Model Checking Gossip Modalities*

Michaela Huhn! and Peter Niebert? and Frank Wallner?

! Institut fiir Rechnerentwurf und Fehlertoleranz (Prof. D. Schmid),
Univ. Karlsruhe, Postf. 6980, D-76128 Karlsruhe, huhn@ira.uka.de
? TInstitut fiir Informatik (Prof. U. Goltz), Univ. Hildesheim, Postf. 101363, D-31113
Hildesheim, niebert@informatik.uni-hildesheim.de
3 Institut fiir Informatik, Technische Univ. Miinchen, D-80290 Miinchen,
wallnerf@in.tum.de

Abstract. We present a model checking technique for L¢sa, a tem-
poral logic for communicating sequential agents (CSAs) introduced by
Lodaya, Ramanujam, and Thiagarajan. £Lcsa contains temporal modali-
ties indexed with a local point of view of one agent and allows to refer to
properties of other agents according to the latest gossip which is related
to local knowledge.

The model checking procedure relies on a modularisation of Lcsa into
temporal and gossip modalities. We introduce a hierarchy of formulae
and a corresponding hierarchy of equivalences, which allows to compute
for each formula and finite state distributed system a finite multi modal
Kripke structure, on which the formula can be checked with standard
techniques.

1 Introduction

A reasonable and lucid way of formally treating distributed systems is to con-
sider them as a fixed collection of sequential components (agents) which can
operate independently as well as cooperate by exchanging information. There is
an increasing awareness, both in theory and practice, of the benefits of specifying
the requirements of such systems by localised, component based formalisms that
allow to refer to properties of the individual components.

The operational models for localised specification usually consist of local
temporal orders (sequences in the linear time case, trees in branching time)
together with an interrelation between these orders, descended from communi-
cation [LRT92,Ram95]. The most established models for the linear time case are
partial orders, whereas in the branching time setting, (prime) event structures
or closely related models like occurrence nets [NPW80,Win87] have been recog-
nised to be a suitable formalism. In these models, partial orders are extended
by an additional conflict relation, representing the moments of choice.

* This work was partially supported by the DFG within SFB 342, Teilprojekt A3, and
within the priority program “Design and design methodology of embedded systems”
and by the EEC program on Training and Mobility in Research (TMR).

Investigating partial order models has attained the interest of researchers for
mainly two reasons: There is no distinction among computations that are equal
up to possible total orderings of independent actions, which makes it a faithful
and natural formalism for representing concurrency. Furthermore, restricting
the attention to local states mitigates one of the most tackled difficulty of model
checking, the so-called state explosion problem, which results from an explicit
computation of the global state space of a distributed system.

For a component-oriented specification of behaviour, local linear time tem-
poral logics have been investigated by Thiagarajan in [Thi94,Thi95] and Niebert
[Nie98]. Local branching time logics were introduced in [LT87,LRT92,HNW98].
While for the linear time case there now exist sound model checking procedures
based on automata [Thi94,Nie98], only recently the model checking problem for
similar branching time logics has been inspected [Pen97, HNW9S].

In this paper, we investigate model checking for a local branching time logic
defined by Lodaya, Ramanujam and Thiagarajan in [LRT92], in the sequel called
Lcsa, which is intended to specify the behaviour of communicating sequential
agents (CSAs). It allows a component i to refer to local properties of another
component j according to the latest gossip, i.e., the most recent j-local state
that causally precedes the current i-local state. This notion occurs in asynchro-
nous network protocols, where several agents together perform a task without
global synchronisation. In [LRT92], the authors instead describe this concept by
referring to local knowledge.

Based on net unfoldings [Eng91], in particular McMillan’s prefix construction
[McM92], we solve the model checking problem for £¢sa, which has remained
open since [LRT92].

McMillan’s prefix has successfully been applied to alleviate state explosion in
many verification problems, for instance deadlock detection [McM92], and model
checking S4 [Esp94], LTL [Wal98], and the distributed p-calculus [HNW98]. All
of the previous problems can principally be solved also with conventional state
space exploration, but often with an exponentially higher effort than can be
achieved using McMillan’s prefix.

In contrast, the focus of this paper is to show decidability of model checking
Losa generalising techniques developed in [HNW98]. We demonstrate that the
unfolding approach yields a suitable data structure for solving the model check-
ing problem for a wider class of local logics, for which previously the problem
appeared to be too difficult. Moreover, we claim that the result shows the di-
rection to solve the model checking for languages including knowledge operators
[Pen98]. Having opened the general path to automatic verification for £cg4 and
related logics, we leave the investigation of efficient techniques for future work.

Technically, we proceed as follows. We redefine the semantics of £cg4 on net
unfoldings® and factorise the net unfolding with respect to an equivalence rela-
tion satisfying two key properties: It is a congruence for the £ ¢sa-specification to
be checked and it has finite index. Via the factorisation an £cs4 model checking
problem can be transformed into a model checking problem for a multi modal

! The original definition [LRT92] is on an event structure model.

logic on a finite transition system computed from a modified McMillan prefix
which uses the defined equivalence relation as cutoff condition. With an appro-
priate interpretation of the £gsa modalities, on this transition system standard
model checking algorithms can be applied, e.g. [CES86].

The approach follows the lines of [HNW98], but whereas the focus in [HNW98]
was to derive an algorithm for the calculation of the transition system, the main
difficulty here is to develop an appropriate equivalence relation.

A major similarity with the distributed p-calculus of [HNW98] is that £cosa
looks at the state of a system from a local point of view. Technically, the smooth-
ness of the algorithms and the almost immediate usability of McMillan’s prefix
in [HNW9Sg] relies on the pure future character of the modalities of the distrib-
uted p-calculus and similarly of the fragment of the logic DESL investigated in
[Pen97]. As a consequence, the equivalence used in [HNW98] is close to McMil-
lan’s original cutoff condition and was fixed for arbitrary formulae of the logic.

In contrast, the gossip and the past modalities of £cga are not pure future
modalities so that with increasing complexity formulae can refer to increasingly
complex patterns in the past of a configuration. As a consequence, the coarsest
equivalence preserving all £ g4 properties has non-finite index and it is not pos-
sible to construct a single transition system representing all £oga properties of
a particular finite state distributed system. However, a single £ g4 formula has
a limited power of looking into the past so that we can still construct a formula
dependent equivalence. For this purpose, we introduce a hierarchy of properties
and of corresponding equivalences. The construction of these equivalences and
the proof of their soundness are both difficult, and the resulting model checking
complexity of the construction given here is high.

For the technical presentation of the whole paper including the semantics
of the logics we use notions from Petri net theory, in particular because of the
prevalence of this formalism with respect to McMillan’s unfoldings. Note how-
ever, that the entire method can easily be restated for other formalisms, like
e.g. asynchronous automata, coupled finite state machines, and so forth.

The paper is structured as follows. In Section 2 we introduce basic definitions
of our models, distributed net systems as Petri net representation of communi-
cating sequential agents, and net unfoldings as semantic model of the branching
behaviour of such systems. In Section 3 we introduce the logic Lgsa and our
modularisation and embedding in the slightly more general logic £. In Section
4 we introduce the McMillan prefix of net unfoldings in a form parametrised
by an abstract equivalence relations which has to meet certain restrictions (in
particular it must be of finite index and decidable). Then we give appropri-
ate equivalences for £, the fragment of £ without past, and for £ and show
the preservation of properties under these equivalences. In Section 5 we use
these equivalences to compute a finite state transition system, so that the orig-
inal model checking problem for an £ formula is reduced to a standard model
checking problem for a straight forward interpretation of the formula over the
computed system. Thus, we obtain a decision procedure. In Section 6, we discuss
our results and indicate possible future work.

2 Distributed net systems and their unfoldings

Petri nets. Let P and T be disjoint, finite sets of places and transitions,
generically called nodes. A net is a triple N = (P,T, F) with a flow relation
F C (PxT)U(TxP). The preset of a node z is defined as *z:={ye PUT | yFx}
and its postset as x*:={y € PUT | xFy}. The preset (postset) of a set X of
nodes is the union of the presets (postsets) of all nodes in X.

A marking of a net is a mapping M : P — INg. If M (p) = n, we say that p
contains n tokens at M. We call X' = (N, My) a net system with initial marking
My if N is a net and My a marking of N. A marking M enables the transition
t if every place in the preset of ¢ contains at least one token. In this case the
transition can occur. If ¢ occurs, it removes one token from each place p € °t
and adds one token to each place p’ € ¢*, yielding a new marking M'. We denote
this occurrence by M Y5 M'. If there exists a chain My N My Loy Dy M,
for n > 0, then the sequence tits...t, is called occurrence sequence, and the
marking M, is a reachable marking.

We will restrict our attention to I-safe net systems, in which every reachable
marking M puts at most one token on each place, and thus can be identified by
the subset of places that contain a token, i.e., M CP.

In the last years, 1-safe net systems have become a significant model [CEP95].
In [NRT90] it has been shown that an instance of 1-safe nets, called Elementary
Net Systems, correspond to other models of concurrency, such as (Mazurkiewicz)
traces and prime event structures. They can naturally be interpreted as a syn-
chronised product of several finite automata, and thus are frequently used as a
convenient formalism for modelling distributed systems. In the following we will
exploit this compositional view by considering the notion of locations.

Distributed net systems. Let us introduce the formalism for describing dis-
tributed systems. Clearly, the behaviour of our models shall resemble the Com-
municating Sequential Agents of [LRT92]. This means, a system consists of sev-
eral (spatially) distributed, autonomous agents, which mutually communicate.
Each of the agents shall exhibit a strictly sequential, non-deterministic behav-
iour.

Let X be a 1-safe net system, and ¢,t' two transitions of ¥. A marking M
concurrently enables t and t' if M enables ¢, and (M \ *t) enables ¢'. We call ¥
sequential if no reachable marking concurrently enables two transitions.

Let {X; = (B, T;, F;, M?)|i € Loc} be a family of 1-safe, sequential net
systems with pairwise disjoint sets P; of places, indexed by a finite set Loc of
locations. The sets of transitions are not necessarily disjoint. In fact we interpret
the execution of a transition that is common to several locations as a synchronous
communication of these agents. A distributed net system YXp,. = (N, M) is
defined as the union of its components X;:

p=\Jp, T=\JT, F=|J F, My= |J M.

i€Loc i€Loc i€Loc i€Loc

Clearly, X1, is again 1-safe. The intention is to interpret such a system as a
collection of sequential, non-deterministic agents with communication capabili-
ties, namely the common execution of a joint transition. The location loc(z) of
a node z is defined by loc(z) := {i € Loc|z € P;UT;}. A simple distributed net
system consisting of two components is depicted in Fig. 1.

[a}—(©)
agl @/F@fW@
@@ @<

Fig. 1. Distributed net Fig. 2. Branching process

In [LRT92] also asynchronous communication (message passing) is consid-
ered. However, in general this leads to systems not only with an infinite behav-
iour, but also with infinitely many states, making an algorithmic, state space
based approach to model checking impossible. To model asynchronous commu-
nication in the setting of distributed net systems we assume some (finite-state)
communication-mechanisms like e.g. bounded channels or buffers. For instance, a
buffer can be considered as an agent on its own, (synchronously) communication
with both the agents that communicate asynchronously via this buffer.

Net unfoldings. As a partial order semantics of the behaviour of a distributed
net system, we consider net unfoldings, also known as branching processes. They
contain information about both concurrency and conflict.

Two nodes z, ' of anet (P, T, F) are in conflict, denoted x# ', if there exist
two distinct transitions ¢,t' such that *t N °*t" # 0, and (¢,), (t',2') belong to
the reflexive, transitive closure of F. If x#x, we say x is in self- conﬂzct.

An occurrence net [NPW80] is a net N'=(B, E, F') with the following prop-
erties: (1) for every b € B, | *b| < 1, (2) the irreflexive transitive closure < of F is
well-founded and acyclic, i.e., for every node « € BUE, the set {y € BUE|y < «}
is finite and does not contain x, and (3) no element e € E is in self-conflict. The
reflexive closure < of < is a partial order, called causality relation. In occur-
rence nets we speak of conditions and events instead of places and transitions,
respectively. Min(N') denotes the minimal elements of N’ w.r.t. <.

Given two nets Nj, N, the mapping h : P, UTy — P, UT; is called a
homomorphism if h(Py)C Pa, h(T1) CT», and for every t € Ty the restriction of h
to *t, denoted hle, is a bijection between *t and ®h(t),

A branching process [Eng91] of a net system X = (N, M) is a pair f=(N', x)
where N'=(B, E, F) is an occurrence net and 7 : N' — N is a homomorphism,
such that the restriction of w to Min(N') is a bijection between Min(N') and My,
and additionally for all e1,es € E: if w(e;) = m(e2) and ®e; = ®es then e; = eo.
Loosely speaking, we unfold the net N to an occurrence net N’, such that each
node z of N' refers to node n(z) of N. Two branching processes 1, 82 of X are
isomorphic if there exists a bijective homomorphism h : N; — Ny, such that
the composition 7y o h equals 71. In [Eng91] it is shown that each net system X
has a unique maximal branching process up to isomorphism, which we call the
unfolding of X, and denote by Unfyx, = (N', 7).

Let Ny = (B",E",F") be a subnet of N’ such that e € E" implies ¢’ € E"
for every €' < e, and B" = Min(N') U E"®, and let 7" be the restriction of 7
onto the nodes of N"”. We call 5" = (N",n") a prefiz of Unfy. Fig. 2 shows a
prefix of the infinite unfolding of the net system drawn in Fig. 1.

In distributed net systems, the location loc(x) of a node x of N’ is given by
loc(z) = loc(w(z)). By E; :={e€ E | i€loc(e)}, we denote the set of i-events.

Configurations and Cuts. For the remainder of the section, let us fix the
unfolding Unfs, = (N',) of the distributed net system X with N' = (B, E, F).

A configuration C C E is a causally downward-closed, conflict-free set of
events, i.e., Ve € C: if ' < e then €' € C, and Ve,e' € C : —(e#e€'). A finite
configuration describes the initial part of a computation of the system. If we
understand the states of the system as moments in time, then configurations
represent the past (by exhibiting all the events that have occurred so far, and
the causal structure among them), as well as the present and the future, as
formalised in the following.

Two nodes of N' are concurrent if they are neither in conflict nor causally
related. A set B’ C B of conditions of N’ is called a cut if B’ is a maximal
set of pairwise concurrent conditions. Every finite configuration C' determines a
cut Cut(C) := (Min(N')U C*®) \ *C. The corresponding set 7(Cut(C)) C P of
places is a reachable marking of X', denoted by M(C) and called the state of C.
Notice that for every reachable marking M of ¥, there exists a (not necessarily
unique) finite configuration with state M. We will often identify configurations
with their state. Given a configuration C' and a disjoint set E' of events, we call
C @ E' an extension of C' if C U E' is a configuration.

Let 1C :={x € (BUE) | 3b € Cut(C). b <z and Vy € C. ~(z#y)}.
The (branching) future of a configuration C is given by the branching process
B(C) = (N{,mc), where N(, is the unique subnet of N’ whose set of nodes
is 1C, and 7¢ is the restriction of 7 onto the nodes of N{,. Let us call two
configurations M -equivalent, denoted C = C', if M(C) = M(C"). Tt is easy
to show that if C' =5 C’ then there exists an isomorphism Ig’ from B(C) to
B(C"). It induces a mapping from the extensions of C onto the extensions of C’,
mapping C 4 E' onto C' Ig’(E’), which are again M-equivalent.

Local states and views. The notion of local state arises by considering con-
figurations that are determined by single events. For an event e, we call the set
le:={e' € E|e' < e} the local configuration of e. It is indeed a configuration,
because no event is in self-conflict. If e € E; is an i-event, we consider |e to be
an i-local state. It determines the local past of component ¢, as well as the local
past of every component that has communicated with 7 so far — directly, or
indirectly via other components. In the sequel, we will often identify an event
and its local configuration.

In distributed net systems, we define the i-view [*C of a configuration C' as
VC :={eeC | Jei € (CNE;).e < e;}. Notice that the sequentiality of the
subsystems implies that for each i € Loc, the i-events form a tree in Unf, i.e., in
each configuration the i-events are totally ordered. Thus, the i-view of C is the
local configuration of the unique, causally maximal i-event in C. Intuitively, [‘C
can be understood as the most recent i-local configuration that the whole system
is aware of in the (global) configuration C. The i-view of a local configuration
leis written as |‘e. Note that |'e = |e iff i € loc(e). We will interpret the empty
configuration as the local configuration of a virtual event L, which can be seen
as initial event with empty preset and Min(N') as postset. We assume the set
of events of Unfy to contain this virtual event, L € E, and set loc(L) := Loc.

Let Cioc(Unf) denote the set of local configurations of Unf (abbreviated C
if Unfis clear), and by C := {|e | e€ E;} the set of i-local configurations.

loc

loc

Correspondence of CSAs and unfoldings. Since in [LRT92], the entire
formalism relies on communicating sequential agents (CSAs), we will show that
a rooted CSA is equivalent to the unfolding of a distributed net system.

A CSA is a structure (E', <') such that

1. <’ is a partial order,

2. E' :=U;croc Ei is the union of the sets? {E!}icLoc,

3. for all i € Loc and all e € E' it holds that Je N E! is totally ordered by <’,
where le:={e'€E' | <" e}.

Moreover, <'= (U;cpoc (<" [(m1xE7))"s 1€, <' is generated by the suborders
on the local sets of events Ej.

The set e is the local state of e. Although the conflict relation # C E' x E'
is not represented explicitely in CSAs, it can be obtained as follows: if two events
e1, ez € E] are not ordered by <', they are considered to be in conflict. Conflicts
are inherited to causal successors, i.e., if e;#es, and es < ez, then also e #es.

A CSA is called finitary if e is a finite set for all e € E'. A CSA is called
rooted if there is a least (w.r.t. <') element 1 € E’. It is easy to see that, given
the unfolding (N',7) of a distributed net system, the structure (E, <), where
< is the reflexive transitive closure of the flow relation of N’, and E the set of
events of N', is a rooted, finitary CSA.

2 Asynchronous CSAs (ACSAs) require the sets {E;}; to be pairwise disjoint. In the
current setting, the difference is merely technical, and will not be considered further.

3 Temporal Logic for Communicating Sequential Agents

Lodaya, Ramanujam, and Thiagarajan defined and axiomatised the temporal
logic Lcsa that allows to express properties referring to the local knowledge or,
more precisely, the latest gossip of the agents in a distributed system. Let us
give a brief idea of the logic, related to unfoldings of distributed net systems.
For details, cf. [LRT92].

Lcsa is based on propositional logic. Additionally, it provides two temporal
operators &; and ©; for each i € Loc, referring to the local future, resp. local past,
of agent ¢. All formulae are interpreted exclusively on the local configurations of
a given unfolding.

Intuitively, ©;¢ holds at |e if some ¢-local configuration in the past of e
satisfies . If e is a j-local event, this can be read as “agent j has at its current
local state |e sufficient gossip information to assert that ¢ was true in the past
in agent ¢”.

The local configuration |e satisfies ©; ¢ iff some ¢-local configuration in the
i-local future of |e satisfies , i.e., if there is some configuration | e’ with e’ € E;
such that [e/ D |‘e and |e' satisfies . For e € Ej, this can be read as “at
the j-local state where e has occurred, agent j has sufficient gossip information
about agent ¢ to assert that ¢ can hold eventually in ¢”.

Typical specifications are properties like O;(z; = A;cp,. ©j@;): “whenever
z; holds in ¢, then agent ¢ knows that z; may hold eventually in all other agents
j”. For more examples see [LRT92]. The formal syntax and semantics of £csa
is given in the appendix.

A generalised syntax — £. We now introduce a slightly extended language
in which the temporal modalities are separated from the gossip modalities. The
separation yields a higher degree of modularity in the technical treatment and
also saves redundant indices in nested formulae residing at a single location. The
abstract syntax of L is

o u=plop | eVe | Cp | ©p | Qitp

where p ranges over AP and i over Loc. Additionally, we require that every
occurrence of a temporal modality lies within the scope of a gossip modality.
For technical simplicity, we set AP := P the set of places of our systems3. The
operators & and € are now seen as temporal future and past modalities within a
single location, which is determined by the next enclosing gossip modality @ :.
The connection to Lcga is established by O;p = @Qi: Cp and ©; 0 = Qi S .

L-Formulae are interpreted at local configurations only. The models of £ are
pairs M = (Unf, V'), where Unfis the unfolding of a distributed net system, and
V i Croe(Unf) — 24 is a wvaluation mapping the local configurations of Unf
onto subsets of AP, coinciding with the state function M({e).

Formally, we define two satisfaction relations: a global relation =, defined for
the local configurations of arbitrary locations, and for each agent i € Loc a local

3 Note that we do not loose expressive power by this convention.

relation |=;, exclusively defined for the i-local configurations. These relations are
inductively defined as follows:

lebp i peMe) lelevy iff Lelg or el

le By iff lelf leE Qi if el

lefEip iff pe M(le) lelipVvy iff lefip or lef ¢

le =i -y iff lels; o leEi©p iff de' € E;.e' <eand e |5 ¢
leEi@j:o iff Vel lelEiOp iff Je' € B e >eand e |

We say that the system X satisfies a formula ¢ if the empty configuration | L
of Unfy; satisfies @, i.e., if L = .

The future fragment L1 of £ consists of all formulae that do not contain the
past-operator < .

4 Factorisation of the Unfolding

In general, the unfolding of a net system is infinite, even if the net is finite-
state. Therefore, most model checking algorithms cannot directly be applied on
a modal logic defined over the unfolding. A way to overcome this problem is to
look for a factorisation of the unfolding by a decidable equivalence relation =
that is finer than the distinguishing power of the formula to be evaluated, i.e.,
C = (' shall imply C |= ¢ < C' |= ¢. The second requirement on = is that a set
of representatives of its finitely many equivalence classes and a representation of
the (transition) relations between the classes can be computed effectively. Then
we can decide C' |= ¢ on Unf by transferring the question to the model checking
problem (C/=) = ¢ on (Unf/ =, —).

The finite prefix. The first construction of an appropriate finite factorisation
was given by McMillan [McM92]. He showed how to construct a finite prefix
of the unfolding of a finite-state net system in which every reachable marking
is represented by some cut. In terms of temporal logic, his approach means to
consider formulae of the type ¢ where & is “global reachability” and 1 is a
boolean combination of atomic propositions P. The key to the construction is
that if the prefix contains two events with M-equivalent local configurations,
then their futures are isomorphic, i.e., they cannot be distinguished by the logic.
Consequently, only one of them needs to be explored further, while the other one
becomes a cutoff event. The finite prefiz Fin is that initial part of the unfolding,
where the causal successors of each cutoff are discarded, i.e., an event e’ belongs
to Fin iff no event e < €' is a cutoff.

In general, the formal definition of a cutoff requires two crucial relations on
configurations: An instance of the equivalence relation = and a partial order <.
On the one hand, an adequate partial order shall ensure that the expanded
prefix contains a representative for each equivalence class. On the other hand,
it shall guarantee that the prefix remains finite. The conditions for an adequate
partial order < in conjunction with M-equivalence were examined very detailed

in [ERV96]: Besides being well-founded, and respecting set inclusion (C C C'
implies C' < ("), it must be preserved under finite extensions: if C < C' and
C=C"then COE < C' @IS (E).

An adequate partial order given in [McM92] is the size of configurations,
ie, C < C"iff |C] < |C'|. With this order, the prefix is often much smaller
than the global state space of a given system. However, sometimes it is larger,
namely if it is often the case that two equivalent local configurations e = |
are not ordered by <, and such neither e nor e’ can be distinguished as a cutoff.
In [ERV96], an elaborate total order for 1-safe nets was defined, such that the
constructed prefix is minimal, i.e., never exceeds the global state space.

In [McM92,ERV96] just M-equivalence is considered. In conjunction with an
adequate order < the definition of Fin guarantees that each reachable marking
is represented by the state of a configuration contained Fin.

It was already observed in [HNW98] that refining M-equivalence yields an ez-
tended prefiz, which — although being possibly larger than the prefix of [McM92]
and [ERV96] — allows to apply a standard p-calculus model checker for a location
based modal logic called the distributed p-calculus. Following the idea from the
beginning of the section, we defined an equivalence =x(_joc by J€ =pm_1oc L€
iff e = L€’ and loc(e) = loc(e’) and proved that = joc-equivalence equals
the distinguishing power of the distributed p-calculus.

Generalised cutoffs. Now we look for more general conditions on equivalence
relations that ensure that all equivalence classes can be computed by a prefix
construction. Let us call a decidable equivalence relation = on configurations of
Unf to be adequate if it refines M-equivalence and has finite index. Le., C = C’
implies C = C' and = has only finitely many equivalence classes on Unf. We
give a generalised definition of cutoffs by

ec€E is called a cutoff iff de'’€F, such that e/ =]e and e’ < e

where = is an adequate equivalence relation and < is an adequate partial order.
The finite prefiz Fin constructed for = is given by the condition: e’ belongs to
Fin iff no event e < €’ is a cutoff. It is obvious from the cutoff definition that
Fin constructed for = contains a representative for each =-class of Unf.

Proposition 1. The finite prefiz constructed for an adequate = is finite.

The proof is not very difficult and can be found in the appendix.

An adequate equivalence finer than £. In difference to S4 as used in [Esp94|
and the distributed p-calculus in [HNW9S], an equivalence finer than the distin-
guishing power of £ has infinite index. However, by each finite set of £-formulae
we can only discriminate finitely many classes of configurations. Thus we can
hope for a model checking procedure following the outline from the beginning
of the section, if we find an equivalence which is at least as discriminating as

10

the Fisher-Ladner-closure of a L-formula ¢ because this is the set of formulae
relevant for model checking ¢ on Unf. First, we need some technical definitions.

Let us denote the gossip-past-depth of a given formula ¢ € £ by gpd(y). It
shall count how often in the evaluation of ¢ we have to change the local view —
with the gossip modality or by referring to a proposition, which also changes the
view when the proposition belongs to another location. The inductive definition
is as follows:

gpd(p) =1 gpd(—p) = gpd(p)
gpd(p V) = max{gpd(y), gpd(y)} gpd(©p) = gpd(y)
gpd(Qi: ¢) = gpd(p) + 1 gpd(® ¢) = gpd(p) +1

Now we are ready to define the crucial equivalence relation =}, which is the
basis for model checking L. It is parameterised by a natural number n (which
will be the gossip-past-depth of a given formula) and by a location ¢ (at which
the formula is interpreted). Formally, we define =' C €}, xC;, . to be the coarsest
equivalence relation satisfying:

le=V | f implies Vpe P;. pe M(le) & pe M(lf)
le=}|f implies Vj,k € Loc. [Je C [fe & [Jf C |k f

and for all n > 0 moreover

le E?'H 1f implies Vj € Loc. [le =7 Vf forn>1
(*) and VYe'e(lenE;).3f'e(LfNnE;).le' =F]f and
Vi'e(lfNE;). Jeec(lenE;). e =2 1f

The first condition is an i-localised version of M-equivalence. The second one
refers to the latest information concerning agents other than i, and the third
condition inductively lifts the equivalence with respect to the levels of the gossip-
past-depth. Let us briefly collect some important facts about the equivalence.

Observation 2. The equivalence relation =} is decidable and of finite index for
every n > 0. Furtheron, E?‘H is refining =7, i.e., E?H C =P for all n. Finally,

it respects M-equivalence, i.e., e = | f implies M(le) = M(}f) for alln > 0.
The proof is given in the appendix.

Remark 3. Note that the last part of the third condition after (*) is only needed
for the full logic £ and can be omitted for £* with considerable savings: With this
condition, the number of equivalence classes of =}' may grow non-elementarily
with n, forbidding any consideration of practicability, whereas without this con-
dition the index grows exponentially with n.

The most important property of the equivalence is that it is preserved by
local successors, as stated in the following Lemma.

Lemma 4. Let e < €', and f < f' be i-events, such that Le = |f, and let I
be the isomorphism from B(le) onto B(If). If f' = I(e') then also |f' =V | €.

-1

11

Proof. This the most involved proof, and a main result of the paper. Let us
define some notions and notations:

To handle the past modality we extend the i-view operator by a natural num-
ber which specifies the number of steps we intend to additionally go backward
into the past of agent i. Let i € Loc, n € N and C a configuration. Then |4 C is
defined to be the least subconfiguration of C satisfying |(J:C'\ {{,C) N E;| = n if
[J!C N E;| > n and | L otherwise. Le., |i C' removes the top n i-events from C
and then takes the i-view. Note that [4C = ['C.

Since we will often talk about a number of view changes and past steps in
sequence we introduce “paths” through the locations of the system: Let 7 = (o,)
be a pair where o = [y ...1, is a sequence of locations and natural numbers,
ie., Il € (LocWN) and i € Loc. If o is the empty sequence we denote this by €.
We call 7 a location path. Given any configuration C, we define [(%9C as follows:

=90 .= ic Werd o= |l o Wi .= |00 ic

The length of a location path 7 = (o,4) is the length of 0. Note that a sequence
o may include repetitions of locations and subsequences of natural numbers, i.e.,
li =1 fori # jand l,,...,lhtm €N are allowed.

Given an event g and some location path 7, we denote by g, the event that
determines the 7-view of | g, i.e., {"g = | g-.

Now let e < e’ and f < f' be events of E;, and n > 1, as in the assumptions of
the Lemma. First of all, we note that the required isomorphism I exists because
=!-equivalence implies M-equivalence.

We have to show | f' = |e'.

The key observation is that for every location path 7 if e/ £ e then I(el) =
fL £ f. This is the basis for the induction on m < n: for each sequence 7 = (o,)
of length n —m with €/ £ e (and also f] £ f), it holds that e} =" | f], where
J is either the first location occurring in the sequence o, or j := i (if n = m
and o = ¢ is the only sequence of length n — m). In the latter case, |’e’ = e’
(because €' € E;), and |'f' = | f', we thus obtain e’ =I | f as required.

The induction relies on a case analysis according to the following cases:
m=0n=m=1n=m>1,n>m=1, and finally n >m > 1.

— For m = 0 we have to show that |e E(; L fL. This is clear, because I(e]) =
fi € Ej; and thus the j-local part of the markings of |e/ and | f! coincide,
because (el)® = w(fL)°.

— For m = n =1 we have to show that Je =} | f implies |e¢/ =} | f', i.e.,

1. Je' =} | f for all j€ Loc,
2. Vepe(le' NE;). 3f,e(Lf' NE;). e, =; Lf; (and vice versa), and
3. €} e iff fi < fy forall j,k € Loc.

If e; < e then €'\ e contains no j-event, which means that e; = e; and

similarly f; = f;, so (1) follows easily. If €’ £ e then also f; £ f, in which

case [Je' =} | f' follows by induction.

We come to (2): Let e, € (JeN E;). If ¢}, < e then by the assumtion we find

an f; € (L fNE;) with Je, =) | f, (remember that e, ¢, f, f' € E;). If e}, L e

p —1t

12

then f) :=I(e,) =} e;, and f€(E;nN|f').

Now consider (3): Let j,k € Loc. We show that e} < e} iff fi < fi, using
a similar case analysis. If e;-, ej, £ e, then the isomorphism I preserves the
order. If €, e} < e, then €’ = e; and €} = ey, (and similarly f} = f;, f;, =
fx), and so the order is inherited from the corresponding local views of |e
and | f, which by assumption match. The third case is 63- <'e, but e}, Le,
and thus similarly f]’ < f, but f;, £ f. Since this is one of the sophisticated
arguments and used also in the other cases the situation is illustrated in
Figure 3. e} < e implies e = e;.

assumption: < €

Fig. 3. Situation: e}, £ e and e} <e

Now we choose an | € Loc, such that e; < e; < e}, and moreover ¢ is
(causally) maximal with this respect. For at least one of the possible choices
of I, there exists an event e’ € Ej, such that e’ € ({*¢’\ le). By the
isomorphism, we have that I(e”) = f” € ({¥f"\ | f). By assumption on the
equivalence of e and f we can conclude f; = f; < fi < f" < fl < fi, ie,
Vf CI¥f" as desired.

For n = m > 1 the reasoning is similar to the case m = n = 1, except that
the argument for the gossip aspect (3) of the equivalence is not needed.
For n > m =1, we consider (1) a location path 7 = (ko,i) of length n — 1
with e/ £ e and k € Loc. Again we have to show le, =} | f!.

First consider j € Loc. For the case of e’(ki) &£ e the E?—equivalence is a
consequence of I(e'(jkm)) = f(’jkm). For ezjlw,i) < e there exists again an
l € Loc with ezjlw,i) <g < ezkm), so that e; is maximal in this respect, and
as above we also obtain f('jkm) < fi< f(’km). Moreover, in this case it holds
that egj;) = ezjlw,i) and similarly f(;;) = f(’jkm). By assumption, we have
e 5?72 L5, and because of n > 2, in particular le(; E? LG, as
desired.

Additionally, we have to show that Ve), € (e, NE). 3f € (L fINE}) . le, =)
1 f, (and vice versa).

If e, £ e then we select f, := I(e,) and argue in the same lines as for
m =n = 1. If ¢}, < e then we know that e}, < 1¥e. Since n > 2 we know that

for e}, there exists an f,, < ¥ f < f such that ep Ez—z - Together with the

13

second part of the obervation we conclude e;, = =0 w fp

The argument concerning the relative orders of j-views and k-views of e,
and e’ is the same as for the case of m =n = 1.

Now we consider a location path 7 = (do, i) of length n — 1 with e/ £ e and
d € N, i.e., the sequence starts with a natural number. Let k be the first
location occurring in ¢ and k := i if 0 does not contain a location. We have
to show that e/ =; | f! and the proof is exactly as in the case where the
initial element of the sequence is a location.

— For 1 < m < n let 7 be of length n — m, such that 7 = (ko,i) has
k € Loc as first element, and such that e, £ e, and, similarly, f. £ f.
To show that |e! _k if’ we prove (1) for each j € Loc it holds that
Vel E}n_l V fL. For e(]km &£ e and similarly f(’jk”) £ f this follows from
the induction hypothesis. For e’(ko) S € there exists (again) a location [,
such that e(]k) < e < el and e is causally maximal in this respect. Then

Vel = Ve =72 Y fi = Vf], where n —2 > m — 1, so that the desired
claim follows from the observation —’H'mc—;-l. The second part is to prove

(2) for each e}, € (Je} N Ej) that there exists an f,, € (L f; N Ey) such that
€p =t fp-1f e, < e then an appropriate f, < f < f; exists by assumption.
Now let €], £ e. Then there exists a d € N such that e}, = [kel = |(@ho)¢/
Using the isomorphism I we get f, := I(e;) = Wr = ki) £ The length
of 7' = (dko,i) is n — (m — 1). Thus by induction we know that e, =/*~" f/.
Now let 7 = (do, 1) where d € N such that e/ £ e and f. £ f. Let k be
the first location occurring in ¢ and if ¢ does not contain a location we set

k :=i. The other arguments correspond to the case above.

Using this Lemma, we can easily show our main result, namely that = is
more discriminating than £-formulae with a gossip depth smaller than n:

Theorem 5. Let ¢ be an L-formula of gossip-past-depth n, and let e, f € E;
with Le =P |f. Then lel= o iff LfEip

Proof. By structural induction on ¢: For atomic propositions, note that Obser-
vation 2 e =! |f implies le =p |f and hence le |=; p iff Lf i p. The
induction for boolean connectives is obvious. For gpd(®y) = gpd(yp) = n let
le =i Op and le =P | f. We have to show that also | f |=; O (all other cases
follow by symmetry).

By definition, there exists ¢’ > e with ¢/ € E; and |e' |=; ¢. By Lemma
4 the event f' = I(¢') € E; obtained from the isomorphism I due to the M-
equivalence of | e and | f satisfies f < f’ and e’ =P | f'. By induction, | f' |=; ¢
and finally | f |=; .

Now let ¢ = @j : ¢ with gpd(p) = gpd(¥) + 1 = n. le |=; ¢ implies
Ve |=; ¢ and by definition /e =7 L' }Jf. Thus, by induction |7 f E; ¥ and
finally | f =i .

The argument for formulae ¢ = © ¢ is very similar to the case of ¢ =@ j: ¢
and makes use of the last part of the third condition in the definition of =}.
This is why this condition can be omitted for the subclass of £ formulae.

14

Based on the local equivalences, we define an adequate equivalence relation
for the construction of a finite prefix by le =" | f iff loc(e) = loc(f) and |e =}
Lf for all i € loc(e). The next and last step to transfer the £ model checking
problem from the unfolding to an equivalent model checking problem over a
finite structure is the definition of the transitions between the ="-equivalence
classes of Unf. This is done in the next section.

5 Model checking

In this section we propose a verification technique for £. Following the lines of
[HNWO98], we will sketch a reduction of a given instance of the problem to a
suitable input for well investigated model checkers like e.g. [CES86].

Let us consider a distributed net system X and an L-formula ¢ of gossip-
past-depth n. We have shown so far how to construct a finite prefix Fin of the
unfolding Unfs that contains representatives for all =7 equivalence classes. Now
we want to compute a finite, multi-modal Kripke structure on the representatives
that is equivalent to Unfy, with respect to the evaluation of . What is missing
are the transitions between the representatives.

Computing a finite Kripke structure. Let n € N, and Unfy = (N',7)
with N' = (B, E, F) be fixed, and let =" be the equivalence relation used for
the construction of Fin. The state space S,, of the desired Kripke structure
consists of one representative of each =" equivalence class. Note that by using
the adequate total partial order < of [ERV96], these representatives are unique,
and so the state space is given by S, := {]e | e € Fin and e is not a cutoft}. If
the used order < is not total, we fix one non-cutoff (resp. its local configuration)
of the prefix as the representative of each =™ equivalence class. For every local
configuration | e of Unfs;, let rep(le) € S,, denote the unique representative.
Now let us consider the transitions of the Kripke structure. We introduce a
transition relation for each of the modalities of the logic. Let le, | f € Sp:

le=5, Lf iff e, f € By and 3f'€E;. f'>e A rep(Lf') =L f
le=5 Lf iff ecE;, fEE; A Ye=1f
le2S [f iff e, feE; N f<e.

Note that the definitions of — and % rely on the fact that the set of con-
figurations in Fin (and thus also in §,,) is downward closed, i.e., the j-view
of any element of S, is again in S, for every j, and of course past config-
urations as well. On the whole, we obtain the multi-modal Kripke structure
Tn = (Sn, { =50, =, =5 |i € Loc},) L) with root | L.

As a corollary to Theorem 5 we obtain the following characterisation of the
semantics of £ formulae over T,:

Corollary 6. Let ¢ € L be a formula of gossip-past-depth m < n, and let
le € S, be an i-local configuration, i.e., e € E;.

15

1. If o = O then e |=; ¢ iff 31f € S, with Le =, If and |f =i 4.
2. If p=@j:9 then le =, ¢ iff 31f €S, with le—% If and If E;v.
8. If o =& then le =i ¢ iff 3 1f € Sp with Le =5 |f and |f =i 9.

Proof. (1) follows from the definition of the semantics of ¢ and the fact that
by construction of 7, for any pair of states |f' and |f = rep({f’), we have that
LfEipiff Lf' =i ¢ for any formula ¢ of gossip-past-depth m < n. (2) and (3)
are trivial.

Thus, if we are able to actually compute (the transitions of) 7, then we
can immediately reduce the model checking problem of £* to a standard model
checking problem over finite transition systems, applying e.g. [CES86].

Computing the transitions le2% | fin T, is trivial: |f = [Je. Similarly
computing the =% successors of |e is very easy. It is more difficult to compute
the transitions e 3, | f, if only Fin is given. To achieve this, we use a modified
version of the algorithm proposed in [HNW98].

An algorithm to compute the -5, transitions. We assume in the fol-
lowing, that the algorithm for constructing the prefix Fin uses a total, adequate
order <. The construction of Fin provides some useful structural information:
each cutoff e has a corresponding event €°, such that [e® =" |e, and [e® < |e.
Clearly, we choose rep(l.e) := |.e° for each cutoff e, and for non-cutoffs f, we set
rep(} f) := | f. For technical reasons, we have to use an extended definition of
24, we define C' %%, |e for any local or global configuration C' C |e/, with
rep(le') = e and e, e’ € E;. The construction of Fin also provides a function
shift*, which maps any configuration C = Cy of Unfy containing some cutoff,
onto a configuration shift*(C) = C), not containing a cutoff, hence being present
in Fin. This function works by repeatedly applying Cj11 := led @ Ifee’% (Cr\ler)
with ey € Cy being a cutoff of Fin, and e} being its corresponding, equivalent
event. This repeating application terminates, because the sequence Cy, Cs, .. de-
creases in the underlying (well-founded) order <. Obviously, this function im-
plies the existence of an isomorphism I between 5(C) and B(shift*(C)), which is

the composition of the isomorphisms Ii’:? induced by the chosen cutoff events.
Moreover, shift*(le) < le for any e € B(C), and hence for any e for which
C 5, le.

The most important part of the algorithm (cf. Fig. 4) is the recursive proce-
dure successors which, when called from the top level with a pair (J.e,%), returns
the pfeilin-successors of |e in the finite structure. More generally, successors
performs a depth first search through pairs (C,4), where C is an arbitrary, not
necessarily local configuration not containing a cutoff and i is a location. It
determines the subset of local configurations in S,, that represent the %, -
successors of C. Formally, Je € successors(C, i) iff there exists e’ in Unf, which
is ="-equivalent to le, and C =5, le'.

Proposition 7. Compute_Multi_Modal_Kripke_Structure computes the =, -,

o @, ..
=% - and — -transitions.

16

type Vertex = {C: Configuration; i: Location; pathmark: bool; (* for dfs *) }
prefix_successors(C, i) = {rep(le) | le € S A C 25, le}
compatible_cutoffs(C') = {e | e is cut-off and e U C is a configuration in Fin}

proc successors(C, i): ConfigurationSet;

{
var result: ConfigurationSet; (* result accumulator for current verter *)
Vertex v := findvertex(C,i); (* lookup in hash table, if not found then *)
(* create new verter with pathmark =false *)
if v.pathmark then return 0; i (* we have closed a cycle *)
result := prefix_successors(C, 1); (* directly accessible successors *)
v.pathmark:=true; (* put vertex on path *)
for e, € compatible_cutoffs(C) do (* find successors outside Fin behind e. *)
result := result U successors(shift* (C U le.), i);
od ;
v.pathmark:=false; (* take vertex from path *)
return result;
}
proc Compute_Multi_Modal_Kripke_Structure,
{
InitializeTransitionSystem(7,, Fin); (* extract state space from Fin *)
for le € S,,i € Loc do
add transition le 2% [le;
for i € Loc, e, |f € S, NC},.,Lf C le do
add transition Je =% | f;
for |e' € successors(le,i) do
add transition Je %5, le';
od
od
}

Fig. 4. The conceptual algorithm to compute the transitions of 7.

The proof is exactly along the lines of a proof for a similar algorithm for the
distributed p-calculus given in [HNW98] and given in the appendix. Note that at
top level, successors is always called with a local configuration |e as parameter,
but the extension of |e with cutoffs requires that we can also handle global
configurations. In this paper, we focus on decidability but not on efficiency. For
comments on efficiency of related model checking procedures for the distributed
p-calculus we refer the reader to [HNW9S].

6 Conclusion

We have shown the decidability of the model checking problem for £, a location
based branching-time temporal logic including temporal and gossip modalities.

17

The method is based on a translation of the modalities over net unfoldings (or
prime event structures) into transitions of a sequential transition system, for
which established model checkers for sequential logics can be applied.

While the method as presented is non elementary for the full logic £, the
restriction to the future fragment £7 still allows to express interesting properties
and results in a more moderately growing complexity.

We also hope that the presented results can be used as a methodological
approach to model checking temporal logics of causal knowledge [Pen98].

The main difficulty, the solution of which is also the major contribution of
the paper, was to find an adequate equivalence relation on local states that
allowed to construct a finite transition system containing a representative for
each class of equivalent local states. If the method really is to be applied, then
refinements of the equivalence bring it closer to the logical equivalence and thus
leading to a smaller index will be crucial. We believe that the potential for such
improvements is high at the price of much less understandable definitions.

For the treatment of past an alternative and potentially more efficient ap-
proach in the line of [LS95] — elimination of past modalities in CTL — might come
to mind, but the techniques used there can at least not directly be transferred
to Lcsa because of the intricate interaction between past and gossip modalities.

References

[CEP95] A. Cheng, J. Esparza, and J. Palsberg, Complezity results for 1-safe nets,
Theoretical Computer Science (1995), no. 147, 117-136.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, ACM Transac-
tions on Programming Languages and Systems 8 (1986), no. 2, 244-263.

[Eng91] J. Engelfriet, Branching processes of Petri nets, Acta Informatica 28 (1991),
575-591.

[ERV96] J. Esparza, S. Romer, and W. Vogler, An Improvement of McMillan’s Unfold-
ing Algorithm, Tools and Algorithms for the Construction and Analysis of
Systems TACAS 96 (Passau, Germany) (T. Margaria and B. Steffen, eds.),
LNCS, vol. 1055, Springer, 1996, pp. 87-106.

[Esp94] J. Esparza, Model checking using net unfoldings, Science of Computer Pro-
gramming 23 (1994), 151-195.

[HNW98] M. Huhn, P. Niebert, and F. Wallner, Verification based on local states, Proc.
of TACAS 98 (B. Steffen, ed.), LNCS, vol. 1384, Springer, 1998, pp. 36-51.

[LRT92] K. Lodaya, R. Ramanujam, and P.S. Thiagarajan, Temporal logics for com-
municating sequential agents: I, Int. Journal of Foundations of Computer
Science 3 (1992), no. 2, 117-159.

[LS95] F. Laroussinie and P. Schnoebelen, A hierarchy of temporal logics with past,
Theoretical Computer Science 148 (1995), 303-324.

[LT87] K. Lodaya and P.S. Thiagarajan, A modal logic for a subclass of event struc-
tures, Automata, Languages and Programming (T. Ottmann, ed.), LNCS,
vol. 267, Springer, 1987, pp. 290-303.

[McM92] K.L. McMillan, Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits, Proc. of the 4th Workshop on Computer
Aided Verification (Montreal), 1992, pp. 164-174.

18

[Nie9s]

[NPWS80)]
[NRT90]
[Pen97]
[Pen98]
[Ram95)]
[Thi94]

[Thi95]

[Wal9s]

[Win87]

Peter Niebert, A temporal logic for the specification and verification of distrib-
uted behaviour, PhD thesis, Institut fiir Informatik, Universitat Hildesheim,
March 1998.

M. Nielsen, G. Plotkin, and G. Winskel, Petri nets, event structures and
domains, Theoretical Computer Science 13 (1980), no. 1, 85-108.

M. Nielsen, G. Rozenberg, and P.S. Thiagarajan, Behavioural notions for
elementary net systems, Distributed Computing 4 (1990), no. 1, 45-57.

W. Penczek, Model-Checking for a Subclass of Event Structures, Proc. of
TACAS 97, LNCS, vol. 1217, 1997.

W. Penczek, Temporal logic of causal knowledge, Proc. of WoLLiC 98, 1998.
R. Ramanujam, A Local Presentation of Synchronizing Systems, Structures in
Concurrency Theory (J. Desel, ed.), Workshops in Computing, 1995, pp. 264
279.

P.S. Thiagarajan, A Trace Based Eztension of PTL, Proc. of the 9th IEEE
Symposium on Logic in Computer Science, 1994.

P.S. Thiagarajan, A Trace Consistent Subset of PTL, Proc. of CONCUR ’95
(Philadelphia, P.A., USA) (I. Lee and S.A. Smolka, eds.), LNCS, vol. 962,
Springer, 1995, pp. 438-452.

F. Wallner, Model checking LTL using net unfoldings, Proc. 10th Conf. on
Computer-Aided Verification CAV ’98, LNCS, vol. 1427, Springer, 1998.
Glynn Winskel, Event structures, Advances in Petri Nets, LNCS, vol. 255,
1987.

19

Appendix
A Formal Syntax and Semantics of L¢ga

The abstract syntax of Lcg4 is

o = p|lop | eVe | Oip | S

where p ranges over a set AP of atomic propositions, and i € Loc. The dual
operators are defined by ¢ A = =(=pV—), B; ¢ = = €; —p and O;p = =<,

The models of L¢ga are pairs M = (Unf, V'), where Unfis the unfolding of a
distributed net system, and V' is a valuation function from the local states of Unf
onto subsets of AP. Formulae are interpreted on the local states of M, which is
denoted by M, | e = ¢. An atomic proposition p is interpreted in accordance with
V:M,le=piff pe V(]e). The operators of propositional logic are interpreted
as usual, and for the temporal operators, we have

M,lel=¢;p iff e'€E;.¢' <e and M, le' Ep
M,lel= < iff Je'€E;. [le Cle' and M,le

B Proofs

B.1 Proof of Proposition 1

Let Unf= (N',7), with N' = (B, E,F). For a given event e let L =¢; < e3 <
-+- < e, = e be a longest causal chain of events. We define d(e) := k, the depth
of e, and for each k > 1 a set E¥ C E by E¥ := {e| d(e) < k}.

Let e; < --- < e,41 be a causal chain of events in Unf, where n is the index of
=. Clearly, there must exist two events ey, e;, such that e, = Je;. Without loss
of generality, assume e} < e;, and thus Jeg C le;. Because the partial order <
respects set inclusion, we have also e < Je;, and so ¢; is a cutoff. We conclude
that all events of the prefix Fin belong to E™t1.

Now we show by induction that for every k > 1, the set E* contains only
finitely many events. The only event in E' is L. Assume EF is a finite set. Due
to the conditions of 7, every event in E* has only finitely many causal successor
events, thus also EF*! is finite. So, Fin contains only finitely many events.

Since 7 is a bijection for all *¢ and ¢®, and since our original nets are finite,
Fin contains finitely many conditions.

B.2 Proof of Observation 2

=""" refines =7. Since e, f € E;, we have |'e = |e and similarly |['f = | f,

and thus e E?'H 1 f implies e = | f by definition.

= implies M-equivalence. Clearly, =} implies M-equivalence: consider p €

Pjand le =; | f. Then p € M(le) iff p € M(Ve) iff pe M f) iff p e M(Lf),
where the intermediate equivalence follows from |Je E(J)- I f. As seen above, =7

implies =} for all n > 0.

20

=7 is decidable and of finite index. Since the system under consideration
has only finitely many markings, the equivalence =Y is of finite index for every
i € Loc. Also =! is evidently of finite index for each i. Since there only finitely
many locations, by induction (and the definition of E?H, relying on =7 for all
locations j) and (in the case including past) the presence of representatives of
=! classes in the set of i-predecessor configurations, there are only finitely many
equivalence classes w.r.t. E?H. In the case including past this may result in an
exponentially higher index, in the case without past polynomially bigger with
exponent |Loc|.

To understand the decidability one has to think of configurations as data
structures in an appropriate representation. Then, the definition of =} can al-
most immediately be read and programmed as a primitive recursive function
taking two configurations and the indices ¢ and n as input.

B.3 Proof of Proposition 7

The procedure successors works as follows. Assume there exists at least one €’
anywhere in Unf with C =%, |€'; then there are two possibilities:

— One of these €' lies in the prefix. This is easy to determine. The corresponding
state rep(le’) € S, is given back by prefix_successors(C,).

— There exist such events €', but none of them lies in the prefix. The reason
for e’ ¢ Fin is the existence of a cutoff e., such that e. < €. So we can do
a case analysis over the compatible cutoffs. A cutoff e, is compatible with a
configuration C if it is not in conflict with C, i.e., Je. U C is a configuration
in Fin. If there is a compatible e., then for at least one of them, we have
(CUle.) =5, le'. In this case we inherit the transition C %, |e'.

In the second case, we loop over all compatible cutoffs e. looking at the config-
uration C. := C U le.. If any e € E; and C. =5, e exists, then there also
exists an ="-equivalent |e for C* := shift*(C.) (by the isomorphism), where
moreover e < |e'. So successors is recursively called with (C*,4). Note that
C* contains no cutoff.

Hence we apply depth first search with respect to pairs (C,i). Cycles may
occur (if we hit a pair (C,i) with pathmark=true), at which we break off to
ensure termination. Note that the search space is limited by the fact that C is
represented in Fin and does not contain cutoffs.

It remains to show that the termination is correct: Assume an e’ € E; with
C 25, le exists. Then we choose from all the suitable i-successors a <-minimal
one, say Jemin- Whenever a configuration (C'Ul e.) is shifted with shift* to obtain
a configuration C' for the next call of successors, also | e, is shifted to a stricly
smaller le] .., (ie., lel;, < lemin). Thus in case we hit a configuration C
twice, when searching for i-successors, | enin is mapped by the various shift*s to
a strictly smaller state |e};, which contradicts the minimality of |emin. Thus
whenever a configuration is investigated a second time for ¢-successors, we know
that there cannot be one.

21

The main procedure Compute_Multi_Modal_Kripke_Structure thus only has
to loop about all possible pairs (Je,i) with le € S,, to check for transitions
le 25, e/ by calling successors.

22

