Persistent Objects In A Relational Database

Holger Vogelsang, Uwe Brinkschulte,
Institute for Microcomputers and Automation
University of Karlsruhe
Haid-und-Neu-Str. 7
76131 Karlsruhe, Germany
Tel.: +49+721 6083898
Fax: +49+721 661732
email: {vogelsang | brinks}@ira.uka.de

Abstract

This paper describethe design and implementation of persistent objdotsa
given relationaldatabase system. This tise solution to a problem, raised in a
larger application abur institute. Tobuild a reusable man machine senfloedis-
tributed systems withirthe object oriented language C++ there is a neeshve
andrestore to contents of objects togetiveh their relations. This is necessary to
keep a prebuilt user interface in a database aatlde permanent runtimenodifi-
cations. On the othdrand old style applications usitige man machine system
must be able tose thesame database or at letist same databaserver. The re-
sult is an easy tase object-orienteonplementation of object persistence goei-
sistent relations between objects for a relational database. Furthermore, this solu-
tion is usable in realtime requirements.

Keywords

Persistent objects, persistent object relations, realtime access, platform independ-
ence, relational database, object distribution, C++

1 Introduction

The engineering afomputer basesystemgECBS) is in the research area of the "Institute for
Microcomputers and Automation” (IMA)Vjpg96]. To aid this engineeringprocess,some
basic services have been developethatIMA. There are, foexample, a servicr general
man machinenteraction, a process databasgvice and a service for measurement and con-
trol. Furthermore, object-orientetesign principlesare used to create tlservices within the
programming language C+¥his decision was made, becausgoad object-orienteddesign

of data structuresan decrease thaevelopment time of an application and increthgere-us-
ability. E.g. in the above mentioned man machine service every component of timteufsee

is represented by an object. Their dependenciedirdasdare expressed by relations between
objects. The major problem that arises from such a design igh#ratis no standanday to
keep the contents of objects togethath their relationgersistent withougiving up a clear
object oriented design. Persistent objects are objectpingiamming laguage,which are
able to survive grogram executiomycle. This means, that theipntent is not losafter a
program crash or normal termination because it is saved in applidatioedperiods oftime

in an external memory. To assure this functionality in traditional systdtas, an application
dependent store-and-loadechanism isised to write andestore theobject's contentsThis
can be done bglacingpersistent objects into a special contamigiect,which itself isrespon-
sible for the object management. This hasne major disagtantage: persistent objects

Persistent Objects In A Relational Database

cannot be treated like other non-persistent objectswush betterapproach is to request an
object to save its own state or to restore it, because of the following main advantages:

» Embedding
The access to persistent objectglentical to non-persistemtbjects. There arenly addi-
tional functions to control the load/save mechanism.

» Ease of use
The programmer can reuse thmechanism in every applicatiomthout any change. The
object interface is identical.

» State dependence
The states ofritical or other important objectmust be accessible evefter a program
crash either tdind the problem by examininghe laststatevalues or to reinitializéhe pro-
gram during anew-start. An object iable torequesttself to save itown state aftemajor
or important changes.

* Platform independence
A major problem irthe abovementioned man machine servieas the reuse of user inter-
faces on different hardware platforms like Sparc-Workstations and Intel-PC's vatlety
of compilers. As a result, there was no guarantee that saved objects systen@re us-
able onother systemsdue toalignment and kig-order problemsThis requireshe avail-
ability of full type information at runtimeyhich could not bederived fromRTTI in C++.
Every object can provide the persistent object system with its own type description.

* Realtime access
This solution allows realtime accessthe database if thenderlyingoperating system has
realtime capabilities.

Section 2 introduces the concept of persistent objects and its representation in an object-ori-
ented programming langua@@++). This approach is extended in section 3 for persistent rela-
tions of objects. Tghysically store persistent objects, a relational database is useful. This is
more secure, comfortable afiexible than storing such objects files. Therefore the above
mentioned process databasgvice is used as a backgroundager Section 4 introducdss

service and showhe mapping between it arttie object orientedesign byapplying stubob-

jects. Section 6 contains experiences with persistent objects in a large application and some
ideas for future extensions. The last section finally shows some speed measures.

2 Concept of persistent objects

As mentioned abovehe nmain goal in the introduction of persistent objects is a "natural” em-
bedding into a givembject-oriented programming language (h€ret). The intention is to
hide most of the additional functionality fraitme programmer bgpplying a cleaobject-orien-

ted design. Persistent objects should be usable like any other non-persistent object.

2.1 Characteristics and design

Persistent objects arealized by declarinthe correspondinglass as persistenthis isdone

by derivingthese classes fromhe internal class "Persistent” dhe applications side. On the
systems internal side every persistent objecomected to one (&everal possible) database
objects. Thisacts as a stub for threal local omemote database server in a heterogeneous net
of computers. The connection to a stuldlysamicallychangeable so that an objectstent

can be loaded from @tored taodifferent databases. The advantage of this design is et a
sistent object can be placed anywhere on a net. No object kaswoits ownstorage place.

Page 2

Persistent Objects In A Relational Database

Only the reference to the local stulkept. All database stubs share #z@ne machine-depend-

ent hash table for two purposes: First, to determine whether an object is already in memory and
second, tdfind the memoryaddress for ajiven object identification. Thdollowing picture

shows the internal structure together with the application interface. The diagram uses the OMT
notation for data structures.

 persistent class

Application

,,,,,, is derived from
is connected . Persistent
_ Persistent """ pamahaseStubl ¢ 3| Database Servér gbé?grtn

‘USGS
. HashTable |

Picture 1: Internal system structure

The following two attributes are characteristics of persistent objects:

* Unique identification
The first problem in persistence that has to be solvélgeisnambiguous identification of
objects in external and internal memory, because internal mesdoingsses cadiffer in
each program executiorycle. As a solution, every persistent object is provided with a
unigueidertification code.This is eithergranted by thénternal system durinthe first dy-
namicalcreation of the object agiven out bythe programmer for static objeci®&his sec-
ond mechanism for static objects is necessary to alevetorage of aabject's reference in
the program code.

* Runtime type information
The next problem ithe desired platfornrmdependence for persistent obje&sicethe se-
lected programming language C#®es notprovidefull runtime type information, a more
mighty mechanism has to bweated. A persistentlass has an internal methedlled
"Metatype" that is firsinternally called bythe objecitself to specifyits own typeinforma-
tion and second used by other objects to deterthmenetatype athis object.This method
uses a local metatype serverstoreits type information. First, icreates a new metatype
with its own class-name. Within the next steps it describes each class component using
- its name,
— its position relative to the object together with its size and
— its type.
"Metatype" is automaticallgreated for persistertiasses by a precompiler teduce the
programming overhead and avadors. If thepersistence iBmited to one hardware plat-
form, the type information can be omitted.

The database stub uses this method to get the full type informf@tiarpersistent objeethen
the object is stored or loaded. Therefore the object can be stored in a unique database format.

2.2 Programming interface in C++

The described approach for persistent objects is totally embedded into C++. As written above,
every persistent class is derived frtme internal class "Persistentts constructor iprovided
with

Page 3

Persistent Objects In A Relational Database

» the type-id of the corresponding class,

» an optional identification number,

* and a reference to a database stub.

The type-id is necessary emablethe objectsystem to accesbhe metatype inforation. If no
identification is given duringhe first creation, a uniquene will be determined. The connec-
tion with a database server is managadugh the referenced stub objestiich has to be
created first. The behavior of persistent objects is controllable through the intertaeelags
"Persistent":

class Persistent {
public:
Persistent(Perld id, Meta mt, DatabaseStub *stub = NULL);
Persistent(Meta mt, DatabaseStub *stub = NULL);
virtual [(Persistent();
PerError Update();
PerError Undo();
PerError Delete();
Perld 1d();
boolean Created();

3

* Persistent
The firstconstructor is used to createew persistent object, itdentification code is de-
termined automatally. The second one createdogal copy of an existing object and re-
loads its contents or creates a new one witlgiben id, if noobject with this id exists. It is
possible to omit a stub, if one of the stubs is marked as default.

» Update
"Update" writes the object's contents into the datahesegthe local stub to convert the
object into a unique database format.

* Undo
"Undo" overwrites the object's contents with the value in the database.

* Delete
"Delete" removes the objeohly fromthe database, bubt from the memory. The applica-
tion of "Undo" and "Update" on this object is disabled after a removal.

e Id
"ld" returns the unique identification code.

» Created
"Created" is used to determine whether this objenevsly created or loadeftom the da-
tabaseThis method is useful in @onstructor of a persisteolass to do somiaitiali zations
only for newly created objects.

» [Persistent
It removes the object only from main memory and not from the database.

A detailed example is given in chapter 5.

3 Relations between persistent objects

In most object-oriented applications it is necessatyonly to keep objects persistent, but to
hold the relations between objectsvéry simple example is a doubly-linked list of persistent
objects,which has to be saved asadality. Relations between objects sometimes leagkty
largedata structures, aihich not everypart is used irany situation. To ensure agfficient
main menory utilization amechanisnfor a dynamicload and preemption atructure compo-

Page 4

Persistent Objects In A Relational Database

nents should bavailable. An example ihe abovementioned man machine service: It holds
only the visible user interfaces in main memory.

3.1 Characteristics and design

Relations between non-persistent objestsnormally realized byointers. The m@in idea be-
hind the construction of persistent relations is the introductionspleaialpointer classcalled
"PersistentPtr". In addition to the pointarich is only valid in mairmemory, it contains the
destination object's identificaticcode too. Thereforéhis pointerclass can be useshly for
persistent objects. The next picture showsdlassstructure in OMT notation for persistent
pointers.

| persistent class 1 persistent class 2 'Application
contam# _ . . Persistent
 class PersistentPtr—S connecte " Object
- System

Picture 2: Persistent pointer

The use of a real pointewgetherwith theidentification number is importambr anadditional
facility: The mechanisnfor a dynamicalreload and preemption of persistent objects needs to
know whether the referred object is in main memory, only in database or not present (NULL).
It is important to know this, because the mechanism is completely under the contrgbia-the
grammer. He has tequest a persistent pointer to reload the referred object or to preempt it.
This could be a very compleask forlargedata structures, so that there islightly modified
pointers classcgalled "AutoPersistentPtr". An object of thidass reloadshe referred object
during its own (re-)creatiorthis implies, thatata structures, connected thys pointer, are
reloading themselves.ny some kinds of base ooot objects have to be reloaded on demand.
The following sequence of actions starts after reloading the root object:
1. If the loaded object contains an "AutoPersistentPtr" as a compdmsrabject iscreated
by the language's runtime control and initialized by the persistent object system.
2. The constructor of the created pointer object recreates the referred objegisisit The
sequence continues at step 1 until there is no referred object left.
To stopthis mechanism, a larg#ata structureshould be divided into self loadirgyb-struc-
tures,which are connected together by "PersistentPtr" as a breakpoint. Thereoangjor
strategy rules for large persistent data structures:
1. Objects, which are used together, should be kept in self-loading structures.
2. Breakpoints separate such groups to keep the memory utilization small.

3.2 Multiple references

Introducing relations between persistent objects leadseoproblemHow are mitiple refe-
rences to one objetiandled ? Assuméhere argwo objects A and B referring an object C.
What happens wheooth ofthemare reloading or preempting C ? Tirst creation attempt
restores C in @n menory. All other creation-accessenly determinghe memoryaddress of

C and return it. C imot multiply loaded. This requires a referen@®unter,which isused to
free an objeconly if no references by PersistentPtr exigtis isnot acommon solutiorsince
there can be made a copy of a PersistentPtr without informing the persistent object system.

Page 5

Persistent Objects In A Relational Database

3.3 Programming interface in C++

"PersistentPtr" is implemented as a template class. The template is instantiated with the type of
the referred object.

template <class type>
class PersistentPtr{

type *ptr;
long id;
public:
PersistentPtr(type *p = NULL);
~PersistentPtr();
void Preempt();
PerError Reload();
Perld 1d();
type *Ptr();
void Set(type *pp, Perld new_id);

k

Of course, most of thiunctionality is hidden byverloaded operatorsyhich are notshown
here. There are mgyntactical differences betweeperations on standard and persistent poin-
ters. Only the control of reloading and preemption has to be done by explicit method calls.

* Preempt
"Preempt” removes the referred object from main memory.

* Reload
"Reload" either creates the referred object in main memory and read its content from the da-
tabase or updates thternal pointer if the object islready in memorysee section 3.2,
Multiple references).

e Id, Ptr
These methods return the identification or the main memory address of the referred object.

* Set
"Set" resets the persistent pointer to an other object.

"AutoPersistentPtr" is derived from "PersistentPtr" vatie extension: Theonstructorcalls
"Reload" to re-read the referred object after its own creation. A reloaok isecessary and
therefore ignored when calling the copy-constructor.

4 Realization using a relational database

To store thepersistent objects and their relations introduced in chapters 2 and 3, a database
system isused.This providesmore securitygasy and comfortablerogranming, access con-

trol, flexibility for future extension, etc. than storing these objects iplsifiles. As mentioned

in the introduction, one of thieasic services developed at IMA to aid systems engineering is a
process database service. This service, called "Merlin", is used in the present application.

4.1 Process database "Merlin"

The process databaservice "Merlin" is a general serviéer datamanagement. It was de-
signed to meethe requirements of modeinformation and automation systenitss main
properties are:

Page 6

Persistent Objects In A Relational Database

* an easy-to-use but powerful interface to the application program
» cooperative and distributed network database management

* real-time system operation

* 24 hour on-line availability

» configurable data security

» asmall amount of necessary systems resources

* portability

For data storageéVlerlin uses relationadlata structures. Asspecial featte, large unformated
objects up to 4 Gbytsize can batored as part of theatabase relationdlerlin offers aneasy
set orientednterface containing operations foery fastdata accesand manipulationgdata
security andlata controlThis interface is embedded tine language C/C++Jsing multiple
client serverarchitectures, database operations can be distributed in a heterogeetemrk.
This distribution is mostly hidden titne application program. To provide platforimdepend-
ence and portability, Merlin caoperate on aariety of hardware andoftware platforms.
These attributes make Merlin suitable for storing the persistent objects.

A more detailed description of "Merlin", imsand features can be found in [Bri93],[Bri94]
and [Bri95].

4.2 Mapping between persistent objects and the database: The stub object

As mentioned abovéhe internalstub objects are thiaterface betweethe persistent objects
and the database service. A stub providesrg small set of methods, accessedly by the
"Persistent” class. There is wtheraccess during the program executeytle except for a
user-controlled creation and destruction of these obj&hts.has to b&loneexplicitly to al-
low a dynamic reconnection with different database services.

class DatabaseStub {
public:
DatabaseStub(const char *db_name, const char *server, boolean default_stub = FALSE);
[(DatabaseStub();
PerError Update(Perld id, void *object, Meta mt);
PerError Undo(Perld id, void *object, Meta mt);
PerError Delete(Perld id);

Perld Reload(Perld id, void *object, Meta mt);
void *Ptr(Perld id);
Perld NextFreeld();

3

These methods of the stuihich deal with loading andpdating of objects, are providedth
the metatypes of the persistent obje€tss allowsthe conversion of the objects intaiaique
database format. The stulilwot bediscussed in detail because its functionality is completely
hidden from the user. This section was only intended to show the interface to the database.

5 An example

After the introduction of persistent objects and persistent relations between therpleaegim

ample in thissection shows thapplication in a prograntor this purpose, aingly-linked-list

is used as a basic data structure It is neither a complete implementation nor does it have a prac-
tical use. This example only demonstrates the most important points.

The list "List" concatenates objects of teame persistent class "ObjectinListhich is de-

rived fromthe class "ListElement”, containinipe reference to the next object in tis¢ The

Page 7

Persistent Objects In A Relational Database

list deals with normafnon-persistent) pointers at its interfaceonmder tosimplify the applica-
tion. To keep thigxample smallthere are no operators overloaded. First,réselting class
relations are shown, using the OMT notation.

\AutoPersistentPtr<Object|nLis# refers

first entry | next
\List<ObjectInList>\ \ Persistent \ \ListEIement<ObjectInList:}
b - R
| ListContainer | | ObjectinList -

Picture 3: Single-Linked-List

template <class type>

class ListElement{
AutoPersistentPtr<type> next;

public:
ListElement(){}
~ListElement(){}

void Set(AutoPersistentPtr<type> &next_el){ next = next_el; }
type *Next(){ return(next.Ptr()); }
Meta Metatype(){ ... }

h

The list-class is a template too.

template <class type>
class List {
AutoPersistentPtr<type> first;
public:
List() : Persistent(Metatype() X{}
List(Perld id): Persistent(Metatype(), id){}
~List(){ PreemptAll(); }

void InsertFirst(type *obj }{ obj->Set(first); first = obj; }
type *First(){ return(first.Ptr()); }

type *Next(type *obj){ return(obj->Next()); }

void PreemptAll(){ }

void UpdateAll(){ ... }

Meta Metatype(){ ... }

3

The application of thisingly-linked-list is easyFirst, theclass ofthe concatenated ob-
jects is defined:

class ObjectinList, public Persistent, public ListElement<ObjectinList>{
... some variables ...

public:
... some methods ...

|3

The next piece ofode shows alass, containing a list-object. Objects of this clepersis-
tent too.

Page 8

Persistent Objects In A Relational Database

class ListContainer, public Persistent{
List<ObjectInList> list;
public:
List(Perld id) : Persistent(id, Metatype()){}
[List(){ list.UpdateAll(); Update(); }
void Insert(ObjectinList *oil){ list.InsertFirst(oil); }
Meta Metatype(){ ... }
... some other methods ...

¢
6 Experiences and further extensions

The described version of a persistent object system was introduced as a generalfsplation
special problemthe man machine servic8ut the concepallows further extensions tauild a
moreflexible systemfor otherkinds of applications. These extensiovere notnecessary until
now, so there is no realization yet.

» Synchronization for distributed applications
In distributed applications, sharing a comnsa of persistent objects, it is important to in-
troduce asynchronization schenfer a coordinated access. Vaugeful in thiscontext are
rights, defined on objects, to permit or deny an access. The realization is simple, because the
underlying database service has a built-in facility for this purpose.
* Object selection
In some applications it could be useful toosel only these objectswhich fulfill given se-
lection conditions. For example, an object component has a special value.
» Precompiler
The precompiler for an automatic generation of metatype information is under construction.

Although these extensions awet available yetpersistent objects aextremely useful in ob-
ject-oriented programming. The reuse of existing, persisiaat structures for other projects

is very easy. Much development and debugging time can be saved. This was recognized in
other applications at the institute, using persistent objects.

7 Speed measurements

This last section contains sorspeed measurements on different hardware platfavose
practical measurements can be found in [KesBBis approach is used in the knowledge re-
presentation system C3L++ to make some speed comparisons wimraercial system,
POET.

Hardware Platform Memory Compiler Environment
1] Sparc 10 32 MB GNU-C 2.7.2 Sun-0S 4.1.3 + X11R6
2| PC Pentium, 133 MHz 16 MB GNU-C 2.6.3 (DJGPP) DOS 6.22 + Smartdrv (2MB)
3| PC Pentium, 133 MHz 16 MB GNU-C 2.7.2 (ELF) LinuX 1.3.60 without X11
4| PC Pentium, 133 MHz 16 MB Borland C++ 4.5 Win 3.11 with Win32s

The tests arenade with50000 operations odifferent objects. The measuremeatsgiven in
msec per object and operations per second, where the following operations are tested:

Page 9

Persistent Objects In A Relational Database

Operation Description

1] Create create new persistent objects, which are not in the database

2| 1st Update write objects’ contents to database (after a newly creation)

3| Other Updates write objects contents to database (object exists in database)

4] Undo read contents of already-created objects back from database

5] Remove delete persistent objects only in main memory, not in the database

6| Reload create objects in main memory, all objects exist in database

7] Find find object references with given object handle

8| Delete delete objects in main memory and database

GNU-C (DOS) GNU-C (LinuX) GNU-C (Sparc/X11) BC 4.5 (Win32)
msec/Op| Op/sec| msec/Qp Op/sec msec/Op Op/sec msec/Op Opl/sec

Create 0.048 20800 0.040 24750 0.091 10980 0,279 B600
1st Update 0.66[7 1500 0.673 1490 1.147 870 0}952 1050
Other Updateq 0.533 1870 0.439 2280 0.500 2000 Q.719 1390
Undo 0.393 255(0.235 4250 0.515 1940 0.455 2p00
Remove 0.004| 227240 0.006 177110 0.086 11680 0.009 113900
Reload 0.347 288(0.208 4820 0.513 1950 0.418 2B90
Find 0.001 =100000Q 0.001 777380 0.005 197080 0.001 909090
Delete 0.480 208(0.346 2890 2.747 360 0.5956 1800

8 Literature

[Ban94] Oliver Bantleon,Ulrich Eisenecker(GeorgMissiakas "Streams++: Portable Bib-
liothek fur persistente Objekte in C+HX 3-4/1994

[Bri93] U. Brinkschulte, "MERLIN - Ein Prozel3datenhaltungssystem fur Echtzeitan-
wendungen"Conference Proceedings, Echtzeit 93, Karlsruhe, 1993

[Bri94] U. Brinkschulte,"Architektur eines Datenhaltungsdienste€onference Proceed-
ings, 39. Wissenschaftliches Kollogium, TU llimenau, September 1994

[Bri95] U. Brinkschulte, "Database Services"Conference Proceedings, KEOOA 95,
Knowledge Engineering and Object Oriented Automatdorkshop, Strasbourg,
May 1995

[Dea90] AanDearle, Rex di Bonalamed~arrow,Frans Henskens, Anders Lindstrém, John
Rosenberg, Francis Vaughadigrasshopper: An othogonally persistent operating
system;' Department of Compute Science, University of Adelaide and Sydney

[Kes96] T. Kessel, M. Schlick,H.-M. Speiser, U.Brinkschulte, H. Vogelsang,
"Implementing a Description Logics System on Top of an Object-Oriented Data-
base System'Proc. of thdnternational KRDB-Workshop at the ECAI'96 Confer-
ence, Budapest, Hungary, August 1996

[Sin92] Vivek Singhal, Sheedal \Kakkad, Paul RWilson, "Texas: An Efficient, Portable
Persistent Store"Proc. of theFifth International Wrkshop on Persistent Object
Systems, San Miniato, Italy, September 1992

[Ste92] AlStevens!Persistent Objects in C++"Dr. Dobb's Journal, December 1992

[Vog96] Holger Vogelsang, Uw®rinkschulte, Marios SiormanolakisArchiving System
States by Persistent ObjectdEEE conference on ECBS’96€:riedrichshafen,
Germany, 1996

Page 10

