
Integration-Based Cooperation in Concurrent Engineering

Gerd Hillebrand Patricia Krakowski� Peter C. Lockemann Dietmar Posselt�

IPD, Universität Karlsruhe, Germany
fggh,krakowski,lockeman,posseltg@ira.uka.de

Abstract

Concurrent engineering is a means to shorten product de-
velopment times. Information systems supporting concur-
rent engineering must facilitate the exchange and unam-
biguous interpretation of product data from various design
and manufacturing stages, the collaboration of geograph-
ically dispersed experts in a complex design process, and
the use of diverse computing platforms and tools.

We describe our experiences in a joint project with the
Department of Mechanical Engineering, building an inte-
grated information system for concurrent engineering ap-
plications. The system is based on a single, integrated
object-oriented data model and schema, the so-called prod-
uct and production model, which covers all phases of the
product life cycle. The model is implemented in a dis-
tributed and heterogeneous fashion using a CORBA-based
object bus. On top of this bus, support for structured and
ad-hoc collaboration is built around a uniform and flexi-
ble presentation layer. We motivate concurrent engineering
and argue why we believe that it mandates a single, inte-
grated schema. We then describe the overall architecture
of the system and address various implementation issues, in
particular object persistence, model evolution, presentation
services and support for collaborative work.

1. Introduction

Today’s development of new products takes place under
immense time pressure: ever shorter technology time cycles
lead to ever shorter product life cycles, global competition
offers sufficient return on investment only to those who
make it first to the market. “Time-to-market” has become
the universal catchword to signify the pressure on engineers
and sales forces.

Part of any time-to-market strategy is the shortening
of development times. The traditional sequential process
with its consecutive steps of submission of bids and ten-
ders, product design, manufacturing planning, production

�Funded by the German Research Council (DFG) under project num-
ber SFB346.

scheduling, manufacturing organization and quality control
must be replaced by a more concurrent one, where the steps
are highly interconnected, where results are passed on in a
yet incomplete state in order to initiate the first phases of
the next step and where iteration takes place by providing
corrective feedback to the earlier steps.

A process where many of the steps take place concur-
rently, albeit with relative delays, and where close inter-
connections and feedbacks must be observed, is commonly
referred to as concurrent engineering. In concurrent engi-
neering, many different experts from many different divi-
sions of the same or different enterprises must collaborate
and interact closely. Concurrent engineering can be suc-
cessful only if the required collaboration is supported by
information systems that reflect and enforce, among all per-
sons involved, a common understanding of the objectives
and the product of the engineering process, and that provide
the participants at the right time with the right contents.

Since the experts involved, and hence the tools they em-
ploy, are spread across several divisions we have to expect
that the common information system is distributed across a
number of, in all likelihood, fairly autonomous component
systems. Hence on a first glance, concurrent engineering
seems to be a clear case for federated information systems,
i.e., for information systems that tolerate a fair degree of
semantic heterogeneity among the components, and facil-
itate interoperability between them by special means such
as translation and mediation services. We claim, though,
that concurrent engineering is under constraints so severe
that it cannot afford to leave much room for terminologi-
cal discrepancies, factual misunderstandings or ambiguities
because these take too much time to resolve and leave too
much of a risk if done by purely automatic means. Our
thesis is that, instead, concurrent engineering necessitates
agreement on a common, engineering-oriented product and
production model that is shared and enforced by all compo-
nent systems. Distributed information systems for concur-
rent engineering must be old-fashioned integrated systems
with a common data model and database schema.

An integrated database with a shared database schema is
a necessary, but by no means sufficient precondition for the

1



successful integration of a collaborative engineering pro-
cess. Engineering processes follow certain established pat-
terns, hence one should be able to superimpose suitable pro-
cess models on the database system or, more precisely, on
its appearance through the product and production model.
This would seem to bar a Computer Supported Coopera-
tive Work (CSCW) approach because, although it relies on
an integrated and shared document base, it is notoriously
weak on imposing discipline on the cooperation, prefer-
ring instead to leave the evolution of the cooperation to
the individual human players. At the other extreme, work-
flow management systems (WFMS) appear unsuitable as
well because they impose tight discipline on the sequence
of process steps and, consequently, require a fair amount
of preplanning, which makes them less than ideal when it
comes to dealing with unforeseen situations or with pro-
cesses that are non-routine or ad-hoc by their nature, as are
many engineering processes.

We conclude that in order to impose process models
on a logically centralized and thus integrated information
base, we have to find a middleground between CSCW and
WFMS. As a second thesis, we claim that this middle-
ground is provided by lifting the process model, along the
lines of CSCW, onto the presentation layer of the common
information system. Here the process becomes visible to
the participating experts, and they may initiate, inspect and
control its steps. We borrow from WFMS that each process
step is associated with certain resources, such as computer-
ized design, engineering, planning and analysis tools, and
that these tools can pass information among each others
via a common communication medium—in our case the
integrated database.

Our third claim is that the integrated database must be
supplemented by view mechanisms both at the schema and
the presentation level. The product and production model
provides a general and comprehensive core, while individ-
ual tools often require a highly specific view. Similarly,
the presentation level provides a generic “desktop”, which
must be configurable according to the needs of each hu-
man user. By providing application-specific views (in the
sense of traditional database views) at the schema level and
user-specific views (in the sense of pluggable visualization
components) at the presentation level, we allow engineers
and tools to deal with locally flavored information. Ef-
ficient communication through the integrated database is
still maintained, because both kinds of views are mapped
to the core product and production model.

The system described in this paper is being designed
and built in the context of SFB346, a joint research project
between the Department of Informatics and the Depart-
ment of Mechanical Engineering at the University of Karl-
sruhe. Funded by the German Research Council DFG,
the goal of the project is to increase the efficiency of the

product development and manufacturing process by suit-
able computer-integrated tools and infrastructure. After
a strong initial focus on developing core object-oriented
database technology, our current work emphasizes an open,
distributed architecture. Hence the current, second gener-
ation of the system uses a middleware-based, peer-to-peer
approach, whereas earlier prototypes were built using the
client-server paradigm.

The paper is organized as follows. Section 2 surveys our
product and production model and discusses how to orga-
nize a model of such size and complexity so that it can be
mastered by the individual participants and tools. Section 3
gives an overall picture of the system architecture, which
is based on an object bus providing information access and
exchange in terms of the common model and a customiz-
able, desktop-oriented user interface. Section 4 presents
the user interface in some more detail and illustrates how
views are used at the presentation layer to create individual
perceptions of the PPM. Section 5 describes the coopera-
tion support built into the system, which combines elements
from CSCW and WFMS to support a process model along
the lines of peer-to-peer communication among distributed
participants. Section 6 discusses the interface between the
object bus and persistent storage, and Section 7 deals with
schema evolution and the issues resulting from supporting
different versions of the schema simultaneously. These sec-
tions give a flavor of the technical challenges that have to be
overcome in a flexible concurrent engineering environment.
Section 8 reviews related work, and Section 9 concludes the
paper.

2. The Product and Production Model

As pointed out before, in time-critical, distributed, co-
operative product development it is imperative that the par-
ticipants agree on the format and meaning of the data they
exchange, and avoid the overhead that comes with inter-
operability options such as self-describing data [14, 19],
Mediation [21], or agent technology. The recent trend
in manufacturing industries towards standardized models
such as STEP [5] demonstrates that a single, integrated data
model and schema at the conceptual level seems to be the
most economical solution.

For our research purposes STEP proves to be too un-
wieldy. Consequently, we designed the PPM, an object-
oriented integrated product and production model suitable
for describing the development and manufacturing process
of mechanical components and assemblies. The model
evolved in parallel with its larger cousin STEP—the De-
partment of Mechanical Engineering also being an active
contributor to the latter—and shares some of STEP’s main
features. However, because of its limited scope, it is signif-
icantly less complex and more manageable than STEP.

2



One of the major features of the PPM is that it encom-
passes the entire product life cycle. Given the many in-
teractions between various phases of the product develop-
ment and manufacturing process, it is essential that all data
pertaining to a particular product, be it customer require-
ments, design specifications, or field maintenance records,
are gathered in a—conceptually—single place. Despite
its limited scope, the PPM is a huge model that must be
intelligently structured in order to be amenable to collab-
oration and to facilitate its design and maintenance. The
current version comprises some 300 object and relation
types, grouped into 32 modules.

The model is divided into two layers. The lower layer
provides a core model with concepts such as Product, Ver-
sion, Property and so on. It is comparable to the Integrated
Resources Layer of STEP. The core model is the one that
establishes the common framework across all process steps.
On top of it, an upper layer containing phase- or application-
specific views is defined. It provides, for example, views
tailored to requirements analysis, to principle, functional
and shape design, to manufacturing and technology plan-
ning and others. The semantics of the upper layer is defined
in terms of the core model. In the implementation, the up-
per layer is realized by a set of translation servers connected
to the object bus, which convert requests issued against a
particular view into requests against the core model. That
way, the upper layer can easily be extended by defining a
new view of the core model and writing a corresponding
translation server.

Note that the schema-level views in the upper layer of the
PPM are quite different from the views at the presentation
level described in Section 4. The former define the format of
data exchanged on the object bus and seen by applications,
whereas the latter define the visualization of such data on a
particular user’s desktop.

3. System Architecture

The desired system architecture must be able to support
all our three claims: the common information base modeled
by the PPM, support for structured and ad-hoc collaborative
processes, and a view concept both at the schema and the
presentation level.

Our architecture has evolved over several project stages.
Initially, the emphasis was on data integration: a com-
mon object-oriented database was shared by a number of
complex engineering and planning tools. The engineer-
ing process under consideration at the time was strictly
sequential, so there was no need for CSCW support or tight
application integration. The PPM was used as a conceptual
model, whereas the tools were implemented in terms of
an underlying object-oriented model called GOM (Generic
Object Model) [7], which defined the functionality of an

ODBMS that guaranteed the persistence of PPM objects.
GOM provided a persistent, object-oriented programming
language (GOMpl) featuring both a descriptive data defini-
tion language (DDL) and an imperative data manipulation
language (DML). A graphical schema editor allowed to en-
ter GOM types in an OMT-like [15] notation and generate
the corresponding DDL code. This code was the basis for
implementing the behavior of objects as programs written
in GOMpl.

The initial architecture afforded a smooth integration be-
tween the shared database and the programs accessing it,
but tended to foster rather large,monolithic applications that
did not lend themselves easily to the fine-grained, highly
interconnected parallelism inherent to concurrent engineer-
ing. Moreover, because of its reliance on a single database
programming language, it was difficult to integrate legacy
code or off-the-shelf applications.

As the focus of the project shifted towards distributed
and concurrent engineering processes, it became clear that
a more open architecture based on fine-grained functional
units was desirable. Moreover, an integrated, “desktop”-
oriented user interface featuring view mechanisms and ex-
plicit modeling and monitoring support for cooperative pro-
cesses became a necessity for smooth cooperation of work-
groups.

These criteria are reflected in a new architecture, which
consists of two major layers. At the bottom an open integra-
tion layer, called the object bus, connects distributed objects
in a peer-to-peer fashion. Every object has a type specified
in the PPM, which is now a runtime reality instead of the
earlier merely conceptual tool. At the top an integrated pre-
sentation layer replaces the former collection of individual
application GUIs. It employs a desktop metaphor in order
to allow the more or less immediate interaction between
collaborating engineers, and it offers views as individual
perceptions of PPM objects to back the individual work.

Figure 1 shows the system architecture. It is strictly
component-based: the presentation layer uses pluggable
display components called views1 to populate each individ-
ual desktop, while the object bus layer encapsulates primary
data, metadata and application services as PPM objects.

The functional glue between the two layers and the distri-
butional glue across each layer is realized by middleware.
For our project, we have chosen Orbix, a commercially
available implementation of the OMG’s CORBA (Com-
mon Object Request Broker Architecture) interoperabil-
ity standard [13]. CORBA combines the idea of trading

1These views at the presentation level are small programs (JavaBeans)
that can display one or more PPM objects. As pointed out earlier, they
are different from the application- or phase-specific views constituting
the upper layer of the PPM. Unfortunately, the term “view” is deeply
ingrained both in database and user interface terminology; with related,
but not identical meanings.

3



View ViewView View

View

Repository

Views

Interface

Repository

PPM

Marketing Production

Object Object ClassObject bus (CORBA)

IIO
P

no
tif

y

su
bs

cr
ib

e

User 1 User 2

Desktops (Java)

Data Servers

Databases

no
tif

y

Wrapped Applications
(Method Servers)

su
bs

cr
ib

e

no
tif

y

su
bs

cr
ib

e

Figure 1. System Architecture

and brokering services to clients in a platform-independent
way with the paradigm of object-orientation. Part of the
CORBA standard is an interface definition language, IDL,
for the specification of object interfaces. We use an ex-
tended version of IDL as the textual notation for the PPM.
The Interface Repository and the Graphical Schema Edi-
tor (see below) translate back and forth between the textual
and graphical presentation of the PPM. Using commercially
available IDL compilers and object request brokers, the IDL
specifications in the PPM can be compiled and implemented
in any CORBA-supported language, e.g., Java, C++, Ada,
Smalltalk, or even COBOL. Thus, even though the model
is centralized and homogeneous, the actual implementation
is distributed and quite heterogeneous.

The types defined in the PPM are managed by the In-
terface Repository, which ensures persistent storage of in-
terface definitions. The Interface Repository is itself a col-
lection of objects with IDL-defined interfaces, each object
representing one PPM type. Thus, the metadata is held
using the same data model and access mechanism as the
actual data, which obviates the need for a separate schema
browsing and manipulation infrastructure. Nevertheless,
Interface Repository objects differ from ordinary objects in
that modifications to the Interface Repository imply changes
to the underlying database schema and perhaps object im-
plementations. Therefore, a schema evolution mechanism
is necessary in order to keep the running implementation
consistent with the Interface Repository and to ensure that
persistent data is smoothly carried over between model up-

grades. This mechanism is discussed in Section 7.
Within the project, we use tools provided by third parties

as well as tools that were developed during the early stages
of the project. Consequently, we face the problem of re-
engineering legacy applications for use with the object bus.
In the simplest case—when an application does not have
a graphical user interface—only wrapping is necessary,
which basically requires just the definition of an IDL in-
terface. In general, though, engineering tools are heavily
graphics-oriented and, even worse, large monolithic sys-
tems. Hence, the challenge is to break these systems down
into fine-grained components, where ideally each compo-
nent captures just one functional aspect.

The main responsibility of the presentation layer is to
provide each user with a personalized desktop, which con-
tains appropriate visual representations of those PPM ob-
jects the user needs for his tasks. Our approach is based on
the Model-View-Controller [8] paradigm: The underlying
PPM objects are regarded as models2 with state and behav-
ior, but no inherent visual representation, and separate view
components are used to visualize models in different ways.
A view has an associated controller component, which re-
ceives user input (from mouse or keyboard) and translates
it into service requests to the model. Views and models are
decoupled by establishing a subscribe/notify protocol be-
tween them—the view subscribes to the model, and when-

2There is again potential for confusion here: This usage of “model”
originates from Smalltalk and is unrelated to database terminology, where
a model typically denotes a schema.

4



ever the model’s state changes, it notifies the view so that
the view may update its appearance. Multiple views may be
associated with a model to provide different presentations.
For example, figures 2 and 3 show two different views of
the same turning lathe: the first is geared towards a tech-
nology planner and presents various machine parameters in
a textual fashion, whereas the second is geared towards the
machine operator and uses a 3D image as a more intuitive
representation. New views can be created for a model with-
out changes to code associated with the model (the approach
shows some similarity to the ANSI-SPARC three-schema
approach of the Seventies [20]).

In our architecture a special component, the View Repos-
itory, maintains all defined views. Whenever the presen-
tation layer is asked to display a specific PPM object, it
interrogates the View Repository for an adequate view. The
View Repository maintains, for each user and role, prefer-
ence lists that specify how a given PPM object should best
be presented. In accordance with these preferences, the
View Repository selects a view and transmits it to the pre-
sentation layer, which then displays the view on the user’s
desktop. A generic view, which uses information from the
Interface Repository to adapt itself to any kind of object, is
available as a fallback in case no other view can be found.

To ensure platform independence and easy access via
the World Wide Web, the presentation layer and the asso-
ciated views are written entirely in Java. Communication
between views and the underlying PPM objects utilizes the
CORBA-standardized IIOP (Internet Inter-ORB Protocol),
the same protocol that is used on the object bus itself for
communication between PPM objects.

4. User Interface

The user accesses the system either locally or through
a Web browser. In both cases, the Java classes comprising
the presentation layer are loaded onto the user’s worksta-
tion or PC and an initial login screen is displayed. The user
identifies himself and the particular role in which he wishes
to use the system—the notion of a role permits differently
customized desktops for different functions—and this in-
formation is used to compile a list of PPM objects forming
the initial contents of the user’s desktop. Typically, this
list contains the user’s mailbox, current projects and tasks,
favorite tools, and whatever other object the user wishes
to have at his fingertips. The system does not attach any
special semantics to the objects in the list; it merely asks the
View Repository to identify a suitable view for each object,
given the user’s identity and role, and brings up these views
on the user’s desktop.

Once the login process completes and the initial views
are active, the desktop presents the typical WIMP inter-
face (windows, icons, menus, pointers) familiar from other

desktops such as Microsoft Windows or Mac OS. Its look
and feel, along with view properties such as colors or fonts,
is set on an individual basis, directed by per-user preference
lists held in the View Repository.

All interaction between the user and the system happens
via views. Hence, an action typically has two phases: a nav-
igational phase, in which the appropriate views are brought
onto the user’s desktop, and an operational phase, in which
the user interacts with these views to display, modify, or
control certain PPM objects.

Navigation is accomplished by following relationships
between PPM objects, which map naturally into con-
tainer/contained relationships between views. For exam-
ple, the PPM description of a turning lathe consists of
a root object containing references to various other ob-
jects such as parameter settings, cutting tools, maintenance
events and so on. A view of the turning lathe typically dis-
plays some or all of these associated objects as well, using
embedded subviews that are either just buttons or other-
wise reduced in detail to keep the presentation manageable.
Clicking on an embedded subview brings up a separate,
full-fledged view of the corresponding PPM object. For
example, the top four buttons of the turning lathe view in
Figure 2 are actually embedded subviews of certain objects
associated with the turning lathe; three of these subviews
(“Leistungsdaten/Genauigkeit”, “Werkzeuge/Spannmittel”
and “Drehwerkzeug”—the system was designed in Ger-
many) have been expanded and are visible as separate win-
dows underneath. Moreover, the “Werkzeuge/Spannmittel”
view again displays a list of subviews, one of which has
been selected and expanded in the bottom-right window. In
the 3D image in Figure 3, various subviews are incorpo-
rated as sensitive image regions: clicking on the die mount
brought up the separate view at the bottom showing certain
geometry parameters of the machine.

In addition to this kind of navigational access, two other
access mechanisms are available: a customizable list of
global access points available from a menu bar, and a search
facility attached to every PPM type that can locate instances
satisfying certain properties.

After the desired view has been opened, the interaction
with the view depends very much on the facilities provided
by the view. A simple view may provide editable text fields
to change selected attributes of the underlying PPM object
or buttons to activate selected methods. More sophisticated
views may encapsulate entire applications such as a word
processor or a CAD tool. In general, a view has exactly the
same kind of access to the object bus as any other client,
and it may use whatever navigation, attribute accesses and
method invocations are necessary to accomplish its purpose.

The administration of the View Repository and the PPM
is also done by means of suitable views. The View Repos-
itory, like the Interface Repository, is itself modeled in the

5



Figure 2. Planner’s view of a turning lathe

Figure 3. Machine operator’s view of a turning lathe

6



Figure 4. PPM maintainer’s view of the type “turning lathe”

PPM and accessible through the object bus. Specialized
views are available to access these administration objects.
Each user can use so-called customizer views operating on
the View Repository to adjust his personal desktop con-
figuration. The administrator of the PPM has access to a
collection of views operating on the metadata objects in the
Interface Repository and can use these to modify the PPM
and initiate code generation as described in Section 6. For
example, a view of the PPM module describing, among
other things, turning lathes is shown in Figure 4. This par-
ticular view contains a rather deep hierarchy of subviews
(every white rectangle is a subview), corresponding to the
nesting of metaobjects in the interface repository.

From the perspective of the presentation layer, these ad-
ministrative views are by no means special—they are loaded
from the View Repository and integrated into the desktop
just like any other view. However, the View Repository
and the Interface Repository also provide a bulk load facil-
ity so that the system may be bootstrapped from a set of
configuration files.

5. Cooperation Support

The mechanisms provided by the system to support co-
operative work fall into two categories: Support for more
or less unstructured, ad-hoc collaborations and support for

fairly well structured collaborations following a prespeci-
fied pattern. Mechanisms in the first category provide basic
CSCW functionality and are mostly built into the system
infrastructure, whereas mechanisms in the second category
are workflow-oriented and rely on an explicit process model
in the PPM with associated modeling, execution and moni-
toring components.

Many of the features often connected with “groupware”
are already inherent in the system architecture. The PPM
and the object bus sustain the fiction of a single, shared
repository containing every piece of information relevant
to the engineering process. Storage and exchange of doc-
uments, and more generally, any kind of PPM object, are
handled transparently to the user—in fact, there is no real
exchange, because only object references, not objects, are
ever passed around. The views, through which human users
perceive PPM objects, operate on the same underlying ob-
jects, and hence changes made by one user are automatically
visible to all other users. For example, a shared group calen-
dar or agenda is easily implemented by creating a persistent
PPM object of the appropriate type and making it available
to all members of the group. Every view displaying the ob-
ject will be notified, through the subscribe/notify protocol,
whenever the object changes state, hence group members
will always see the current state of the agenda.

Various forms of communication between users can also

7



be conveniently realized using the desktop metaphor and
the common object bus. For example, an arbitrary object
may be placed into a user’s input folder using drag-and-
drop functionality supplied by the desktop. Combined with
the notification mechanism, the recipient immediately de-
tects the object in his input folder and may then click on
it to start the appropriate view. Experiments are currently
underway with videoconferencing: Double-clicking on a
person’s icon on a desktop initiates a video connection to
that person’s office. In addition, “virtual buildings” can
be displayed by appropriate views, showing, e.g., the lo-
cation of each office along with an indication of whether
its occupant is currently willing to engage in any form of
communication.

The support for structured, workflow-directed collabora-
tion is based on a—currently fairly simple—process model
in the PPM. Processes are partially ordered sets of activities,
which may be either atomic steps or subprocesses. Activ-
ities have inputs and outputs, which may be connected by
producer/consumer relationships to other activities. In ad-
dition, each activity has a pre- and postcondition, which
are verified by the system before initiation and after ter-
mination of the activity, respectively. Every active process
is associated with a container object, which collects the
process-specific state of the objects participating in the pro-
cess, in particular the inputs and outputs of each activity.
When an activity is ready to be initiated, the system places
the activity object together with its inputs into the input
folder of the user responsible for it. The user may then
display these objects on his desktop, perform whatever ac-
tions are necessary to complete the activity, and notify the
system once the activity is finished, providing the values of
the output parameters. Views are available to display and
modify the activity structure of a process and to display the
status of an active process.

The current, graph-based process model is best suited
to well-structured processes such as traditional workflows.
However, it is difficult to describe processes like collabora-
tive product design,which have limited formal structure,yet
follow certain patterns. We are investigating other means
of description [10, 17], but the issue is still open.

6. Object Persistence

A PPM object, like any other object, contains state and
implements behavior. The state must be kept in persistent
storage, while the behavior is implemented by code that is
shared across all instances of a specific type. Unfortunately,
one cannot tell from the type of a PPM object what kind
of state it contains. This may seem surprising, because in
ordinary object-oriented models, the state of an object is
modeled by its attributes. However, one must keep in mind
that the PPM and the associated object bus are realized

using CORBA, and that CORBA “objects” are really just
handles to underlying implementation objects that provide
certain operations specified in their IDL interface specifi-
cation. In fact, an “attribute xxx” declaration in IDL is
nothing but syntactic sugar for a pair of getxxx and setxxx
functions, which may or may not be related to an attribute
in the object’s implementation. Thus, there is no a-priori
reason why the attribute declarations in a PPM type should
have anything to do with the state space of the underlying
implementation.

However, some convention for declaring the actual state
space of a PPM object must be chosen, if the system is to
provide automatic persistence for PPM objects. The current
prototype assumes, for simplicity, that the actual state space
of the implementation of a PPM object is indeed given by the
attributes in its PPM type. Put another way, this means that
the result and side effects of any method call are completely
determined by the parameters of the call and the values of
the PPM attributes of the object the method is invoked
upon. From a software engineering perspective, this may
seem a poor choice, because it exposes the entire state of the
object in its public interface. However, a separate access
control mechanism at the instance level is needed anyway
to implement per-user and per-object access rights, and the
chosen approach does have the advantage of not requiring
additional language constructs to describe the actual state
space.

Given this assumption, persistent storage of PPM objects
can be realized by providing attribute servers that imple-
ment, for each attribute of an object’s PPM type, the get
and set functions that the attribute declaration is converted
into, using persistent storage. Because of the platform in-
dependence of CORBA, any implementation language and
storage mechanism may be used, as long as the get func-
tion for a given attribute and object id reliably returns the
last value set with the set function. In our system, attribute
servers based on an object database system are automati-
cally generated by a code generator, using information in
the Interface Repository.

To facilitate the integration of legacy software and dif-
ferent computing platforms, but also for load balancing
purposes, it is often desirable to split the implementation
of a PPM object across several hosts. This means that
clients hold a single object reference, but requests issued
against that reference are directed to different hosts, de-
pending on which method was invoked. For example, the
attribute servers in our system are automatically generated
and therefore implement only the get and set functions for
object attributes, whose semantics are fixed. Other meth-
ods defined by a PPM type are implemented in separate
servers, so-called method servers. For example, a method
for computing the stress load of a mechanical part might
be implemented by a method server that is actually a wrap-

8



per around a finite element analysis tool, whereas a method
for estimating the manufacturing cost of the part might
be implemented by a different server using a neural net.
If both methods are associated with the same PPM type,
clients holding a reference to the part object can invoke
either method on the reference without being aware of the
different implementations.

A single method server may implement any number of
methods for any number of types. Since by assumption
the entire state accessed by methods is captured in the at-
tributes of the corresponding PPM type, method servers do
not associate any state with object references themselves,
but instead invoke attribute get and set functions on object
references as necessary.

The distributed implementation of a single PPM type
in several CORBA servers presents some technical chal-
lenges, since CORBA expects each type to be implemented
in its entirety in a single server. The mechanisms used
to overcome these difficulties will be discussed in a mo-
ment. However, for the client of a PPM object—and in
fact the CORBA infrastructure itself—, the distributed im-
plementation is completely transparent. Only the servers
cooperating in implementing a PPM type know about each
other and forward method calls and attribute accesses to
each other behind the scenes.

To illustrate the distributed implementation of a PPM
type, consider the following type definition (in IDL syntax,
a type is called an interface).

interface i {
attribute string a@s1;
void m@s2();

};

This type definition declares an object type named i with
two members: an attribute a of type string implemented in
an attribute server named s1, and a parameter- and result-
less method m implemented in a method server named s2.
The @-syntax is not part of standard IDL; we added this
construct to be able to name the servers participating in
the implementation of a type. It is worth noting that these
server names are logical names; they do not imply an affin-
ity to a particular machine. The CORBA object request
broker decides at runtime where to start servers based on its
configuration tables.

From this type definition, two CORBA servers are au-
tomatically generated. From the perspective of the object
request broker, both servers appear to implement IDL in-
terface i, and the only observable difference is the logical
server name. However, the two implementations are actu-
ally quite different. Server s1 is connected to an object-
oriented database (ObjectStore in our case), whose schema,
in this simple example, contains a single type i db with a
single, string-valued attribute a. For every PPM object of

type i, s1 maintains a database object of type i db, whose
object identifier is embedded in the object identifier of the
PPM object. Whenever an attribute access request arrives
via the object request broker, s1 extracts the object identifier
of the database object from the incoming PPM object iden-
tifier and accesses the database object to get or set its a at-
tribute. However, when the object request broker asks s1 to
invoke method m on a PPM object, s1 forwards the request
to s2 by a judicious manipulation of the CORBA “envelope”
of the request. The implementation of interface i in s2 is
exactly the opposite: requests to read or write attribute a

are forwarded to s1, whereas invocations of m are handled
locally. Of course, the automatically generated code for
server s2 cannot provide a real implementation of m since
the code generator does not know what m is supposed to
do. Instead a dummy implementation is generated, which
must be manually replaced by code realizing the desired
functionality. If this code needs to access attribute a, it uses
the same forwarding functions that are invoked when an
attribute access request comes in from the outside.

This multilateral forwarding technique can obviously be
extended to any number of attribute and method servers.
Except for the actual method implementations, all code, in-
cluding the ObjectStore schema, is generated automatically
from the online representation of the PPM in the Interface
Repository. The attribute server also contains code provid-
ing a “factory object” for every PPM type, which allows for
the creation, deletion and search of objects of that type.

To achieve robustness of actions one employs transac-
tion models. Presently the only robustness we guarantee
relates to individual requests: Every attribute request sent
to the attribute server is executed as one short transaction.
A chain of requests can be executed under ACID seman-
tics if care is taken by the attribute server to execute all
requests in the same thread as part of the same ObjectStore
transaction. Using this technique, arbitrary ACID transac-
tions can be realized on the object bus by assigning each
object bus transaction a dedicated thread in the attribute
server whose identifier is passed around as a transaction
context. All requests arriving at the attribute server under
the same transaction context must then be dispatched to
the corresponding thread, which itself runs a single Object-
Store transaction. However, this mechanism has not been
implemented yet.

7. Model Evolution

Business organizations and processes change often—
more so than in the past. After all, concurrent engineering
is a reflection of a much more dynamic production envi-
ronment. Even though the PPM strives to be a general
and comprehensive model of the product development and
manufacturing process, it is to be expected that the model

9



will undergo frequent revisions and augmentations. It is
therefore important to provide, as part of concurrent engi-
neering support, schema evolution mechanisms that allow
fairly general manipulation of the PPM while preserving
the persistent data across schema changes.

There are essentially two ways of handling schema
changes. One is the “big-bang” approach: The system
is brought down, the old database is reorganized according
to the new schema, and all CORBA clients and servers are
modified and recompiled. Even in a research environment
like ours, this approach is a major undertaking and only
justified after extensive modifications to the PPM.

The other approach is incremental and does not disrupt
the running system. It uses versioning to support multiple
versions of a PPM type and the CORBA servers imple-
menting the type. The persistent state belonging to a PPM
object is shared across all versions of its type; however, the
different versions may expose different parts of the shared
persistent state.

The versioning approach works by making the clients of
a PPM object responsible for selecting the correct object
implementation. More precisely, if any program—view,
CORBA server, or other—uses a particular PPM type in the
sense of invoking operations of an instance of that type, then
the client is responsible for directing these operations to a
server implementing the same version of the type as used by
the client. This is a major departure from the architecture as
described until now, where clients of objects were always
oblivious to the object implementations. However, applica-
tion programmers can be shielded from this responsibility,
because the required code can be generated automatically
as illustrated below.

CORBA presents a remote object to a client by means of
a proxy object, which is a client-local object of (essentially)
the same type as the underlying remote object and which
simply forwards all operations to the latter. The code for
the proxy object is usually generated by an IDL compiler
from the IDL specification of the remote object. When us-
ing versioned types and servers, however, the proxy code is
modified to direct each operation to a particular server (iden-
tified by its logical name and version number), namely the
server implementing the version of the type that was current
at the time the proxy was generated. If different operations
of the type are implemented in different servers, then the
appropriate server is set in the proxy individually for each
operation. The proxies are generated from information in
the Interface Repository, which maintains the version num-
bers of types and servers and can therefore tell which server
version implements a given type version.

By hardcoding the server name and version into the client
proxies, it is guaranteed that when a client invokes an oper-
ation declared in some version of a type, the invocation is
always handled by an implementation of the same version

of the type. Thus no runtime type mismatch occurs. The
load imposed on the system by keeping all versions of all
servers accessible is not as bad as it may first seem, since
servers are dynamically activated and not all servers need
to be running all the time. Of course, the executables must
be kept around.

Besides guaranteeing type safety, the system must also
ensure that for a given object, the persistent state visible
through different versions of the object’s type is indeed
shared. Of course, one first has to specify exactly which
state is supposed to be shared. We adopt the following con-
vention: Two attributes in different versions of the object’s
type share the same value iff they have the same name and
the same type (in the type comparison, only type names
are used and versions are not taken into account). In other
words, if the PPM maintainer defines a new version of a type
and adds to it a textual copy of an attribute declaration from
an earlier version of the type, then he is telling the system
that the attribute has the same semantics in both versions
and that changes to its value made through one version of
the type should be visible through the other version. In
all other cases, attributes defined in different versions are
independent. Thus, the persistent state of a PPM object is
given by the collection of values for all attributes in ver-
sions of the object’s type, subject to the sharing condition
above. Hence the persistent state space of a PPM type never
decreases as versions are added.

As new versions of a PPM type are created, the corre-
sponding new versions of the attribute server face the task
of mapping any newly introduced attributes onto the exist-
ing database schema. Since it is usually impossible to add
new attributes to existing types in the database schema, the
only solution is to define new extension types that provide
space for the new attributes. From the very first version
on, every database type must then provide for a forwarding
pointer, which is used to chain extensions objects to existing
database objects. Whenever an attempt is made to access
an attribute of a PPM object whose associated database
object does not yet contain an extension for the attribute,
the necessary extension and any missing predecessors de-
fined by earlier type versions are added to the chain. In the
worst case, an attribute access requires the traversal of n�1
forwarding pointers in the database, where n is the num-
ber of the type version that first introduced the attribute.
Therefore, a periodical reorganization of the database is
still desirable, but this reorganization can be limited to the
database and the attribute servers and does not affect the
rest of the system.

8. Related Work

The integrated information system presented here falls
under the broad label of “cooperative information sys-

10



tem” (cf. [2]), emphasizing group work and adaptability
to change. However, it is somewhat unique in its strong re-
liance on the integrated model PPM, which sets it apart from
heterogeneous federation architectures such as the ARPA
I3 Reference Architecture [4] and TSIMMIS [1] or database
federation architectures such as [3, 9, 18].

The JTF (Joint Task Force) Reference Architecture [11]
is conceptually related to ours, although a four-tier architec-
ture was chosen. Based on a CORBA object bus, JTF layers
generic services, applications and user environments. JTF
integrates legacy data sources as coarse-grained objects,
whereas fine-grained data objects are available in the form
of object webs. Metadata is held in a schema server. The
architecture does not specifically address issues of data and
schema integration, although an integrated data layer seems
to be implicit.

CoopWARE [12] is another integration architecture
based on active database technology. A central informa-
tion repository with an integrated schema provides data
integration and persistence, while an ECA-based coordina-
tor controls the interplay of a number of components acting
on the repository. However, the system seems to be mainly
targeted towards a single user interacting with a collection
of tools.

The technical issue of interfacing a CORBA object bus
to an OODBMS is also discussed in [6] and [16]. The
former paper describes a framework developed by IONA
Technologies to connect their Orbix product to the Object-
Store ODBMS. The latter paper (in German) is a tutorial
providing background material on the various technical dif-
ficulties that must be overcome.

9. Conclusion

We set out with the hypothesis that smooth and effi-
cient collaboration in concurrent engineering demands an
integrated information system based on a single data model
and schema. This assumption seems rather old-fashioned in
a corporate IT world featuring large networks of heteroge-
neous and autonomous nodes, data being held decentralized
in any number of formats, and change as a rule rather than
exception. However, we have attempted to show that dis-
tributed object technology has come far enough to organize
this apparent chaos into a highly flexible, orderly system
of interoperating components. Starting from the integrated
model, we introduced the object bus as a means of im-
plementing the model in a distributed and heterogeneous
fashion, and we discussed how to provide persistence, even
when the model changes. We also showed how to support
the collaboration of individuals with very different percep-
tions of the system, using a common desktop framework on
which shared objects are presented in different views.

Beyond the basic functionality described in this paper,
many open issues remain. Most notably are:

� Performance—the split into attribute and method
servers described in Section 6 works fairly well for
most engineering applications, because human speed
is the limiting factor, but for compute-bound applica-
tions, a mechanism is needed to cache state in client
proxy objects. Also, object replication and migration
need to be addressed.

� Advanced transaction support—ACID transactions are
not suitable for long-running, cooperative design pro-
cesses. The system should support cooperative trans-
actions and versioning of data.

� Process models—suitable description formalisms for
ill-structured, cooperative design processes must be
found, and made accessible to non-technical users.
Moreover, an attempt should be made to explicitly
model and record the goal of a process or collaboration,
so that the system knows why certain things were done.

References

[1] S. Chawathe et al. The TSIMMIS Project: Integration of
Heterogeneous Information Sources. In Proceedings of the
100th Meeting of the Information Processing Society Japan
(IPSJ), Tokyo 1994, pp. 7–18.

[2] G. De Michelis et al. Cooperative Information Systems:
A Manifesto. In: M. Papazoglou and G. Schlageter (eds),
Cooperative Information System: Trends and Directions.
Academic Press, 1997.

[3] D. Heimbigner and D. McLeod. A Federated Architecture
for Information Management. ACM Transactions on Office
Information Systems, 3 (1985), pp. 253–278.

[4] R. Hull and R. King (eds). Reference Architecture for the
Intelligent Integration of Information. Version 1.0.1, Pro-
gram on Intelligent Integration of Information, ARPA, May
1995. Available via http://isse.gmu.edu/I3 Arch

[5] International Standardization Association. Standard for the
Exchange of Product Data. ISO Standard 10303.

[6] IONA Technologies. Orbix + ObjectStore Adapter. White
paper, 1993. Available online via http://www.iona.com
/support/whitepapers/oosa

[7] A. Kemper et al. Das GOM-Handbuch. Technical Report
25/92, Universität Karlsruhe, 1992.

[8] G. Krasner and S. Pope. A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80.
Journal of Object-Oriented Programming, 1 (1988), pp. 26–
49.

11



[9] W. Litwin, L. Mark, and N. Roussopoulos. Interoperabil-
ity of Autonomous Databases. ACM Computing Surveys,
22 (1990), pp. 267–293.

[10] P. Lockemann and H.-D. Walter. Object-Oriented Protocol
Hierarchies for Distributed Workflow Systems. Theory and
Practice of Object Systems, 1 (1995), pp. 281–300.

[11] C. McKenna and R. Hayes-Roth. Introduction to
the JTF Reference Architecture. Available online via
http://www.teknowledge.com/JTF/jtf arch intro.doc

[12] J. Mylopoulos et al. A Generic Integration Architecture
for Cooperative Information Systems. In Proceedings of
the First IFCIS International Conference on Cooperative
Information Systems, 1996, pp. 208–217.

[13] Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specification.
OMG 1995. Available online via http://www.omg.
org/corba

[14] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Ob-
ject Exchange Across Heterogeneous Information Sources.
In Proceedings of the Eleventh IEEE International Confer-
ence on Data Engineering, 1995, pp. 251–260.

[15] J. Rumbaugh et al. Object-Oriented Modeling and Design.
Prentice Hall, 1991.

[16] C. Schmauch and B. Waibel. Warten auf den
“Object Database Adapter”. OBJEKTspektrum, Jan-
uary/February 1998, pp. 55ff.

[17] R. Schmidt. Component-Based Systems, Composite Ap-
plications and Workflow-Management. In: G. Leavens
and M. Sitaraman (eds), Foundations of Component-Based
Systems Workshop, Zurich, Switzerland, September 1997,
pp. 206–214.

[18] A. Sheth and J. Larson. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases. ACM Computing Surveys, 22 (1990), pp. 183–
236.

[19] J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the
ACEDB Data Base Manager. Technical Report MRC-LMB
xx.92, MRC Laboratory for Molecular Biology, Cambridge,
CB2 2QH, UK, 1992.

[20] D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS
Framework Report of the Study Group on Database Man-
agement Management Systems. Information Systems,
3 (1978), pp. 173–191.

[21] G. Wiederhold. Mediators in the Architecture of Future In-
formation Systems. IEEE Computer, March 1992, pp. 38–
49.

12


