
Archiving System States by Persistent Objects

Holger Vogelsang Uwe Brinkschulte Marios Siormanolakis
Institute for Microcomputer and Automation, University of Karlsruhe

Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany
fvogelsangjbrinksjsiorg@ira.uka.de

Abstract

This paper describes one specific aspect of the soft-
ware component construction in the lifecycles of computer
based systems. The construction is located following the
requirements analysis, conception and design.

Systems are designed as within the ECBS process so
called services which consist of a set of objects working
together, keeping the states of the system. To ensure an
efficient and rapid construction of systems an easy to use
mechanism to store and retrieve objects together with their
relations is necessary. This demands an embedded method
of keeping objects in a database — the persistence.

The described mechanism is implemented using C++
and verified in some projects. In this paper a man machine
service is used as an example to show the application of
this approach.

1 Overview

Booch [2] writes, that object persistence is the property
of on object through which its existence transcends time
and/or space. This first allows an object to survive the
lifetime of an application, the second enables an object to
move from one address space to an other. This paper de-
scribes an approach for persistence in time together with
a subset of persistence in space: Objects can be located
somewhere on a distributed system, but there is no mecha-
nism realized to move them around.

Object persistence is necessary for several reasons:

� Reusability

After the restart of a system it could be necessary to
reuse precalculated or entered states.

� Memory restrictions

Many systems consists of very large state values. Due
to memory restrictions it is sometimes not possible or
significant to hold the entire state in memory.

� Safety

A fatal system error often causes a total lost of infor-
mation. This is in most applications not tolerable.

� Relations

In addition to Booch we demand the possibility to
keep the relations between objects persistent.

� Data sharing

Data sharing allows different applications to use the
same information. Together with a suitable ac-
cess management this results in an object oriented
database.

To assure this functionality in traditional systems, of-
ten an application dependent store-and-load mechanism is
used to write and restore the object’s contents. This can
be done by placing objects into a special container object,
which itself is responsible for the object management. This
has one major disadvantage: Persistent objects cannot be
treated like other non-persistent objects. A much better ap-
proach is torequestan object to save its own state or to
restore it, because of the following main advantages:

� Embedding

The access of persistent objects is identical to this
of non-persistent objects. There are only additional
functions to control the load/save mechanism.

� State dependence

An object is able to request itself to save its own state
after major or important changes.

� Platform independence

A major problem in the above mentioned man ma-
chine service was the reuse of user interfaces on dif-
ferent hardware platforms. As a result, there was no
guarantee that saved objects on one system are us-
able on other systems due to alignment and byte-order
problems. This requires the availability of full type
information at runtime, which could not be derived

from most programming languages. Every object
can provide the persistent object system with its own
type description, if platform independence is required.
This allows the packing into a unique network format,
readable and writable on every supported hardware
platform.

2 Persistent objects

Persistent objects are realized by declaring the corre-
sponding classes as persistent. This is done by deriving
these classes from the internal classPersistenton the appli-
cations side. On the systems internal side every persistent
object is connected with one (of several possible) database
objects. These acts as stubs for the real local or remote
database server in a heterogeneous net of computers. The
connection to a stub is dynamically changeable so that an
object’s content can be loaded from or stored to different
databases. The advantage of this design is that a persistent
object is placeable anywhere on a net. No object has to
know its own storage place, only the reference to the local
stub is kept. All database stubs share the same machine-
dependent hash table for two purposes: First, to determine
whether an object is already in memory and second, to find
the memory address for a given object identification. Fig-
ure 1 shows the internal structure together with the appli-
cation interface. The diagram uses the OMT notation [10]
for data structures.

persistent class Persistent

is derived from

Database Server

is connected
 with

DatabaseStub

is a
stub for

Application Persistent Object System

HashTable

uses

Figure 1: Internal system structure

3 Persistent object relations

System states are not only defined by object values,
they also consist of relations between objects, which are
expressed in object oriented programming languages by
pointers. To keep the relations between persistent ob-
jects after a program termination alive the special pointer
classPersistentPtris introduced. In addition to the mem-
ory mapped reference to the destination object it contains
the objects unique identification. This class either allows
the automatic reloading of the destination object during its
own creation (AutoPersistentPtr) or a program controlled
recreation (PersistentPtr). This two mechanisms enable
either a total rebuild of the entire data structure only by
reloading the base object or a partial loading of huge struc-
tures at a given point of time.PersistentPtris totally em-
bedded in the host language (here C++) using overloading
of operators to hide most of the functionality. Figure 2
shows the internal structure.

persistent class 1

class PersistentPtr

uses

is connected
with

Application Persistent Object
System

persistent class 2

Figure 2: Persistent relation

Figure 3 shows a single linked list of persistent objects
as an example for persistent relations. Every object in this
list contains a persistent pointer to hold the successor rela-
tion to an other object. Even very large data structures can
be described an kept persistent using this kind of pointer.
The overhead when moving from non-persistent to persis-
tent relations in an application is nearly zero.

Persistent

PersistentPtr

................

Obj1 Obj2

Persistent

PersistentPtr

................

next next

Figure 3: Persistent single linked list

4 Realization

The realization is based on the process database service
Merlin. Merlin is one of the basic services developed at
the institute to ease the computer based system engineering
process.

An attempt using a database server has the following
advantages:

� Simplicity

The language dependent part of the component is very
small.

� Cost-efficiency

Users are able to use their existing (often expensive)
relational database server.

� Mixed operation

Traditional programs with direct access to a relational
database can be used together with new systems with-
out the need of two database systems.

� Common access

System are able to share information in the same
database because of a build-in protection scheme and
synchronization function.

� Distribution

Persistent objects can be distributed on several
databases on different computers.

� Security

A crash of a traditional system leads in the worst case
to a total or partial loss of information or inconsis-
tent states. A database server with a build-in security
mechanism allows the restart on previously defined
points using a rollback functionality.

4.1 The database server “Merlin”

The process database serviceMerlin is a general service
for data management. It was designed to meet the require-
ments of modern information and automation systems. Its
main properties are:

� a powerful but simple interface to the application pro-
gram

� cooperative and distributed network database man-
agement

� real-time system operation

� 24 hour on-line availability

� configurable data security

� a small amount of needed systems resources

� portability and platform independence

For data storage, Merlin uses relational data structures.
As a special feature, large unformatted objects up to 4
Gbyte size can be stored as part of the database relations.
Merlin offers an easy set oriented interface containing op-
erations for high speed data access and manipulation, data
security and data control. This interface is embedded in
the language C/C++. Using multiple client server architec-
tures, database operations can be distributed in a heteroge-
neous network. This distribution is mostly hidden to the
application program. To provide platform independence
and portability, Merlin can operate on a various number of
hardware and software platforms. These attributes make
Merlin suitable for storing the persistent objects. A more
detailed description of Merlin, it’s aims and features can be
found in [3], [4] and [5].

4.2 Mapping between Merlin and persistent ob-
ject system

The implementation of persistent objects has the class
hierarchy described in figure 4. Only the grey shaded com-
ponents are visible to the programmer. All other compo-
nents are part of the persistent object system, which are
hidden from the user.

Application class

Persistent

Database Stub

Databaseserver
connected with

Database

PersistentPtr

AutoPersistentPtruses

uses
uses

Figure 4: Class hierarchy

5 Example: Man machine service

This realization of persistent objects was validated us-
ing it for an implementation of a Man Machine Service

(MMS) for distributed and heterogeneous systems.
Most systems are not able to work without the influence

of a human user because they need decisions they can’t
make themselves. Influence in this case means changes of
a systems internal state due to an interactive access. On the
other hand users must be informed of system states or parts
of it to allow the inspection of the system.

The man machine service is triggered by input events
due to internal state changes of the aggregate system. First,
an interactive access of a user causes changes in the inter-
nal states of the man machine service. Second, if the af-
fected states are observable outside the MMS, new events
are generated to trigger other subsystems.

Due to the fact that man can perceive and handle infor-
mation fastest in a visual way, this is the best channel to
inform about complex system states. The optical channel
is also a good choice to support human interaction. This
is achieved in feeding back the user’s actions. A MMS
has to provide two general services: The visualization of
structured information and the modification of structured
information. Based upon these services any communica-
tion between user and aggregated system can be realized.

A symbol is a graphical representation of a structured
data type. The user can define symbols very flexible with a
tool calledSymboleditor. The symbols are realized as per-
sistent objects for the usage within the application. Sym-
bols can be defined hierarchically, i.e. a symbol can con-
tain other symbols or base symbols. Changing a object
connected to a symbol leads to a different graphical repre-
sentation. Changing the graphical representation (e.g. the
user moves a symbol interactive) leads to a different object
value. The relations between data type values and the re-
sulting images can be defined. This relation is either con-
tinuous where we provide linear or logarithmic functions
or discrete.

Normal symbols can be used to visualize a big amount
of user defined data types. Thepresentation object, a new
type of symbol is introduced to offer the developer the fa-
cility to group symbols together and to create images of
complex data type with a special semantic. There are dif-
ferent types of presentation objects predefined: Apicture
is a set of symbols as an image of a set of objects. Amenu
is an image for a variable of an enumeration type, each but-
ton shows a selectable value. Amask is an image for an
object or a structure of an application. Modifiable com-
ponents of the object can be changed by the manipulation
of the corresponding symbols (sliders, buttons, textfields,
. . .). A table is an image of an array of objects or struc-
tures.

Presentation objects can be build automatically by the
service if the type of the corresponding object is known.
Because every presentation object is derived from the same

common class, they share the same (small) set of opera-
tions. The presentation objects them self are used to build
higher level objects like text editors, hierarchical graphs
and help systems.

All symbols are arranged and positioned in planes. Each
plane defines a unit of measurement respectively a scale.
One symbol can only be assigned to one plane. A plane
allows the grouping of symbols. The user can define rect-
angular areas on the screen. We call such areas windows.
Windows can superpose each other and the sequence in the
window stack can be changed. Planes with all their sym-
bols can be displayed in windows. A window can hold
multiple planes simultaneously and a plane can be dis-
played with different scales in multiple windows. Each
window holds a stack of the assigned planes and their
scales. The stack sequence is changeable.

It is possible to createbindingsbetween symbol events
and operations, or between events on presentation objects
and operations: Several internal operations of the man ma-
chine service can be bound to events, so that typical in-
teractions can be created by the GUI tool without writing
any line of code. Hierarchical menus, masks and tables are
created by bindings between presentation objects. Further-
more, user defined operations are bound to events to create
callback functions. An application is able to catch an event
using this technique.

The graphical user interface is a group of presentation
objects and windows, which are needed at the same time
to solve a given task. It is realized using persistent objects
to separate the application from the GUI. This allows the
reuse of the entire GUI or parts of it in other applications on
different hardware platforms and the on-line modification
of the GUI through the application itself.

The man machine interface requires tools to allow an
interactive and comfortable way to create symbols and
GUI’s. These tools are the symboleditor to construct sym-
bols as images of objects and the GUI-editor to build
graphical user interfaces as a set of presentation objects
and windows.

The resulting environment allows pleasant and comfort-
able development of user interfaces for distributed systems.
The major features of this man machine service are:

� Portability

� Flexibility

� Complex graphical objects

� Tools and editor services

� Separation of GUI database and application

� Resolution independence

� Client/Server-Concept

6 Conclusion

The persistent objects have been recently used with suc-
cess in different applications such as a control of a produc-
tion cell. Since the MMS is implemented using persistent
objects many of the above mentioned features such as the
separation of GUI and application were realized without
much afford.

7 Acknowledgment

This paper is based on research done at the Institute
for Microcomputers and Automation, Prof. Schweizer and
Prof. Brinkschulte.

References

[1] O. Bantleon et.al., “Streams++: Portable Bibliothek
für persistente Objekte in C++”,Articles in iX 3-
4/1994

[2] G. Booch, Object oriented design with applica-
tions, The Benjamin-Cummings Publishing Com-
pany, 1991

[3] U. Brinkschulte, “MERLIN — Ein Prozeßdatenhal-
tungssystem f¨ur Echtzeitanwendungen”,in confer-
ence proceedings, Echtzeit 93, Karlsruhe, Germany,
1993

[4] U. Brinkschulte, “Architektur eines Datenhaltungs-
dienstes”, in conference proceedings, 39. Wis-
senschaftliches Kolloqium, TU Illmenau, Illmenau,
Germany, September 1994

[5] U. Brinkschulte, “Database Services”,in conference
proceedings, KEOOA 95, Knowledge Engineering
and Object Oriented Automation Workshop, Stras-
bourg, France, May 1995

[6] U. Brinkschulte, M. Siormanolakis, H. Vogelsang,
“Graphical User Interfaces for Heterogeneous Dis-
tributed Systems”,in: proceedings of EI’96, San
Jose, USA, 1996

[7] U. Brinkschulte, M. Siormanolakis, H. Vogelsang,
“Visualization and Manipulation of Structured Infor-
mation”, in: proceedings of Visual96, Melbourne,
Australia, 1996

[8] A. Dearle, R. Bona, J. Farrow, F. Henskens, A.
Lindström, J. Rosenberg, F. Vaughan,Grasshopper:

An orthogonally persistent operating system, Depart-
ment of Computer Science, University of Adelaide
and Sydney, Austria

[9] O. Hammerschmidt, H. Vogelsang, “Design of Dis-
tributed Real Time Systems in Process Control Appli-
cations”,in proceedings of CIMPRO’96, Eindhoven,
Netherlands, 1996

[10] J. Rumbaugh et.al.,Object-Oriented Modeling and
Design, Prentice Hall, 1991

[11] V. Singhal, S. V. Kakkad, P. R. Wilson, “Texas: An
Efficient, Portable Persistent Store”,in proceedings
of the Fifth International Workshop on Persistent Ob-
ject Systems, San Miniato, Italy, September 1992

[12] A. Stevens, “Persistent Objects in C++”,Dr. Dobb’s
Journal, December1992

[13] H. Vogelsang, U. Brinkschulte, “Persistent Ob-
jects in a Relational Database”,Submitted paper to
ECOOP’96, Linz, Austria, 1996

[14] M. Voss, “System Theories for an Engineering Dis-
cipline of Computer-Based Systems”,in proceedings
of EMCSR96/Session C

