIGHT_IA : positionrightis placed interactively, all other coordinates are taken _1. In all caseslength contains the default size of the attributes, used fordagand

from the structure.

methods.
MMS_DOWN_IA : positiondownis placed interactively, all other coordinates are taken
from the structure. flag
MMS_LEFT_UP_IA: position left and up are placed interactively, all other coordi- flag describes the behaviour of the symbol, because the basic man machine sel
nates are taken from the structure. provide this information in the current version. Refer 1.3.10 for details.
MMS_RIGHT_DOWN_IA : positionright anddownare placed interactively, all other
coordinates are taken from the structure. copy_pi
MMS_ALL_IA : all positions are placed interactively, the structure contains only the template item

start position

1.2.4.5 PrObject::DeletePritem

void PrObject::ItemPrDelete(Pritem *item);

1.3.7 DESIGN

DESIGN s a structure, defining position, size and orientation of a man machine object.

typedef struct _DESIGN DESIGN; This operation removes an item from this presentation object. The item is removed firt

and database.
struct _DESIGN {

POSITION pos; .
short orient; ltem . . .
¥ pointer to the item object, dWULL to remove all items

62 39

Chapter 1: Man machine service

1.2.4.6 PrObject:FirstPritem
Pritem *PrObject::FirstPritem(F_MODIFIER fmod = F_ALL);

FirstPritemreturns the first item of the object. The item can be specified with a given attribute
(see 1.3.4).

fmod
attribute

Return
pointer to the item object, dWULL, if no item is assigned

1.2.4.7 PrObject::NextPritem

Pritem *PrObject::NextPritem(Prltem *item,
F_MODIFIER f mod = F_ALL);

NextPritemreturns the next item of this object. The item can be specified with a given attribute
(see 1.3.4).

item
previous item

fmod
attribute

Return

pointer to the item object, dWULL, if no item is assigned

1.2.4.8 PrObject::CreateBinding

Three types of bindings can be distinguished: Bindings to interpreter functions, bindings to built-

in functions and bindings to external callback function. A binding is created and assigned to the

object. It is triggered by events on the object, that contains the binding.
Define a binding to an interpreter function:

Binding *PrObject::CreateBinding(const char *name,
const char *inter_func,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Define a binding to an external callback function:

40

1.3 Predefined strucures and values

item
Prltem object, on which an event occured\yLL, if the event does not belong to ant

object
PrObject object, on which an event occuredMyLL, if the event does not belong
PrObiject.

gui
Gui object, on which an event occured. This component is set for every event.

gui_win
GUIWindow object, on which an event occured. This component is set for every ¢

1.3.4 F_MODIFIER

F_MODIFIER spezifies the behaviour of several find operations. It has one of the follwi

F_ALL : Perform operation on all objects.

F_MARKED : Limit operation to marked objects.
F_NOT_MARKED : Limit operation to not marked objects.
F_VISIBLE : Limit operation to visible objects.
F_NOT_VISIBLE : Limit operation to invisible objects.
F_EXECUTED: Limit operation to executed objects.

F_NOT_EXECUTED: Limit operation to not executed objects.

1.3.5 PR_TYPE

PR_TYPEis an enumeration type, specifying the type ob a presentation object. Th
types are supported:

PR_MENU: menu object, consists of a column or row of items

PR_MASK: mask object, consists of a number of items, representing a data s
class of the application

PR_TABLE :table object, representing a set of objects or variables of a single cla

PR_PICTURE: picture object, a set of items with no relations

61

Chapter 1: Man machine service 1.2 GUI and presentation objects

EVENT_HOTKEY : a hotkey was pressed (normal key plus ALT-key) Binding *PrObject::CreateBinding(const char *name,
const char *callback_obj,
EVENT_NEW_VALUE : An item has changed its value. const char *callback_func,
EVENT_TYPE ev, long ev_value,
EVENT_OK, EVENT_CANCEL : Ok or cancel button was pressed, this events can only DatabaseObject *db = NULL);

be executed using a simulate event call or the apropriate bindings.] o])
Define a binding to an internal function:

There are several other events defined but not used in the current version. Binding *PrObject::CreateBinding(const char *name,
BINDING_FUNCTION bf,
const PrObject *po,
133 EVENT const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

This structure contains all information, send to an application after an event.

typedef struct _EVENT EVENT;

Create a bindi f isting binding:
struct _EVENT { reate a binding as a copy of an existing binding

long type; Binding *Gui::CreateBinding(Binding *copy_bi,
long value; DatabaseObject *db = NULL);
WeltKoord mouse_X,
mouse_y; name

Pritem *item; - . . e
Probject *object: A binding can have a (unique) name to allow an identification.
Gui *gui; .
GUIWindow ’%ui win; inter_func . .
% - Name of the interpreter function.
type callback_obj
type of the event, this component contains a result of type EVENT_TYPE, but is coded as a Name of the external callback object. This mechanism is discussed in detail in se
lon

g callback_func
value Name of the external callback methodaaidilback_obj This mechanism is discussed

valuespecifys the event more detailed, possible values depend on the event type: in section 1.3.8.

EVENT_KEYBOARD : valuecontains the code of the pressed key. po . . . L

- _ P .y Destination object, on which the function is executgd.contains its reference. Or
EVENT_HOTKEY : valuecontains the code of the pressed key without any flag for the of the parametergo or pi can be set tdWULL, when using internal functions. Exten
ALT-key. most interpreter functions do not need both parameters.

any mouse eventvaluecontains the code for the pressed mouse button:

MOUSE_KEY_LEFT, P . o T
MOUSE KEY MID and Destination item, on which the function is executpdcontains this reference.

MOUSE_KEY_RIGHT.

)) gui_win
all other event valueis undefined Destination window, if the function is executed on a window.
mouse_x,mouse_y ev_type
position of the mouse pointer, given in coordintates relative to the window, in which the event ev_typecontains the type of the event, on which the corresponding function is
occured Refer 1.3.2 for details.

60 41

Chapter 1: Man machine service

value

Most events have additional values, specifying the events in detail (e.g., @ mouse event sets
the value to the pressed mouse butta@uedefines the requiered value to start the function

or contains-1, if the value should be ignored.

bind_func
This parameter contains the identification for an internal function. These functions are called
when the trigger conditions are fulfilled. Refer 1.3.9 for details.

db
Database handle, if the object is not stored in the default database.

copy_bi
template binding as copy source

1.2.4.9 PrObject::DeleteBinding
void PrObject::DeleteBinding(Binding *bind = NULL);

This operation removes a binding from this presentation object. The binding object is removed
from memory and database.

bind
pointer to binding object, aNULL, if all bindings should be removed

1.2.4.10 PrObject::FirstBinding
Binding *PrObject::FirstBinding(BINDING_FUNCTION bf = -1);

FirstBindingreturns the first binding of the object.

bf
bf specifies the binding type: Bf # —1, all bindings are examines, else only bindings of
the given type are used.

Return
pointer to binding object, aNULL, if no binding (of the given typ#f) is assigned.

1.2.4.11 PrObject::NextBinding
Binding *PrObject::NextBinding(const Binding *bind,

BINDING_FUNCTION bf = -1);

NextBindingreturns the next binding of this object.

bind
previous binding

42

1.3 Predefined strucures and values

1.3 Predefined strucures and values
1.3.1 mms_sys_param

mms_sys_parans a small data structure, containing the needed settings for an initilizd
basic man machine service.

typedef struct {

coord max_x;
coord max_y;
coord char_height;
coord char_width;
boolean debug;

short back_color;

} mms_sys_param;

max_x, max_y
resolution (size) in pixel coordinates of the main application window

char_height, char_width
ignored

debug

If debugging is on debugnot 0), the basic service works in a verbose mode, dug
formation about the internal work on the main window (in the current version nd
under Microsoft Windows).

back_color
Background color for main window

1.3.2 EVENT_TYPE

EVENT_TYPE contains the occured event. The follwing values are possible:

EVENT_NO_EVENT: no event occured
EVENT_MOUSE_SINGLE: single click on a mouse button
EVENT_MOUSE_DOUBLE: double click on a mouse button
EVENT_KEYBOARD : single key on the keyboard pressed

EVENT_MOUSE_RELEASE: mouse button has been released, this events occt
EVENT_MOUSE_SINGLEor EVENT_MOUSE_DOUBLE

EVENT_LEAVE_FOCUS: an item object has lost the keyboard focus

EVENT_ENTER_FOCUS: an item object has received the keyboard focus

59

Chapter 1: Man machine service 1.2 GUI and presentation objects

1.2.7 Methods — an overview bf
bf specifies the binding type: Bf 4 —1, all bindings are examines, else only bin

In this table, columns represent different MMS components, while rows show possible methods .
the given type are used.

on an object. If the interaction of both is not blank, the combination of both is allowed and the

number shown there contains the chapter, where the operation is discussed. Return
= o PrOBeet e Bang pointer to the next binding object, &fULL, if no binding is assigned

Ext. Ref.[Ext. Ref.| Ext. Ref.| Ext. Ref.| Ext. Ref.
Constructor 1.2.2.1 1.2.3.1 1.2.4.1 1.2.5.1 1.2.6.1
Destructor 1.2.2.2 1.2.3.2] 1.2.4.2] 1.2.5.2] 1.2.6.2] 1 RN 1 1
Metatyp 1.2.2.3 1.2.3.3 1.2.4.3 1.2.5.3 1.2.6.3| 12412 PrObJeCt"FlndBlndlng
SimulateEven| 1.2.2.4 FpH : i P .
ChangeFocud 1955 Binding *PrObject::FindBinding(const char *name);
Execute 1.2.2.6 1.2.3.9 1.2.4.13 1.2.6.4|
Eiem“ 1257 FindBindingreturns the binding with the given nameMULL, if no such binding exists c
Show 1228 1.2.3.10 12.4.14 12509 object.
Create PrObject 1.2.2. Pritem 1.2.4.4

GuiWindow 1.2.2.14

Binding 1.22.19Binding 1234 Binding 1.2.4.8 Binding 1254 name

Delete Probject 1.2.2.10 Pritem _ 1.2.44 name of the binding
GuiWindow 1.2.2.15

Binding 1.2.2.2QBinding 1.2.35Binding 1.2.49Binding 1.2.5.5

First Probject 1.2.2.11 Priem 124 Return
Guiwindow 1.2.2.16 _ __ pointer to the binding object, @¢ULL, if no binding found
Binding 1.2.2.21Binding 1.2.3.§Binding 1.2.4.1(Binding 1.2.5.4
Next PrObject 1.2.2.12 Pritem 1.2.4.7
GuiWindow 1.2.2.16
Binding 12.2228Bindng 1.2.3.7Binding 1.2.4.11Binding 1.255.1 : .
- POBST 157 18 1.2.4.13 PrObject::Execute

GuiWindow 1.2.2.18
Binding 1.2.2.23 Binding 1.2.3.§Binding 1.2.4.13Binding 1.2.5.9

void PrObject:Execute(GUI_EXEC_FLAG flag = GUI_EXEC_EXECUTE);

Set 1.2.3.13] 1.2.4.17 1.2.5.12
Position 1.2.3.1]Position 1.2.4.15Position 1.2.5.1 This operation is used to switch the event generation for a given presentation objec
Name 12.224Name 123.13Name 124.19Name 1251 ;‘f‘gﬁem 112-26'61- After the (re-)creation, the object is not supplied with events, until this method is calle
Pritem 1.2.6.1
GuWindow 1.2.6.12 flag
I Function 1.2.6.1 Specifies the event generation type for this object, refer 1.3.10 for details.
Get 1.2.3.14 1.2.4.18 1.2.5.13
Position 1.2.3.12Position 1.2.4.1Position 1.2.5.1
Name 1.2.2.25Name 1.2.3.16Name 1.2.4.2 Name 1.2.6. H .
PIOBEE 125 1.2.4.14 PrObject::Show
T 1.2.4.2 Prlt 1.2.6.8 . .
Gyupie 15474 GLi\e}cfndOW 1764 void PrObject::Show(boolean flag = TRUE);
Focus 1.2.4.2 Function 1261 . . .
| Metatyp 1.2.4.2¢ Metatyp 1.2.5.18 Showshows or hides a presentation object.
Plane 1.2.3.1¢
Update 1.2.2.26 1.2.3.19 1.2.4.27| 1.2.5.19 flag
Mark 1.2.4.2]] 1.25.16| " X . . .
Marked 12.4.29 12517 Specifies, whether the object should be shown or hidden. If the object is not
lterators 12221 12320 12429 12529 event generation for this object is switched off. It witht be switched on automatict

aredisplay.

1.2.4.15 PrObject::SetPosition
void PrObject::SetPosition(const POSITION *pos);

SetPositiormoves or resizes a presentation object.

pos
new position or size and mode, refer 1.3.6 for details.

58 43

Chapter 1: Man machine service

1.2.4.16 PrObject::GetPosition
void PrObject::GetPosition(POSITION *pos);

GetPositiorreads the object size and position.

pos
position and size of the object, refer 1.3.6 for details.

1.2.4.17 PrObject::Set

void PrObject::Set(const void *attributes);

Setoverwrites the attributes for the object. This method is only avaluated for presentation objects
of type PR_MENU, PR_MASK and PR_TABLE. All other objects don't represent a single data
structure.

attributes
new attributes: every item, which represents a component of the entire data structure, is
supplied with the corresponding part of the attributes using the mé®nieeim::Set

1.2.4.18 PrObject:.Get

void PrObject::Get(void *attributes);

Getreads the attributes for the entire object. This method is only avaluated for presentation objects
of type PR_MENU, PR_MASK and PR_TABLE. All other objects don'’t represent a single data
structure.

attributes
Every item, which represents a component of the entire data structure, fills out the corre-
sponding part of the attributes using the metiRsttem::Get

1.2.4.19 PrObject::SetName

void PrObject::SetName(const char *name);

SetNamesets a new name to the object.
name

new object name

44

1.2 GUI and presentation objects

1.2.6.13 Binding::GetFunction
BINDING_FUNCTION Binding::GetFunction(GuiCallback **cb);

cb
If the binding is linked to an external function, the address of the corresponding
is returned. This mechanism is under construction and therefor not available nov

Return
If the binding is linked to an internal function, their code is returned On external
BIND_FUNCTION is returned.

1.2.6.14 Binding::SetFunction

void
void
void

Binding::SetFunction(BINDING_FUNCTION bf);
Binding::SetFunction(const char *inter_func);
Binding::SetFunction(const GuiCallback *cb);

bf
Function code for internal binding

inter_func
Name of an (existing) interpreted function

cb
If the binding is linked to an external function, the address of the corresponding
is returned.

57

Chapter 1: Man machine service

1.2.6.7 Binding::GetPrObject
PrObject *Binding::GetPrObject();

Return
a pointer to the presentation object, which is passed as a parameter to the executing function
or NULL, if no presentation object specified

1.2.6.8 Binding::GetPrltem
Pritem *Binding::GetPritem();

Return
a pointer to the item object, which is passed as a parameter to the executing function or
NULL, if no item specified

1.2.6.9 Binding::GetGuiWindow
GuiWindow *Binding::GetGuiWindow();

Return
a pointer to the window object, which is passed as a parameter to the executing function or
NULL, if no window specified

1.2.6.10 Binding::SetPrObject
void Binding::SetPrObject(const PrObject *po);

po
a pointer to the presentation object, which is passed as a parameter to the executing function
or NULL, if no presentation object specified

1.2.6.11 Binding::SetPritem
void Binding::SetPritem(const Pritem *pi);

pi
a pointer to the item object, which is passed as a parameter to the executing function or
NULL, if no item specified

1.2.6.12 Binding::SetGuiWindow

void Binding::SetGuiWindow(const GuiWindow *win);
win
a pointer to the window object, which is passed as a parameter to the executing function or
NULL, if no window specified

56

1.2 GUI and presentation objects

1.2.4.20 PrObject::GetName
char *PrObject::GetName(char *name = NULL);

GetNamereturns the objects name.

name
returned object name, can béV&JLL reference

Return
returned object name

1.2.4.21 PrObject::Mark
void PrObject::Mark(boolean flag = TRUE);

Mark places a mark symbol around the object.

flag
determines, whether the mark is shown or removed

1.2.4.22 PrObject::Marked
boolean PrObject::Marked();

Markedreturnstrue if the object is marked.

1.2.4.23 PrObject::GetType
PR_TYPE PrObject::GetType();

GetTypereturns the type of the object.

Return

the type of the object (mask, menu etc.), refer 1.3.5 for details.

1.2.4.24 PrObject::GetGui
Gui *PrObject::GetGui();

GetGuireturns the reference of the gui to which this object is assigned.

Return
reference to the gui

45

Chapter 1: Man machine service

1.2.4.25 PrObject::GetFocus
Pritem *PrObject::GetFocus();

GetFocugeturns the reference to the Pritem, which has the keyboard focus.

Return
Item with keyboard focus dWULL, if no item of this object has the focus. There can be only
one item in all guis with keyboard focus at one point of time.

1.2.4.26 PrObject::GetMetatyp
long PrObject::GetMetatyp();

GetMetatypreturns the metatyp of of the correspond data structure or class, which is represented
using this objectGetMetatypis —1 for pictures.

Return
Unique metatyp handle ef1, if this object is not representing one data structure or class.

1.2.4.27 PrObject::Update
void PrObject::Update();

Updateupdates or creates the objects attributes in the database. This method is called by a
Gui::Update

1.2.4.28 lterators

For some operations of an application it is necessary to access every component of the presentation
object. For this purpose two iterator macros are defiffl. OBJECT_FORALL _PR_ITEMs a

for-loop, which determines every item object in the PrObje®. OBJECT_FORALL_BINDING
determines every binding of the object.

#define PR_OBJECT_FORALL_PR_ITEM(po,pi) \
for(pi = (po)->FirstPritem(); pi; \
pi = (po)->NextPritem(pi))

#define PR_OBJECT_FORALL_BINDING(po,bi) \

for(bi = (po)->FirstBinding(); bi; \
bi = (po)->NextBinding(bi))

46

1.2 GUI and presentation objects

1.2.6.3 Binding::Metatyp
static long Binding::Metatyp();

This operation returns a unique metatyp handle for this class itself. The handle is onlf
single run of an applicatiorin an other run, the value can be different

1.2.6.4 Binding::Execute

boolean Binding::Execute(const EVENT *event);

The Executemethod is in most cases internaly called from the event manager to ask
object to execute the linked function if the conditions fit with the given event. The bind
examins, whether these conditions are fulfiled and executes the function (or not). T
should only be called by an application to force the execution for a single binding

solution is to simulate an evenB(i::SimulateEvent In this case, the gui (or exactly: th
manager) calles thExecutemethod on all bindings of all components of the own gui.

event
reference to the real or simulated event, refer 1.3.3 for details.

Return
TRUE, if other bindings on the corresponding object should be starteBALSE, if

execution of binding should be stoped for this event. USIA§SE as a return-value,
defined callback is able to stop binding execution after an error.

1.2.6.5 Binding::SetName

void Binding::SetName(const char *name);
SetNamesets a new name to the binding.
name

new binding name

1.2.6.6 Binding::GetName

char *Binding::GetName(char *name = NULL);
GetNamereturns the bindings name.

name
returned binding name, can bé\&@JLL reference

Return
returned binding name

55

Chapter 1: Man machine service

1.2.6 Binding

Bindings define the behaviour of a gui on user interactions. They are used to link gui-events
to functions, where links to internal functions, links to external callback functions and links to
interpreter functions are supported.

1.2.6.1 Binding::Binding

Binding to interpreter functions:

Binding::Binding(const char *nn, const char *inter_func,
const PrObject *po, const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,

DatabaseObject *db = NULL);
Binding::Binding(Binding *copy_bi, DatabaseObject *db = NULL);

Binding to external callback functions:

Binding::Binding(const char *nn, const char *callback_obj,
const char *callback_func,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Binding to internal functions:

Binding::Binding(const char *nn, BINDING_FUNCTION bf,
const PrObject *po, const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Reload binding from database:
Binding::Binding(long id, DatabaseObject *db = NULL);
Create a binding as a copy of an existing binding:

Binding::Binding(Binding *copy_bi,
DatabaseObject *db = NULL);

No binding should be created directly. Instead, @reateBindingmethod on the corresponding
object should be called. The parameters are described there.

1.2.6.2 Binding:~Binding
Binding::~Binding();

The destructor removes a binding from memory. An application should not delete a binding object
other than using the appropriddeleteBindingmethod of the object, which contains the reference
to this binding.

54

1.2 GUI and presentation objects

1.2.5 Pritem

A presentation object contains a set of items, which are displayd using symbols.

1.2.5.1 Pritem::Prltem

Pritem::Pritem(const PrObject *po, const char *name,
DESIGN *design,
const char *symbol_type, const void *attr,
short offset, short len,
GUI_EXEC_FLAG flag,
DatabaseObject *db = NULL);
Pritem::Pritem(long id ,
DatabaseObject *db = NULL);

The item is created with a given unique database identification to reload an existingr
database. To create a new item with an automaticly assigned id, the first constructe
used. To assure, that items are assigned to presentation objects, they must be cres
PrObject methoreateltemThe paramaters are explained in 1.2.4.4.

1.2.5.2 Pritem:~Pritem
Pritem::~Prltem();

This destructor removes the item from memory. To assure a correct reference han
should only be removed using the PrObject metbedeteltem

1.2.5.3 Pritem::Metatyp
static long Pritem::Metatyp();

This operation returns a unique metatyp handle for this class itself. The handle is onlf
single run of an applicatiorin an other run, the value can be different

1.2.5.4 Pritem::CreateBinding

Three types of bindings can be distinguished: Bindings to interpreter functions, bindin
in functions and bindings to external callback function. A binding is created and assi
object. It is triggered by events on the object, that contains the binding.

Define a binding to an interpreter function:

Binding *Prltem::CreateBinding(const char *name,
const char *inter_func,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

47

Chapter 1: Man machine service 1.2 GUI and presentation objects

Define a binding to an external callback function: 1.2.5.20 Iterators
Binding *Prltem::CreateBinding(const char *name, For some operations of an application it is necessary to access every componentt
const char *callback_obj, For this purpose one iterator macro is definB&® OBJECT_FORALL_PR_ITENMSs a for-k
const char *callback_func, determines every binding of the item.
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL); #define PR_ITEM_FORALL_BINDING(pi,bi) \
for(bi = (po)->FirstBinding(); bi; \
Define a binding to an internal function: bi = (po)->NextBinding(bi))

Binding *Prltem::CreateBinding(const char *name,
BINDING_FUNCTION bf,
const PrObject *po,
const Pritem *pi,
const GuiWindow *gui_win,
EVENT_TYPE ev, long ev_value,
DatabaseObject *db = NULL);

Create a binding as a copy of an existing binding:

Binding *Gui::CreateBinding(Binding *copy_bi,
DatabaseObject *db = NULL);

name
A binding can have a (unique) name to allow an identification.

inter_func
Name of the interpreter function.

callback_obj
Name of the external callback object. This mechanism is discussed in detail in section 1.3.8.

callback_func
Name of the external callback methodaafilback_ohjThis mechanism is discussed in detail
in section 1.3.8.

po

Destination object, on which the function is execut@a.contains its reference. Only one
of the parameterpo or pi can be set t&WULL, when using internal functions. External and
most interpreter functions do not need both parameters.

pi

Destination item, on which the function is executpdcontains this reference.
gui_win

Destination window, if the function is executed on a window.

ev_type

ev_typecontains the type of the event, on which the corresponding function is activated.
Refer 1.3.2 for details.

48 53

Chapter 1: Man machine service 1.2 GUI and presentation objects

1.2.5.15 Pritem::GetName value

Most events have additional values, specifying the events in detail (e.g., @ mous
the value to the pressed mouse buttamjuedefines the requiered value to start the
or contains-1, if the value should be ignored.

char *Prlitem::GetName(char *name = NULL);

GetNamereturns the items name.

bind_func
name This parameter contains the identification for an internal function. These functiore
returned item name, can beMULL reference when the trigger conditions are fulfilled. Refer 1.3.9 for details.

db

Return

returned item name Database handle, if the object is not stored in the default database.

copy_bi
template binding as copy source
1.2.5.16 Pritem:Mark P gascopy

void Prltem::Mark(boolean flag = TRUE); 1255 Prltem“DeIeteBinding

Mark places a mark symbol around the item. void Pritem::DeleteBinding(Binding *bind);

This operation removes a binding from this item object. The binding object is rem

flag
. . memory and database.
determines, whether the mark is shown or removed y

bind
pointer to binding object
1.2.5.17 Prltem::Marked

boolean Pritem::Marked(); 1.2.5.6 Prltem::FirstBinding

Markedreturnstrue if the item is marked. Binding *Pritem::FirstBinding(BINDING_FUNCTION bf = -1);

FirstBindingreturns the first binding of the object.

1.2.5.18 Prlitem::GetMetatyp bf
bf specifies the binding type: HBf # —1, all bindings are examines, else only bin

long Pritem::GetMetatyp(); the given type are used

GetMetatypreturns the metatyp handle of of the corresponding symbol. Return
pointer to binding object, aNULL, if no binding (of the given typéf) is assigned.
Return
unigue metatyp handle o
1.2.5.7 Prltem::NextBinding

Binding *Pritem::NextBinding(const Binding *bind,

1.2.5.19 Pritem::Update BINDING_FUNCTION bf = -1);
void Pritem::Update(); NextBindingreturns the next binding of this object.

Updateupdates or creates the item’s attributes in the database. This method is call€d®@y-a bind

ject::Update previous binding

52 49

Chapter 1: Man machine service 1.2 GUI and presentation objects

bf 1.2.5.12 Pritem::Set
bf specifies the binding type: bf £ —1, all bindings are examines, else only bindings of void Pritem::Set(const void *attributes
the given type are used. short len = PR_ITEM_DEF_SIZE);
Return o . , o) Setoverwrites the attributes for the item. This method is defined for all types of items.
pointer to the next binding object, &fULL, if no binding is assigned
attributes
. L attributescontain the new values for the item. Their type has to match the symk
1.2.5.8 Pritem::FindBinding a subset of it. This meansttributescan contain only parts of the symbol states tce
Binding *Prltem::FindBinding(const char *name); manipulation. E.g., when using text fields to enter string values, in normal operat
o o))) o)) only a need to set a new string. It is not necessary to set all attributes, including
FindBindingreturns the binding with the given nameBULL, if no such binding exists on this font-size, color, ... This allows the application developer to include only parts of
object. state into his own data-type. These are the steps to create a simple mask:

name

o Design phase Create a mask with all items. Set the default values on all itel
name of the binding

the entire symbol state.

Rgturn o)) o Application phase Using the mask does not require to set the entire state vé
pointer to the binding object, dYULL, if no binding found these part are interesting which contain application specific data.
len
1.2.5.9 Pritem::Show The length parameter is only given, if the size of the attributes differs from the gii
void Pritem::Show(boolean flag = TRUE); during the item’s creation. The following values are possible:
Showshows or hides an item. The show method on a presentation object overwrites the effects of PR_ITEM_DEF_SIZE: Set item value with length given in constructor. Thi
a show on an item. default behaviour, if no parameter is specified).
flag PR_ITEM_DEF_SIZE_REC: Set item value with default lengtind set presen
Specifies, whether the item should be shown or hidden. If the item is not shown, the event objects, appended with a binding as a subobject, to their values (recursive
generation for this item is switched off. It will be switched on automaticly after a redisplay, submask etc.).
if the corresponding presentation object is monitored. other non zera Set item value with attributes of desired length.
1.2.5.10 Prltem::SetPosition 1.2.5.13 Pritem::Get
void Pritem::SetPosition(const POSITION *pos); void Pritem::Get(void *attributes,

SetPositiormoves or resizes an item. short len = PR_ITEM_DEF_SIZE);

pos Getreads the attributes for the given item. The parameters are described in 1.2.5.]
new position or size and mode, refer 1.3.6 for details. section).
1.2.5.11 Pritem::GetPosition 1.25.14 Pritem::SetName
void Pritem::GetPosition(POSITION *pos); void Pritem::SetName(const char *name);
GetPositiorreads the items size and position. SetNamesets a new name to the item.
pos name
position and size of the item, refer 1.3.6 for details. new item name

50 51

