Verification of a GF(2™) Multiplier-Circuit
for Digital Signal Processing*

Dirk W. Hoffmann, Thomas Kropf

Universitat Karlsruhe
Institut fiir Rechnerstrukturen und Fehlertoleranz
Prof. Dr.-Ing. D. Schmid
76128 Karlsruhe, Germany
hoff@ira.uka.de kropf@ira.uka.de
http://goethe.ira.uka.de/hvg

Abstract

Hard-wired solutions for Finite Field Arithmetic have become increas-
ingly important in recent years and are mostly part of domain specific
Digital Signal Processors (DSPs). We have specified and verified a real-
life example of an array-type multiplier for Finite Field multiplication in
GF(2™) [1]. The multiplier has been specified in higher-order logic and
correctness has been proven using the HOL98 theorem prover. Since our
model is generic, the correctness results hold for arbitrary scaled circuits.

1 Introduction

Finite Field Arithmetic has various applications in telecommunication, i.e, cod-
ing theory and cryptography. In the past, different approaches for performing
multiplication in Finite Fields have been presented [7, 4, 8], mostly based on
sequential algorithms (shift-register type multipliers). Since the application
domain for Finite Field Arithmetic is steadily increasing, “hard-wired”, non-
sequential solutions have been proposed. Most of them are realized in form of
domain specific Digital Signal Processors (DSPs). Due to their lack in speed,
sequential algorithms are not well suited for DSP integration where efficiency
is by far the most important issue. Since it has become possible to integrate
large circuits on a single chip without having an explosion in production costs,
hard-wired non-sequential algorithms become more and more important.

In [1], a DSP multiplier unit has been proposed based on a two dimensional
array structure. The circuit is user programmable and can therefore be applied
to a much broader range of applications at the same time. This is in contrast
to shift-register type multipliers that can only perform multiplications based on
a fixed primitive irreducible polynomial (see Section 2).

“This work is supported by the ESPRIT LTR Project 26241

In this paper, we have completely specified the multiplier-circuit as de-
scribed in [1] using higher-order logic. The circuit description is generic and
the proved theorems hold for multipliers of arbitrary size. All proofs have been
derived using the HOL theorem prover [3]. While constructing the proofs, we
have discovered an error in the circuit architecture. The error was due to a
missing gate in the layout for a single multiplier-cell (Fig. 3 in [1]).

Our paper is organized as follows: In Section 2, we give a brief introduction
to Finite Field Theory, Section 3 presents the multiplier architecture and Sec-
tion 4 describes how verification has been performed. We close our paper with
a summary in Section 5 and some remarks about further research.

2 Finite Field Theory

Every field containing a finite number of elements is called a Finite Field or
Galois Field. Let F denote an arbitrary Finite Field. It can be shown that

[Fl=p" (1)

holds for some prime number p and integer m,m > 1. Moreover, given any
prime p and integer m,m > 1, there exists a Finite Field with exactly p™
elements.

Two Finite Fields F and G with |F| = |G| can always proven to be isomor-
phic. Thus, we define GF(p™) to be the Finite Field with p™ elements.

If m =1, GF(p™) is isomorphic to ({1,...,p},d,®) with

a®b= (a+b) modp (2)
a®b= (a-b) modp (3)
However, for m > 2, the set {1,...,p™} does no longer form a field with stan-

dard addition and multiplication modulo p™. In particular, the multiplicative
group of GF(p™) turns out to become slightly harder to characterize.
It can be shown [5] that GF(p™) is an extension field of GF(p) and

GF(p™) = GF(p)l«]/f (4)
where f € GF(p)[z] is a primitive irreducible polynomial of the form
flz) =™+ fruo12™ 4+ .+ fiz + fo (5)

Thus, GF(p™) is isomorphic to the set of polynomials over GF'(p) reduced mod-
ulo f. Addition and multiplication are the standard operators for polynomials.

Moreover, it turns out that every root a of f has the property that it
generates GF(p™). Thus, every element of GF(p™) can be represented as a
power of a. Using the fact that f(a) =0, we get

A" = (—fr1)™ (= f)a+ (—fo) (6)

Therefore, we can represent every element of GF(p™) with a polynomial in «
having a degree less than m. Successively applying equation (6) to a polynomial

of degree greater or equal m finally yields in a polynomial of degree less than
m which is element of GF(p™). In other words, equation (6) can be exploited
to perform modulo computation.

For the rest of this paper, we restrict ourselves to Galois Fields GF(2™)
(extension fields of GF(2)) which are mostly used in digital systems.

Let

o = aytaa+...+a,_1a™"

b = by+bia+...+by_ 1™t
denote two elements of GF'(2"). Then, we get

m—1 m—1
a+b= Zaiai—i— Zbiozi (7)
=0 =0

m—1 m—1
Z a; + b;) Z (a; XOR b;)a (8)
=0 1=0
Hence, addition in GF'(2™) is equivalent to component-wise application of the
XOR-operation and can be implemented by a chain of independent XOR-gates.
In the more complicated case of multiplication, we get

m—1 m—1
a-b= (a- Z biai> mod f = Z ((a-bi)ai) mod f (9)
i=0 1=0

=(((a-bp_1)amod f+a-by 2)amod f+...)amod f+a-by (10)

In (10), multiplication in GF(2") has been reduced to a formula only involving
multiplication of a polynomial with «, multiplication with a scalar value, and
modulo computation.

Multiplication with « is just a left shift and scalar multiplication with v €
GF(2) can be computed as follows:

m—1 m—1 m—1
a-vz(Zaio/)v:Z(ai-v)ai:Z(ai/\v)ai (11)
i=0 i=0 i=0
According to (11), scalar multiplication is nothing else than component-wise
conjunction with v and can be performed with a chain of independent AND-
gates.

A closer look to equation (10) also shows that the involved modulo-operation
is only applied to polynomials with degree less or equal m. In the former case,
the polynomial is already reduced. If the degree equals m, we can perform
modulo computation according to equation (6) as shown below:

m—1) m—1) m—1)
(am + Z am/) mod f = Z fic + Z a;o (12)
i=0 i=0 i=0

m—1 m—1
Z (fU + az Z fU XOR az (13)
=0

=0
Again, modulo computation of polynomials of degree m can be achieved by
simply adding the minimal irreducible polynomial f.
For a more detailed introduction to Finite Field Arithmetic, see [5] or [2].

3 Circuit Architecture

The circuit architecture presented in [1] can be viewed as a straightforward
realization of the theoretical results presented in Section 2. The circuit is shown
in Figure 1.

a al a0
f
hb
B N A A O
T T T
AT A
== =
NRVAIENVEIVa e
P /oi
STT=TT= =TT e
L S
»i i» """ E »E E b0
/7 ,",ff,;/_,ff,_,ff ,,,,,, }/,_f:ff,_,f, AN
cl c0

Figure 1: Architecture of the array multiplier

The multiplier consists of input vectors a, f, hb, b, and output vector ¢ which
contains the computed result. a and b store the operands to be multiplied while
the rightmost cell in a contains coefficient a¢ and the uppermost cell of b contains
bm—1. f contains the coefficients of the primitive irreducible polynomial and hb
is functioning as a highest-bit-locator. If f has degree m, hb is true in column
m and false everywhere else. Finally, vector ¢ returns the coefficients of the
product a - b.

The main component of the multiplier is the two dimensional cell-array

in the middle of Fig. 1. Each cell has five input wires a, b, d, hb, yi, and
two output wires yo and c¢. Fig. 2 shows the architecture of a single cell in
more detail. The two XOR-gates and the AND-gate in the lower right corner
perform component-wise multiplication and addition, respectively. The gates in
the upper left corner form an overflow detector and determine when the modulo
operation has to be applied. Once an overflow has been detected, the output
yo propagates the signal through all other cells in the same row.

Yo

yi

c

Figure 2: A single multiplier cell

4 Specification and Verification

In this section, we first describe how the circuit proposed in Section 3 has been
specified in higher-order logic. Then, we formulate the specification stating the
behavioral correctness of the circuit and briefly explain how correctness has
been proven using the HOL9Y8 theorem prover.

4.1 Implementation Description

In HOL, we represent elements of GF(2) by variables of type bool while ele-
ments of GF(2™) are modeled with type num->bool. The circuit is described in
a modular way (see Fig. 3) according to the architecture definition in Section
3.

We define three predicates

e CELL,

e ROW, and

I
|
|
|
:
ARRAY |
|
|
|
I
|

Figure 3: Hierarchy of the array multiplier

e ARRAY

stating the relationship between input and output values of the specific com-
ponent.

4.1.1 Cell:
The CELL-predicate is defined as follows:

CELL (a:bool) (b:bool) (d:bool) (f : bool) (hb : bool)
(yi:bool) (yo:bool) (c:bool)
= 7s1 s2 83 s4 s5 s6.(
(AND_GATE hb d s1) /\
(OR_GATE yi s1 yo) /\
(AND_GATE a b s2) /\
(XOR_GATE s2 d s3) /\
(AND_GATE £ yo s4) /\
(XOR_GATE s3 s4 s5) /\
(NOT_GATE hb s6) /\
(AND_GATE s6 s5 c¢)
)

The definition exactly mirrors the circuit layout given in Fig. 2. The existen-
tially quantified variables s1 to s6 represent intermediate signals connecting
the different gates. The predicates NOT_GATE, AND_GATE, OR_GATE, XOR_GATE
are defined as usual, e.g., XOR_GATE is defined as

(XOR_GATE X Y Z) = (Z= X /\ "Y) \/ "X /\ Y))

4.1.2 Row:

The ROW-predicate characterizes one single horizontal chain of cells and states
the relationship between coefficient vectors a, d, f, hb, ¢ and single coefficient
b;:

ROW (a:num->bool) (b: bool) (d:num->bool) (f:num->bool)
(hb:num->bool) (c:num->bool)
= 7(y:num->bool). ! (n:num).
(CELL (a n) b (d n) (f n) (hb n) (y (SUC n)) (y n) (c n))

The existentially quantified variable y represents the intermediate signals
connecting output yo of cell n + 1 with input yi of cell n.

4.1.3 Array:

The ARRAY-predicate represents the whole multiplier array according to Fig. 1:

(array 0 a b f hb ¢
= ROW a (b 0) (An.F) f hb c) /\

(array (SUC n) a b f hb ¢
= ?7(c2:num->bool) (c3:num->bool).
(array n a b £ hb c2) /\
(LEFT_SHIFT c2 c3) /\
(ROW a (b (SUC n)) c3 f hb c))

ARRAY is recursively defined with recursion variable n measuring the number
of rows in the circuit. The base case n = 0 corresponds to a multiplier array
containing one single row of cells. Predicate LEFT_SHIFT is used to specify the
connecting wires between outputs of row n and inputs of row n + 1.

4.2 Specification Description

To specify the correct behavior of the multiplier circuit, we define four functions

GFadd : (num->bool)->(num->bool)->(num->bool)
GFscalar_mult : (num->bool)->bool->(num->bool)
GFmultX : (num->bool)->(num->bool)

GFmodf : (num->bool) (num->bool) (num)

performing addition, multiplication with scalar values, multiplication with «,
and modulo computation, respectively. Function GFmodf takes an additional
variable of type num containing the degree of f. All function definitions are
fairly straightforward and based on the derived equations in Section 2. For ex-
ample, addition in GF(2™) corresponds to a bitwise XOR-operation according
to equation (8). In HOL, we define

val GFadd = new_definition
("GFadd",
--‘GFadd (X:num->bool) (Y:num->bool)
= \(mm). ((Xn) /A " m) \/ C&n) /A X n))--);

Multiplication with a scalar value, multiplication with x, and modulo compu-
tation are expressed similarly.
The main theorem we want to prove about the multiplier is

Theorem 1
Let ¢™ denote the output of row number m, m > 0. Then,

" =((((a-bp-1)amod f+a- byp_o)amod f+...)a mod f+a-by (14)

In terms of HOL-logic, the right side of formula (14) can be expressed re-
cursively as shown below:

(GFproduct 0
(a:num->bool) (b:num->bool) (f:num->bool) (m:num)
= (GFscalar_mult a (b 0))) /\

(GFproduct (SUC n)
(a:num->bool) (b:num->bool) (f:num->bool) (m:num)
= (GFadd (GFmodf (GFmultX (GFproduct n a b f m)) f m)
(GFscalar_mult a (b (SUC n)))))

Hence, theorem 1 can be stated as
In abf hbm ASS ==> array n a b f hb (GFproduct n a b f m)

where ASS is a list of assumptions we have to make about the input vectors a,
f, and hb. More precisely, for computations in GF(2™), we need to postulate
the following assumptions:

e the highest coeflicient of f is m
e hb, equals 1 if and only if n =m
e a,=0forn>m

Using HOL, the assumptions are written as

(fm=T) /\

('n. ((@ >m) ==> (fn=F))/\
(hbm=T) /\

('In. n >m==> (hbn =F)) /\
(In. n <m ==> (hb n = F)) /\
(am=F) /\

(In. n >m==>(am=F))

Theorem 1 can be proven by induction on parameter n. We get two major
subgoals:

'a b f hb m. ASS ==> array O a b £ hb (GFproduct 0 a b f m)

and

('a b f hbm. ASS ==> array n a b £ hb (GFproduct n a b f m))
==> (la b f hb m. ASS ==
array (SUC n) a b £ hb (GFproduct (SUC n) a b f m))

For both the base case and the induction step, we make use of an interme-
diate lemma about the ROW-predicate:

Lemma 2
For each row with inputs a, f,hb € GF(2™), b € GF(2) and output ¢,

c=(d mod f)+a-b (15)
Lemma 2 is equivalent to the following HOL theorem:

'labdf hb m. ASS ==
ROW a b d f hb (GFadd (GFmodf d f m) (GFscalar_mult a b))

The proof of lemma 2 mainly consists of term rewrites and two user guided
case splits. At the end, most subgoals are statements about the CELL predicate
that can be solved automatically by applying a user defined HOL tactic.

While working on the proofs, we have captured an error in the circuit design
due a missing NOT-gate in the cell-layout®.

If we have a closer look at the assumption list, we note that (a m) is as-
sumed to store F. In theory, for computations in GF(2™), only the coefficients
ap to a;m,—1 have to be taken into account since a is considered to be a reduced
polynomial. However, given the cell-layout in Fig. 2, the contents of a,, influ-
ences the computed result and the assumption (a m = F) is indispensable for
the correct circuit behavior. Otherwise, theorem 1 does no longer hold.

An important property of our specification is its generic nature. The circuit
has been specified for arbitrary size, i.e., even for infinite input vectors a.

We have made the observation that the unconstraint size of the array has
considerably simplified the proof instead of making it more complicated. Similar
experiences with other theorem provers have been reported in [6].

5 Summary

In this paper, we have formally specified and proven a real-life DSP multiplier
circuit presented in [1] performing multiplication in Finite Fields GF(2™). Un-
like conventional shift-register type multipliers the circuit is user programmable
and well suited for DSP integration due to its very high efficiency.

The circuit has been specified in higher-order logic using the HOL98 theorem
prover. While proving the behavioral correctness, we have captured a missing
gate in the circuit architecture.

Our specification is generic and the correctness results hold for multipliers
of arbitrary size.

Although a lot of subgoals can be proven automatically because of their
propositional nature, a fairly high amount of user guidance is still needed.
The PROSPER project? aims on the integration of different proof tools in a
higher-order logic environment to achieve a higher degree of automation. The

'Fig. 2 already shows the fixed cell architecture with the missing NOT-gate added
http://www.dcs.gla.ac.uk/prosper/

multiplier circuit has been chosen to serve as one of the benchmark examples
for PROSPER to evaluate its practical strength.

Furthermore, we plan to apply our verification approach to more com-

plex circuits for Finite Field Arithmetic like inversion, division, or GCD-
computation.

References

[1]

[2]
[3]
[4]
[5]

[6]

(8]

Wolfram Drescher and Gerhard Fettweis. VLSI architectures for multiplication in
GF(2™) for application tailored digital signal processors. In Workshop on VLSI
Signal Processing IX, San Francisco / CA, 1996.

R.J. Mc Eliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, Boston, MA, 1987.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving En-
vironment for Higher Order Logic. Cambridge University Press, 1993.

S. Lin and D.J. Costello, Jr. Error Control Coding: Fundamentals and Applications.
Prentice Hall, 1983.

J. Lipson, editor. Flements of Algebra and Algebraic Computing. The Ben-
jamin/Cummings Publishing Company, Inc., 1981.

J.S. Moore. Ongoing commercial applications of the ACL2 theorem prover. In
Alan J. Hu and Moshe Y. Vardi, editors, Proceedings of the 10th International
Conference on Computer-Aided Verification (CAV ’98), volume 1427 of Lecture
Notes in Computer Scienc, pages 357-368. Springer-Verlag, August 1998.

C.C. Wang, T.K. Troung, H.M. Shao, L.J. Deutsch, and I.S.Reed. VLSI architec-
tures for computing multiplications and inverses in GF(2™). IEEE Transactions
on Computers, c-34:709-717, August 1985.

C.S. Yeh, I.S. Reed, and T.K. Troung. Systolic multipliers for finite fields GF'(2™).
IEEFE Transactions on Computers, c-33:pp. 357-360, April 1984.

10

A

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

Appendix: HOL Proof-Script

Verification of an multiplier-circuit
for finite fields GF(2°m)

Dirk Hoffmann

Institut fuer Rechnerentwurf und Fehlertoleranz
Universitaet Karlsruhe

hoff@ira.uka.de

http://goethe.ira.uka.de/hvg

31.7.98

requires HOL98

app load ["decisionLib","tautLib"];

open decisionLib;
open tautLib;

val num_Axiom = prim_recTheory.num_Axiom;
val INDUCT_TAC = INDUCT_THEN numTheory.INDUCTION ASSUME_TAC;

new_theory "GFmult";

(*
(*
(*

Circuit description

val NOT_GATE = new_definition

("NOT_GATE",
——“(NOT_GATE X Y) = (Y = “X)‘—-);

val AND_GATE = new_definition

("AND_GATE",

—‘(AND_GATE X Y Z) = (Z =X /\ Y)‘--);

val OR_GATE = new_definition

("OR_GATE",

——(OR_GATE X Y Z) = (Z =X \/ Y)‘--);

val XOR_GATE = new_definition

("XOR_GATE",

11

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

——“(XOR_GATE X Y 2) = (Z = (X /\ "Y) \/ ("X /\ Y))‘—-);

val LEFT_SHIFT = new_definition
("LEFT_SHIFT",
--¢(LEFT_SHIFT (X:num->bool) (Y:num->bool)) =
In. ((YO=F) /\ (Y (SUCn) =Xn))--);

val CELL = new_definition
("CELL",
--‘CELL (a:bool) (b:bool) (d:bool) (f : bool)
(hb : bool) (yi:bool) (yo:bool) (c:bool)

= (?s1 s2 s3 s4 sb s6.((AND_GATE hb 4 s1) /\
(OR_GATE yi sl yo) /\
(AND_GATE a b s2) /\
(XOR_GATE s2 d s3) /\
(AND_GATE f yo s4) /\
(XOR_GATE s3 s4 sb) /\
(NOT_GATE hb s6) /\
(AND_GATE s6 s5 ¢))) ‘--);

val ROW = new_definition
("ROW",
--‘ROW (a:num->bool) (b: bool) (d:num->bool)
(f :num->bool) (hb:num->bool) (c:num->bool)
= 7(y:num->bool). !(n:num).
(CELL (a n) b (d n) (£ n) (hb n) (y (SUC n))
(y n) (c n))‘--);

val array = new_recursive_definition

{name="array",

fixity=Prefix,

rec_axiom= num_Axiom,

def =

--‘(array O a b f hb ¢ = ROW a (b 0) (\n.F) £ hb c) /\

(array (SUC n) a b f hb ¢
= ?7(c2:num->bool) (c3:num->bool).

(array n a b f hb c2) /\
(LEFT_SHIFT c2 c3) /\
(ROW a (b (SUC n)) c3 f hb ¢)) ‘—-};

(¢ ———— *)
(* Specification *)
(¢ ———— *)
(*x ARITHMETTIC FUNCTIONS *)

12

(* Addition in GF(2°n) = component-wise XOR *)

val GFadd = new_definition
("GFadd",
--‘GFadd (X:num->bool) (Y:num->bool)
= \(@:mum). (((Xn) /\ “(Y n)) \/ ("X n) /\ (Y n)))‘--);

(* Scalar multiplication in GF(2°n) = component-wise AND *)

val GFscalar_mult = new_definition
("GFscalar_mult",
--‘GFscalar_mult (X:num->bool) (scalar : bool)
= \(n:num). ((X n) /\ scalar)‘--);

(* Multiplication with ’x’ = left shift *)

val GFmultX = new_definition
("GFmultX",
--‘GFmultX (A:num->bool)
= \(n:num). (n =0) =>F | (A (PRE n))‘—);

val GFmodf = new_definition
("GFmodf",
—--‘GFmodf (X:num->bool) (f:num->bool) (degree_f :num)
= ((X degree_f) => (GFadd X £f) | X)‘--);

val GFproduct = new_recursive_definition
{name="GFproduct",
fixity = Prefix,
rec_axiom=num_Axiom,
def = --‘(GFproduct O (a:num->bool) (b:num->bool)
(f :num->bool) (m:num)
= (GFscalar_mult a (b 0))) /\
(GFproduct (SUC n) (a:num->bool) (b:num->bool)
(f :num->bool) (m:num)
= (GFadd (GFmodf (GFmultX (GFproduct n a b f m)) f m)
(GFscalar_mult a (b (SUC n)))))‘—-};

(k - ———————————-— - ——-———————— —————- -, -, -, .—,——- —-—- - —-——_—- —-—-,—_———_ ——_ —— —— *)
(*x ASSUMPTIONS *)
(k - ———————————.— . ——_——————— — —————- .- .-, -, . ., - -, ——-—_——- —-—-,—_——_—_ ——_ — —— *)
val asm = ——‘(f m = T) /\

(In. ((n>m)==>(fn=F)) /\

13

(hbm =T) /\
(In. n >m==> (hb n
('n. n <m==> (hb n
(am=F) /\

('n.. n>m==>(an=F))" —;

F)) /\
F)) /\

(¢ ————

(* THEOREMS

(¢ ————

val mod0 = prove(--‘!f m. (GFmodf (\n.F) fm = (\n.F))‘--,
REWRITE_TAC [GFmodf]) ;

val add0 = prove(--°!(x:num->bool). (GFadd (\n.F) x = x) ‘-,

STRIP_TAC
THEN REWRITE_TAC[GFadd,
(ETA_CONV(Term ‘\n.(x:num->bool) n‘))]);

val LEFT_SHIFT_lemma =
let
val stdrw = DECIDE (--‘(!n. (PRE (SUC n) = n)) /\
(In. (((SUC n) =0) =F))‘--);
in
prove (--‘!(X:num->bool). LEFT_SHIFT X (GFmultX X) ‘--,
REWRITE_TAC[LEFT_SHIFT,GFmultX]
THEN BETA_TAC
THEN REWRITE_TAC [stdrw])
end;

fun MY_SPLIT_TAC cond =
let
val cond_thm = DECIDE cond;
in
(ASSUME_TAC cond_thm)
THEN UNDISCH_TAC cond
THEN STRIP_TAC
end;

fun CELL_TAC a b d f hb yi =
let
val XOR = new_definition
("XOR", ——‘X0R a b = (a /\ "b) \/ ("a /\ b)‘--);
in

REWRITE_TAC[CELL]
THEN EXISTS_TAC (Term ‘"hb /\ ~df)

14

THEN
THEN
THEN
THEN

THEN

THEN

THEN
end;

val ROW_1
let
val
val
val
val
val
val

val

val

val

val

val

in

EXISTS_TAC (Term ‘"a /\ “b‘)

EXISTS_TAC (Term ‘XOR ("a /\ "b) ~df)

EXISTS_TAC (Term ‘"f /\ ("yi \/ (°d /\ "hb))*)
EXISTS_TAC (Term ‘XOR (XOR ("a /\ “b) ~d)

(£ /\ CCyi \/ ("d /\ "hb)))*)

REWRITE_TAC[XOR,NOT_GATE,AND_GATE,XOR_GATE,OR_GATE]

(@>m) =>F | (dm))‘—;

[=]

EXISTS_TAC (Term ‘~("hb)‘)
TAUT_TAC
emma =
t = —=f‘T‘--;
f ——‘F‘——;
b = --‘b:bool‘--;
a_n = --‘(a:num->bool)
f_n = --‘(f:num->bool)
d_n = --‘(d:num->bool)
witness = —-‘\(n:num).
numl = prove (--‘!n m.
DECIDE_TAC);
num2 = prove (--‘!n m.
DECIDE_TAC);
num3 = prove (--‘!n m.
DECIDE_TAC);
std_rw = prove (--‘(SUC
(n >
(n <

store_thm ("ROW_lemma",

-—‘labd f hb m.

(REPEAT
THEN
THEN
THEN
THEN

THEN

THEN
THEN

STRIP_
REWRIT
EXISTS
STRIP_
(MY_SP

(GFadd (GFmodf

TAC
E_TAC[ROW]
_TAC witness
TAC

LIT_TAC

(“asm ==> ROW

d

=}

(Term ‘(n =m) \/ (n <

(MY_SP

LIT_TAC

m==> ((SUCn >m) =F) —,
m==> ((n>m) =F)—,

m ==> ((SUC n) > m)‘--,

A\

n="T) /\
F) /\
F) ‘——,DECIDE_TAC) ;

bdf hb
m) (GFscalar_mult a b)))‘--,

m) \/ (n > m°))

(Term ‘(d (m:num) = T) \/ (d (m:num) = F)*))
ASM_REWRITE_TAC[std_rw,GFmodf,GFscalar_mult,GFadd]

BETA_T

AC

15

THEN ASM_REWRITE_TAC[std_rw]

THEN ASSUME_TAC numl

THEN ASSUME_TAC num2

THEN ASSUME_TAC num3

THEN RES_TAC

THEN ASM_REWRITE_TAC[]

THENL [(CELL_TAC f bt t t f),
(CELL_TAC f b f t t f),
(CELL_TAC anbdnfnft),
(CELL_TAC a_n bd.n f_n f £),
(CELL_TAC f bd.n f f f),
(CELL_TAC f bd_n f f £)1))

end;

val MAIN_THM =
let
val ROW_lem_specl = PURE_REWRITE_RULE [modO,addO]
(SPECL [(Term ‘a:num->boolf),
(Term ‘ ((b:num->bool) 0)°),
(Term ‘\(n:num).F¢),
(Term ‘f:num->bool‘),
(Term ‘hb:num->bool‘),
(Term ‘m:num‘)]
ROW_lemma) ;
val ROW_lem_spec2 = SPECL [(Term ‘a:num->bool‘),
(Term ¢ ((b:num->bool) (SUC n))*¢),
(Term ‘¢ (GFmultX
(GFproduct n a b £ m)) ‘),
(Term ‘f:num->boolf),
(Term ‘hb:num->bool‘),
(Term ‘m:num®)]
ROW_lemma;

val witnessl
val witness2

--‘GFproduct n a b £f m‘-—;
--‘GFmultX (GFproduct n a b f m)‘--;

in
store_thm("MAIN_THM",
-—‘!n a b f hb m.
"asm ==> array n a b £ hb (GFproduct n a b £ m)‘--,

INDUCT_TAC
THEN REPEAT STRIP_TAC
THEN REWRITE_TAC[array,GFproduct]
THENL [(ASSUME_TAC ROW_lem_specl)
THEN RES_TAC,
(EXISTS_TAC witnessl)

16

THEN (EXISTS_TAC witness2)
THEN REPEAT STRIP_TAC]
THENL [RES_TAC,
(ASSUME_TAC LEFT_SHIFT_lemma),
ASSUME_TAC ROW_lem_spec?2
THEN RES_TAC]
THEN ASM_REWRITE_TAC[])
end;

print_theory ();
export_theory ();

17

