
���

�� Data and Process Alignment in Modula���

This paper appeared in� In AP���� Int� Workshop on Automatic Distributed Mem�

ory Parallelization� Automatic Data Distribution and Automatic Parallel Per�

formance Prediction� Saarbr	ucken� Germany� March 
��� 
���� Verlag Vieweg�

Wiesbaden� Germany� Advanced Studies in Computer Sciene Series� 
����

Michael Philippsen and Markus U� Mock
University of Karlsruhe

Department of Informatics

D��

�� Karlsruhe� F�R�G�

email� �phlipp j mock��ira�uka�de

Abstract� Exploiting locality is a central goal of translating problem�oriented parallel program�
ming languages for distributed memory parallel machines� Modula��� places the burden of auto�
matically deriving good data and process distribution on the compiler�

In this paper we present a technique implemented in our optimizing compiler that enhances

locality in a source�to�source transformation� Analysis of data access patterns and parallel oper�

ations leads to an arrangement graph� Processing of this graph reveals con�icting arrangements�

Some assumptions and a heuristic based on dynamic programming enables the compiler to �nd

the best alignment in logarithmic time� The technique has improved runtime performance on

benchmarks by over �	
�

���� Introduction

Straightforward compilation of FORALL statements and allocation of array elements onto
massively parallel machines results in a signi�cant amount of interprocessor data motion�
Therefore� data and process distribution is an essential problem of numerous compiler
projects targeting distributed memory machines�

There is widespread agreement about the two goals of data and process distribution�
��� Data locality� To reduce the amount of communication and achieve minimal run	
time� all data elements which are used by a process should be store locally on the same
PE� �
� Parallelism� Using just one processor results in perfect data locality and minimal
communication cost� In general� however� the run	time can be improved by exploiting the
full degree of parallelism provided by the hardware� A trade	o� between the con�icting
goals of data locality and parallelism must be found�

Whereas the goals are agreed upon� totally di�erent approaches to reach them have
been developed� In many programming languages the user must explicitly provide the
data layout� Some languages require an explicit mapping of the data onto the topology

�� ��� ���� others are more abstract and o�er either sets of directives for the compiler or
interactive or knowledge	based environments that help determine the alignment of array
dimensions and mapping functions 
�� ��� �� �� 
�� Recent work 
�� �� �� ��� �� focuses
on static compile	time analysis to automatically �nd a data decomposition that achieves
both goals for vector and data	parallel operations�



��� �� Data and Process Alignment in Modula	
�

Modula	
� 
��� is designed for high	level� problem	oriented� and machine	independent
parallel programming� The programmer can focus on the problem he has to solve� ab	
stracting from the available number of processors and the interconnection network� There	
fore� the compiler has to determine an appropriate data and process distribution�

Known approaches to automatically derive good data allocations have been targeting
pure data	parallel programming languages� i�e� the parallelism has come from vector
manipulations� In these approaches it is su�cient to �nd good data allocations� Locality
is achieved by applying the owner	computes rule to distribute the statement execution
onto the processors accordingly�

Modula	
�� however� is not a purely data	parallel programming language� When de	
signing Modula	
�� we wanted to preserve the main advantages of data	parallel languages
while avoiding the drawbacks 
���� Although data	parallel programming is possible� the
notion of process is present� Therefore� both data and process distribution must be found
by the compiler�

In this paper we present our approach to derive both data and process distribution for
Modula	
� programs� Our technique is based on the work of Knobe 
�� but extends her
ideas with the consideration of process distribution and the clear separation of high	level
data arrangement and physical data layout�

In section ���
 we present the basic characteristics of Modula	
�� Section ���� explains
the general approach of the Modula	
� compiler� In sections ���� and ���� we give some
more details on the alignment graphs� the con�ict detection� and the heuristic search
mechanism�

���� Modula���

The programming language Modula	
� was developed to allow for high	level� problem	
oriented and machine	independent parallel programming� As described in 
���� it provides
the following features�

�An arbitrary number of processes operate on data in the same single address space�
Note that shared memory is not required� a single address space merely permits all
memory to be addressed� but not necessarily at uniform speed�

�Synchronous and asynchronous parallel computations as well as arbitrary nestings
thereof can be formulated in a totally machine	independent way�

�Procedures may be called in any context �sequential� synchronous� or asynchronous�
at any nesting depth� Furthermore� additional parallel processes can be created inside
procedures �recursive parallelism��

�All abstraction mechanisms of Modula	
 are available for parallel programming�

Modula	
� extends Modula	
 with just two language constructs�



���
 Modula	
� ���

��The only way to introduce parallelism into Modula	
� programs is by means of the
FORALL statement� which has a synchronous and an asynchronous version�


�The distribution of array data is optionally speci�ed by so	called allocators� These
machine	independent allocators do not have any semantic meaning� They are just
hints about data layout for the compiler�

Because of the compactness and simplicity of these extensions� they could easily be
incorporated into other imperative programming languages� such as Fortran� C� or Ada�

������ FORALL statement

In Modula	
�� the syntax of the FORALL statement is�

ForallStatement �

FORALL ident ��� SimpleType IN �PARALLEL � SYNC�

StatementSequence

END�

SimpleType is an enumeration or a possibly non�static subrange� i�e� the boundary ex	
pressions may contain variables� The FORALL creates as many �conceptual� processes as
there are elements in SimpleType� The identi�er introduced by the FORALL statement is
local to it and serves as a runtime constant for every process created by the FORALL� The
runtime constant of each process is initialized to a unique value of SimpleType�

Each process created by a FORALL executes the statements in StatementSequence�
The END of a FORALL statement imposes a synchronization barrier on the participating
processes� the termination of the whole FORALL statement is delayed until all created
processes have �nished their execution of StatementSequence�

In a synchronous FORALL� the created processes execute StatementSequence in lock	
step� while in the asynchronous case� they work concurrently�

The behavior of branches and loops inside synchronous FORALLs is de�ned with a
MSIMD �multiple SIMD� machine in mind� This means that Modula	
� does not require
any synchronization between di�erent branches of synchronous CASE or IF statements�
The exact synchronous semantics of all Modula	
� statements� including nested FORALLs�
are de�ned in 
����

������ Allocation of array data

Modula	
� provides a simple� machine	independent construct for controlling the alloca	
tion of array data� This construct is optional and does not change the meaning of a
program� The modi�ed declaration syntax for arrays is�



��� �� Data and Process Alignment in Modula	
�

ArrayType �

ARRAY SimpleType 	allocator


���� SimpleType 	allocator

 OF type�

allocator �

LOCAL � SPREAD � CYCLE � RANDOM � SBLOCK � CBLOCK�

Array elements whose indices di�er only in dimensions that are marked LOCAL are asso	
ciated with the same processor� This facility is used to avoid distribution of data in a
given dimension�

Dimensions with allocator SPREAD are divided into segments� one for each of the avail	
able processors� A vector with n elements is assigned to P processors by allocating a
segment of length dn�P e to each processor� While utilizing all available processors� it
minimizes the cost of nearest	neighbor communication�

Dimensions with allocator CYCLE are distributed in a round	robin fashion over the
available processors� Given P processors� the elements of a vector whose indices are iden	
tical modulo P are associated with the same processor� In contrast to SPREAD� CYCLE
maximizes the cost of nearest	neighbor communication� neighboring array elements are
always on di�erent processors� leading to better processor utilization if a parallel algo	
rithm operates on subsegments of a vector�

Dimensions with allocator RANDOM are distributed randomly over the available proces	
sors� In contrast to CYCLE� RANDOM leads to a better processor utilization if a parallel
algorithms accesses the dimension in a random pattern�

If either SPREAD� CYCLE� or RANDOM apply to several successive dimensions� then these
dimensions are �unrolled� into one pseudo	vector with a length that is the product of the
lengths of the individual dimensions� This scheme idles fewer processors than applying
SPREAD� CYCLE� or RANDOM to individual dimensions�

Allocators SBLOCK and CBLOCK apply SPREAD and CYCLE resp� to each dimension in	
dividually� For two successive dimensions� SBLOCK has the e�ect of creating rectangular
subarrays and assigning those to the processors� With this arrangement� nearest	neighbor
communication in all dimensions is best supported when the interconnection network can
be con�gured into the same number of dimensions as the arrays�
CBLOCK for two dimensions also creates two	dimensional subarrays� but the rows and

columns of these subarrays are then distributed in a round	robin fashion over the proces	
sor grid� Again� SBLOCK minimizes nearest	neighbor communication� while CBLOCK allows
high processor utilization if smaller subarrays are processed in parallel�

���� Alignment in Modula���

In this section we present the general ideas of our data and process alignment strategies�
Data layout is the decision which element of an array is physically stored on which

processor� Arrangement is the process of arranging array elements so that the elements
of di�erent arrays which are used together will end up in the same processor�



���� Alignment in Modula	
� ���

Although arrangement and layout are seen as one step in the literature� we propose to
separate these issues into two phases�

Alignment � Arrangement � Layout

������ Data Alignment

In terms of Modula	
� we use a source	to	source transformation in the �rst phase to
achieve the arrangement� For the second phase we have developed an adequate layout
algorithm 
�
� that maps arrays onto the machine depending on their declarations� Con	
sider the following example�

VAR A� ARRAY 	�����
 SPREAD OF INTEGER�

B� ARRAY 	������
 SPREAD OF INTEGER�

BEGIN

FORALL i�	�����
 IN SYNC

A	i
 �� B	i��
�

B	i
 �� �

END

END

To arrange arrays A and B� array A is enlarged and shifted to the left� All index expressions
involved are transformed accordingly� After this� elements which are used together have
the same index� Note that the new array A is larger than the old one� Since the primary
goal of our optimization is runtime performance we allow for moderate waste in storage
consumption�

VAR �� A� ARRAY 	�����
 SPREAD OF INTEGER� ��

A�B � ARRAY 	������
 SPREAD OF INTEGER�

BEGIN

FORALL i�	�����
 IN SYNC

A	i��
 �� B	i��
�

B	i
 �� �

END

END

The analysis would not arrange arrays A and B if the programmer had used di�erent
allocators� In this case� the compiler issues a performance warning� which suggests to
reconsider the used allocators� If the programmer does not use any allocator� the compiler
selects an appropriate one�



��
 �� Data and Process Alignment in Modula	
�

In the second phase� the layout algorithm maps both arrays to the available processors
in the same way� Since both arrays have the same declaration� elements with the same
index end up in the same processor� Our layout algorithm� which is described in 
�
��
reaches the following goals� �a� Exploit fast communication patterns if there is special
hardware support� e�g� nearest	neighbor networks� �b� Perform simple address calcula	
tions� The computation of processor numbers and addresses of data elements are fast
shift and mask operations�

������ Process Alignment

Up to now we have only dealt with the data alignment and its realization� Process align	
ment is also achieved by means of a source	to	source transformation� For this purpose�
we have augmented the FORALL statement as follows�

ForallStatement �

FORALL ident ��� SimpleType IN �PARALLEL � SYNC�

	ALIGNED WITH Designator


StatementSequence

END�

The ALIGNED WITH term is not present in the original Modula	
� program� It is derived
by compile	time analysis� In the example the transformation results in�

VAR �� A� ARRAY 	�����
 SPREAD OF INTEGER� ��

A�B � ARRAY 	������
 SPREAD OF INTEGER�

BEGIN

FORALL i�	�����
 IN SYNC ALIGNED WITH B	i


A	i
 �� B	i


END�

FORALL i�	�����
 IN SYNC ALIGNED WITH B	i


B	i
 �� �

END

END

The code generator then simply considers the range of the FORALL as an array and
invokes the layout algorithm to determine which processor has to simulate which of the
conceptual processes in a virtualization loop� In the above example the original FORALL
has been split into two parts� In both FORALLs the process with index i will be executed
where data element B	i
 resides� resulting in purely local accesses� This could not be
achieved with a single FORALL� Furthermore� providing the code generator with exact
alignment information facilitates easy exploitation of nearest	neighbor communication
networks�



���� Arrangement Graphs and Con�icts ���

The arrangement does not always work that smoothly� In general� there are lots of
alignment preferences both for data usage and process alignment� Additionally� suitable
cost estimation is required� Depending of the overhead cost of splitting up a FORALL� it
may be advantageous on particular parallel hardware to accept some non	locality instead�

The following two sections are more speci�c and show our arrangement algorithm in
some detail�

���� Arrangement Graphs and Con�icts

During static compile	time analysis we create an arrangement graph� Nodes of this graph
are array references of arbitrary type and FORALL	variables� Edges express arrangement
preferences and are attributed with the type and the structure of the detected preference�

������ Type and Structure

We found four types of arrangement preferences to be necessary� The �rst two types were
introduced by Knobe and provide data arrangement information�

�An identity preference is an arrangement request that relates a de�ning occurrence
of an array to a using occurrence of the same array� It indicates a preference to align
identical elements of the array on the same processor for the two occurrences� The
idea is to avoid redistribution cost�

�A conformance preference relates two array occurrences that are operated on to	
gether in a parallel expression� The goal is to group elements of di�erent arrays so
that all data accesses can be done locally�

Knobe has introduced a third preference for expressing data arrangement information� An
independence anti�preference is a property of speci�c array dimensions if these dimensions
contain a potentially parallel subscript� For analysis of Modula	
�� this type of preference
is not necessary� because of �a� the allocators already indicate distributed storage and
�b� the explicitness of parallelism in array subscripts inside of FORALL statements�

The next two types of arrangement preferences are used to gather information for
process alignment�

�A process preference relates the FORALL	variable to the leftmost occurrence �LMO�
of an array reference if the following conditions are ful�lled� �a� The LMO is in a
statement inside of the body of that FORALL and �b� the FORALL	variable appears in
the subscript expression of the LMO� Any other array occurrence ful�lling �a� and
�b� could be chosen as well�



��� �� Data and Process Alignment in Modula	
�

Arranging the processes with all LMOs in the body of the FORALL will achieve perfect
locality of processes and data that is accessed in parallel� The process will run where
the data is located� Since conformance preferences already ensure that all data which
is operated on together will be arranged� only LMOs are considered�

�An LMO preference relates two successive LMOs of the same array in the body of a
FORALL if these are subscripted in the same dimension with an expression using the
same FORALL	variable� LMO preferences represent the cost of splitting up FORALLs�
i�e� the increased virtualization overhead� If all LMO preferences are honored the
FORALL will not be split up�

The arrangement graph contains all four types of edges� If only the �rst or the last
two types are considered the graph is called either data arrangement graph or process
arrangement graph�

For a�ne index expressions� the edges are labeled with the preferred arrangement struc	
ture� For two arrays A and B� this becomes ALIGN �A�dA�sA�oA� WITH �B�dB�sB�oB�
for all types of preferences except process preferences� dA and dB are the numbers
of the dimensions that impose the preference� and the subscript expressions sA� i�oA
and sB �i�oB denote elements that should be arranged in the speci�ed array dimen	
sions� Normalization results in structure information of the form ALIGN ��������� WITH

�����c�d�� For LMO preferences we have sA � � and oA � �� Analogously� process pref	
erences have the structure ALIGN i WITH �A�dA�sA�oA� since only one node is an array
occurrence�

������ Con�icts

The arrangement graph usually is not free of con�icts� In general� it is impossible to
arrange data elements and processes in a way that all accesses are local without any
redistribution of data or processes� We distinguish between data arrangement con�icts
and process arrangement con�icts�

Data Arrangement Con�icts

In the following example the data arrangement graph �see Figure ����� is cyclic�

A	�
 �� ���

B	�
 �� ���

FORALL i � 	���N
 IN PARALLEL

s	i
 �� A	��i
 � B	i
�

t	i
 �� A	 i 
 � B	i


END



���� Arrangement Graphs and Con�icts ���

We do not consider the edges to or from occurrences of s and t� since these do not
contribute to the cycle� There are two conformance preferences inside of the FORALL� The
�rst one is caused by the �rst assignment in the FORALL� It relates A	��i
 to B�	i
� The
second one relates the array occurrences A	i
 and B�	i
 of the second assignment�

All array occurrences inside of the FORALL are related to their de�ning occurrences in
front of the FORALL with identity preferences� Thus� there are four identity preferences
between �A	�
� A	��i
�� �A	�
� A	i
�� �B	�
� B�	i
�� and �B	�
� B�	i
��

It is impossible to achieve locality between the elements A	��i
 and B�	i
� demanded
by the conformance preference of the �rst assignment� and at the same time honor the
second conformance preference between A	i
 and B�	i
�

In our approach� we avoid data redistribution at run	time inside of FORALLs� Therefore�
there are two possible data arrangements� In both cases� one conformance preference is
honored� the other one is broken�

A[2*i] B[i]

B[.]

B[i]

A[.]

A[i]

ALIGN (B,1,1,0)
 WITH (A,1,2,0)

ALIGN (B,1,1,0)
 WITH (A,1,1,0)

conformance

identity

conformance

identity

identity

identity

Figure ���� Data Arrangement Graph

To determine all possible arrangements� we apply the following algorithm to each cycle
in the data arrangement graph�

��Start with a���� b�� � at an arbitrary node N of the cycle� D denotes the dimension
of the array that is in the cycle�


�Proceed to the next node in the cycle and change a and b as follows�

�If the edge is a normalized conformance preference that relates di�erent array
occurrences and is attributed with the information ALIGN ��������� WITH

�����c�d� then replace a with a � c and b with b � c � d

�Otherwise� leave a and b unchanged�



��� �� Data and Process Alignment in Modula	
�

��Repeat step 
� as long as N is not reached again�

��N is reached at dimension D�� There is

�an o�set con�ict if b �� � and D � D��

�a stride con�ict if a �� � and D � D�� and

�a dimension con�ict if D �� D��

Otherwise� there is no data arrangement con�ict�

The compiler preserves all con�ict free data arrangements and all con�icts� i�e� all possible
data arrangements that require to break at least one data arrangement preference� The
way this information is used is presented in section �����

Process Arrangement Con�icts

In the following example the process arrangement graph �see Figure ���
� is cyclic�

FORALL i � 	���N
 IN SYNC

A	 i 
 �� t	i
�

A	i��
 �� A	i��
 � �

END

Only process and LMO preferences are taken into account� In the example there are two
process preferences �i� A	i
� and �i� A	i��
�� Additionally� there is an LMO preference
between A	i
 and A	i��
�

i

A[i] A[i+1]

ALIGN i
 WITH (A,1,1,0)

ALIGN i
 WITH (A,1,1,1)

ALIGN (A,1,1,0)
 WITH (A,1,1,0)

process

LMO

process

Figure ���� Process Arrangement Graph

Although there are no data arrangement con�icts� there are process arrangement con�icts�
process preferences to A	i
 and A	i��
 contradict�



���� Cost Considerations ���

To determine all possible process arrangements� the process arrangement graph is
processed as follows�

��The process alignment graph is divided into subgraphs that are processed in turn�
A subgraph consists of a FORALL	variable� and all LMOs that are related to that
FORALL	variable� either directly via process preference edges or indirectly via a
chain of LMO preferences�


�For each cycle in each subgraph that contains the FORALL	variable exactly once�
execute steps ����

��Start with a���� b�� �� and flag��FALSE at the node of the FORALL	variable�

��Proceed to the next node in the cycle� The edge is attributed with the normalized
structure ALIGN � WITH �����c�d��

�If the edge is an LMO preference or flag �FALSE replace a with a � c and b
with b � c � d� In case of a process preference� set flag��TRUE�

�The last edge in the cycle is a process preference with flag �TRUE� Replace a
with a�c and b with �b� d��c�

��Repeat step �� as long as the node of the FORALL	variable is not reached again�

��There is

�an o�set con�ict if b �� � and

�a stride con�ict if a �� ��

��Consider all edges of a subgraph� There is a dimension con�ict if among those
there is pair of process preference edges with di�ering dimensions in a single array�

The compiler keeps all con�ict free process arrangements and all con�icts� i�e� all possible
process arrangements that require to break at least one LMO preference� The way this
information is used is presented in the following section�

���	 Cost Considerations

In the previous section the processing of the data arrangement graph has resulted in a
collection of several possible data arrangements for the whole program� For each FORALL

statement in this program the compiler has derived a collection of possible process dis	
tributions�

Finding an optimal process distribution with a brute force algorithm would involve



��� �� Data and Process Alignment in Modula	
�

an exponential search space� A FORALL with n statements and p possible distributions
requires the cost estimation for pn di�erent combinations�

Unfortunately� the combination of two optimal process distributions for the statement
sequences � � � �bn�
c and bn�
c� � � � �n does not necessarily result in a global optimum�
since redistribution of processes imposes additional costs� With the assumption that the
process redistribution cost� i�e�� the cost of splitting up a FORALL into several FORALLs�
are small compared to the communication cost due to data access� the probable loss of
optimality can be tolerated� Therefore� a dynamic programming approach with a time
complexity of O�n log n� is feasible�

��For each data arrangement perform steps 
���


�For each process arrangement in each FORALL statement perform steps ����

��Derive the optimal process distribution and thus the appropriate splitting of the
FORALL by dynamic programming�

��Select the best alternative for the given data arrangement�

��Sum up the cost of all FORALL statements in the program for the given data ar	
rangement�

��Select the data arrangement that results in the global optimum�

The above is a high	level description of our technique� In reality the situation is more
complex� Loops and nested FORALLs require multidimensional cost vectors instead of sim	
ple communication costs� The runtime of IF	 and CASE	statements can be improved if
di�erent data arrangements are chosen for di�erent branches� To exploit this possibili	
ty� the algorithm considers dynamic array redistribution that ensures the uni�cation of
di�erent data arrangements after the branching statements� Details can be found in 
����

���
 Example

Consider the following code fragment�

FORALL i � 	���N
 IN SYNC

A	i��
 �� T	i
 � C	i
�

A	i
 �� A	i��
 � T	i
�

A	i��
 �� T	i��
 � D	i
�

A	i
 �� T	i
 � A	i��
�

END

The data alignment analysis �see section �����
� returns two possible patterns�



���� Example ���

ALIGN �C������� WITH �T������� ALIGN �C������� WITH �T�������

ALIGN �C������� WITH �A������� ALIGN �C������� WITH �A�������

ALIGN �C������� WITH �D�������� ALIGN �C������� WITH �D��������

or

The process alignment analysis �see section �����
� returns two possible patterns�

ALIGN i WITH �A������� ALIGN i WITH �A�������or

Although the compiler considers both possible data arrangements� in this example we
will only consider the second arrangement� Therefore� we will only present steps 
�� of
the search algorithm from section �����

line �A������� �A������� align cost
� 
g �s � �s

 �g��s �g � �g
� �g 
g��s � �g
� �g��s �g � �g

�	
 �g��s �	� �g��s
�	� 
g��s �g��s �	� 
g��f
�	� �g�
s �g�
s��f �	�	�	� �g��s�
f

In the above table s�g� and f denote the cost of a send operation� a get operation� and
the cost of splitting up a FORALL �� In the �rst step� the costs of executing individual lines
are computed for all process distributions� Merging lines � and 
 is obvious� since in both
lines �A������� is superior� This is shown by ��� in the table� For merging lines � and �
there are three possibilities� All must be considered� since f is not zero� ��� use �A�������
for both lines at a cost of 
g � �s� �
� use �A������� for both lines at a cost of �g � �s�
or ��� redistribute ��� at a cost of 
g � �f � which is the cheapest� When considering
the whole FORALL statement in the last step� there are again three options� ��� select
data distribution �A������� for all lines at a cost of �g � 
s� �
� select �A������� for
the �rst two lines and �A������� for the last two lines at a cost of �g � 
s � �f � or ���
redistribute again resulting in a cost of �g� �s� 
f � Given the values for g�s� and f � the
best process distribution will split up the given FORALL twice� after the second and after
the third line�

Assuming the second data arrangement� the code fragment is transformed as follows�

FORALL i � 	���N
 ALIGNED WITH A	i
 IN SYNC

A	i��
 �� T	i
 � C	i
�

A	i
 �� A	i��
 � T	i
�

END�

FORALL i � 	���N
 ALIGNED WITH A	i��
 IN SYNC

A	i��
 �� T	i��
 � D	i
�

END�

�In the example we set s � ���� g � ���� and f � �	 time units




��� REFERENCES

FORALL i � 	���N
 ALIGNED WITH A	i
 IN SYNC

A	i
 �� T	i
 � A	i��
�

END

Note that for sake of clarity the transformations related to data arrangement are left out
in this example� i�e� all arrays are still presented in their original declaration with the
original subscripts�

���� Conclusion

In this paper we have presented a technique that enhances locality using a source	to	
source transformation� The result of this program transformation is a data and process
alignment that results in better performance� �rst benchmarking yields an improvement
of performance by at least ��� on the MasPar MP	��

We consider this result to be initial evidence that automatic data and process distri	
bution by the compiler is possible and can achieve attractive performance improvements�

References


��Thinking Machines Corporation� Cambridge� Massachusetts� C� Language Reference
Manual� April �����



�Barbara M� Chapman� Heinz Herbeck� and Hans P� Zima� Automatic support for
data distribution� In Proc� of the �th Distributed Memory Computing Conference�
pages ������ Portland� Oregon� April 
� � May �� �����


��American National Standards Institute� Inc�� Washington� D�C� ANSI� Programming
Language Fortran Extended 	Fortran 
��� ANSI X
��
���

�� ���
�


��Geo�rey Fox� Seema Hiranandani� Ken Kennedy� Charles Koelbel� Uli Kremer� Chau	
Wen Tseng� and Min	You Wu� Fortran D language speci�cation� Technical Report
CRPC	TR������ Center for Research on Parallel Computation� Rice University� De	
cember �����


��Manish Gupta and Prithviraj Banerjee� Automatic data partitioning on distributed
memory multiprocessors� In Proc� of the �th Distributed Memory Computing Confer�
ence� pages ������ Portland� Oregon� April 
� � May �� �����


��Kathleen Knobe� Joan D� Lukas� and Guy L� Steele� Data optimization� Allocation
of arrays to reduce communication on SIMD machines� Journal of Parallel and Dis�
tributed Computing� ��
����
����� February �����



REFERENCES ���


��Kathleen Knobe and Venkataraman Natarajan� Data optimization� Minimizing resid	
ual interprocessor data motion on SIMD machines� In Frontiers �
��The Third Sym�
posium on the Frontiers of Massively Parallel Computation� College Park� University
of Maryland� October ����� �����


��Charles Koelbel and Piyush Mehrotra� Supporting shared data structures and dis	
tributed memory architectures� In Proc� of the �nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming� pages �������� March �����


��Jingke Li and Marina Chen� Index domain alignment� Minimizing cost of cross	
referencing between distributed arrays� In Frontiers �
�� The Third Symposium on the
Frontiers of Massively Parallel Computation� pages �
������ College Park� University
of Maryland� October ����� �����


���Piyush Mehrotra and John Van Rosendale� The BLAZE language� A parallel language
for scienti�c programming� Parallel Computing� ���������� November �����


���Prentice Hall� Englewood Cli�s� New Jersey� INMOS Limited� Occam Programming
Manual� �����


�
�Michael Philippsen� Automatic data distribution for nearest neighbor networks� In
Frontiers �
��The Fourth Symposium on the Frontiers of Massively Parallel Compu�
tation� pages �������� Mc Lean� Virginia� October ���
�� ���
�


���Michael Philippsen and Walter F� Tichy� Modula	
� and its compilation� In First
International Conference of the Austrian Center for Parallel Computation� Salzburg�
Austria� �

�� pages �������� Springer Verlag� Lecture Notes in Computer Science
���� ���
�


���MasPar Computer Corporation� MasPar Parallel Application Language 	MPL� Ref�
erence Manual� September �����


���Markus U� Mock� Alignment in Modula	
�� Master s thesis� University of Karlsruhe�
Department of Informatics� December ���
�


���J� Ramanujam and P� Sadayappan� Access based data decomposition for distributed
memory machines� In Proc� of the �th Distributed Memory Computing Conference�
pages �������� Portland� Oregon� April 
� � May �� �����


���Walter F� Tichy and Christian G� Herter� Modula	
�� An extension of Modula	

for highly parallel� portable programs� Technical Report No� �!��� University of
Karlsruhe� Department of Informatics� January �����


