
Veri�cation of a GF ��m� Multiplier�Circuit

for Digital Signal Processing�

Dirk W� Ho�mann� Thomas Kropf

Universit�at Karlsruhe

Institut f�ur Rechnerstrukturen und Fehlertoleranz

Prof� Dr��Ing� D� Schmid

��	
� Karlsruhe� Germany

hoff�ira�uka�de kropf�ira�uka�de
http���goethe�ira�uka�de�hvg

Abstract

Hard�wired solutions for Finite Field Arithmetic have become increas�
ingly important in recent years and are mostly part of domain speci�c
Digital Signal Processors �DSPs�� We have speci�ed and veri�ed a real�
life example of an array�type multiplier for Finite Field multiplication in
GF ��m� �	
� The multiplier has been speci�ed in higher�order logic and
correctness has been proven using the HOL�� theorem prover� Since our
model is generic
 the correctness results hold for arbitrary scaled circuits�

� Introduction

Finite Field Arithmetic has various applications in telecommunication� i�e� cod�
ing theory and cryptography� In the past� di�erent approaches for performing
multiplication in Finite Fields have been presented ��� �� 	
� mostly based on
sequential algorithms �shift�register type multipliers�� Since the application
domain for Finite Field Arithmetic is steadily increasing�
hard�wired�� non�
sequential solutions have been proposed� Most of them are realized in form of
domain speci�c Digital Signal Processors �DSPs�� Due to their lack in speed�
sequential algorithms are not well suited for DSP integration where e�ciency
is by far the most important issue� Since it has become possible to integrate
large circuits on a single chip without having an explosion in production costs�
hard�wired non�sequential algorithms become more and more important�

In ��
� a DSP multiplier unit has been proposed based on a two dimensional
array structure� The circuit is user programmable and can therefore be applied
to a much broader range of applications at the same time� This is in contrast
to shift�register type multipliers that can only perform multiplications based on
a �xed primitive irreducible polynomial �see Section ���

�This work is supported by the ESPRIT LTR Project �����

�

In this paper� we have completely speci�ed the multiplier�circuit as de�
scribed in ��
 using higher�order logic� The circuit description is generic and
the proved theorems hold for multipliers of arbitrary size� All proofs have been
derived using the HOL theorem prover ��
� While constructing the proofs� we
have discovered an error in the circuit architecture� The error was due to a
missing gate in the layout for a single multiplier�cell �Fig� � in ��
��

Our paper is organized as follows� In Section �� we give a brief introduction
to Finite Field Theory� Section � presents the multiplier architecture and Sec�
tion � describes how veri�cation has been performed� We close our paper with
a summary in Section � and some remarks about further research�

� Finite Field Theory

Every �eld containing a �nite number of elements is called a Finite Field or
Galois Field� Let F denote an arbitrary Finite Field� It can be shown that

jFj � pm ���

holds for some prime number p and integer m�m � �� Moreover� given any
prime p and integer m�m � �� there exists a Finite Field with exactly pm

elements�
Two Finite Fields F and G with jFj � jGj can always proven to be isomor�

phic� Thus� we de�ne GF �pm� to be the Finite Field with pm elements�
If m � �� GF �pm� is isomorphic to �f�� � � � � pg����� with

a� b � �a� b� mod p ���

a� b � �a � b� mod p ���

However� for m � �� the set f�� � � � � pmg does no longer form a �eld with stan�
dard addition and multiplication modulo pm� In particular� the multiplicative
group of GF �pm� turns out to become slightly harder to characterize�

It can be shown ��
 that GF �pm� is an extension �eld of GF �p� and

GF �pm� �� GF �p��x
�f ���

where f � GF �p��x
 is a primitive irreducible polynomial of the form

f�x� � xm � fm��x
m�� � � � � � f�x� f� ���

Thus� GF �pm� is isomorphic to the set of polynomials over GF �p� reduced mod�
ulo f � Addition and multiplication are the standard operators for polynomials�

Moreover� it turns out that every root � of f has the property that it
generates GF �pm�� Thus� every element of GF �pm� can be represented as a
power of �� Using the fact that f��� � �� we get

�m � ��fm����
m�� � � � �� ��f���� ��f�� ���

Therefore� we can represent every element of GF �pm� with a polynomial in �
having a degree less thanm� Successively applying equation ��� to a polynomial

�

of degree greater or equal m �nally yields in a polynomial of degree less than
m which is element of GF �pm�� In other words� equation ��� can be exploited
to perform modulo computation�

For the rest of this paper� we restrict ourselves to Galois Fields GF ��m�
�extension �elds of GF ���� which are mostly used in digital systems�

Let

a � a� � a��� � � �� am���
m��

b � b� � b��� � � �� bm���
m��

denote two elements of GF ��m�� Then� we get

a� b �
m��X
i��

ai�
i �

m��X
i��

bi�
i ���

�
m��X
i��

�ai � bi��
i �

m��X
i��

�ai XOR bi��
i �	�

Hence� addition in GF ��m� is equivalent to component�wise application of the
XOR�operation and can be implemented by a chain of independent XOR�gates�

In the more complicated case of multiplication� we get

a � b �

�
a �

m��X
i��

bi�
i

�
mod f �

m��X
i��

�
�a � bi��

i
�
mod f ���

� ���a � bm���� mod f � a � bm���� mod f � � � ��� mod f � a � b� ����

In ����� multiplication in GF ��m� has been reduced to a formula only involving
multiplication of a polynomial with �� multiplication with a scalar value� and
modulo computation�

Multiplication with � is just a left shift and scalar multiplication with v �
GF ��� can be computed as follows�

a � v �

�
m��X
i��

ai�
i

�
v �

m��X
i��

�ai � v��
i �

m��X
i��

�ai 	 v��i ����

According to ����� scalar multiplication is nothing else than component�wise
conjunction with v and can be performed with a chain of independent AND�
gates�

A closer look to equation ���� also shows that the involved modulo�operation
is only applied to polynomials with degree less or equal m� In the former case�
the polynomial is already reduced� If the degree equals m� we can perform
modulo computation according to equation ��� as shown below��

�m �
m��X
i��

ai�
i

�
mod f �

m��X
i��

fi�
i �

m��X
i��

ai�
i ����

�
m��X
i��

�f� � ai��
i �

m��X
i��

�f� XOR ai��
i ����

Again� modulo computation of polynomials of degree m can be achieved by
simply adding the minimal irreducible polynomial f �

For a more detailed introduction to Finite Field Arithmetic� see ��
 or ��
�

�

� Circuit Architecture

The circuit architecture presented in ��
 can be viewed as a straightforward
realization of the theoretical results presented in Section �� The circuit is shown
in Figure ��

c0

b

hb

f

a

0

0

0

0

a0

b0

b1

a1...

...

c1

Figure �� Architecture of the array multiplier

The multiplier consists of input vectors a� f � hb� b� and output vector c which
contains the computed result� a and b store the operands to be multiplied while
the rightmost cell in a contains coe�cient a� and the uppermost cell of b contains
bm��� f contains the coe�cients of the primitive irreducible polynomial and hb
is functioning as a highest�bit�locator� If f has degree m� hb is true in column
m and false everywhere else� Finally� vector c returns the coe�cients of the
product a � b�

The main component of the multiplier is the two dimensional cell�array

�

in the middle of Fig� �� Each cell has �ve input wires a� b� d� hb� yi� and
two output wires yo and c� Fig� � shows the architecture of a single cell in
more detail� The two XOR�gates and the AND�gate in the lower right corner
perform component�wise multiplication and addition� respectively� The gates in
the upper left corner form an over�ow detector and determine when the modulo
operation has to be applied� Once an over�ow has been detected� the output
yo propagates the signal through all other cells in the same row�

����

��

����

����
�� ��

��

��

�
�
�
�

c

yi yo

d afhb

Figure �� A single multiplier cell

� Speci�cation and Veri�cation

In this section� we �rst describe how the circuit proposed in Section � has been
speci�ed in higher�order logic� Then� we formulate the speci�cation stating the
behavioral correctness of the circuit and brie�y explain how correctness has
been proven using the HOL�	 theorem prover�

��� Implementation Description

In HOL� we represent elements of GF ��� by variables of type bool while ele�
ments of GF ��m� are modeled with type num��bool� The circuit is described in
a modular way �see Fig� �� according to the architecture de�nition in Section
��

We de�ne three predicates

 CELL�

 ROW� and

�

ARRAY

CELLROW

Figure �� Hierarchy of the array multiplier

 ARRAY

stating the relationship between input and output values of the speci�c com�
ponent�

����� Cell�

The CELL�predicate is de�ned as follows�

CELL �a�bool� �b�bool� �d�bool� �f � bool� �hb � bool�

�yi�bool� �yo�bool� �c�bool�

� �s	 s
 s� s� s
 s���

�AND�GATE hb d s	� ��

�OR�GATE yi s	 yo� ��

�AND�GATE a b s
� ��

�XOR�GATE s
 d s�� ��

�AND�GATE f yo s�� ��

�XOR�GATE s� s� s
� ��

�NOT�GATE hb s�� ��

�AND�GATE s� s
 c�

�

The de�nition exactly mirrors the circuit layout given in Fig� �� The existen�
tially quanti�ed variables s	 to s� represent intermediate signals connecting
the di�erent gates� The predicates NOT�GATE� AND�GATE� OR�GATE� XOR�GATE
are de�ned as usual� e�g�� XOR�GATE is de�ned as

�XOR�GATE X Y Z� � �Z � �X �� �Y� �� ��X �� Y��

����� Row�

The ROW�predicate characterizes one single horizontal chain of cells and states
the relationship between coe�cient vectors a� d� f � hb� c and single coe�cient
bi�

�

ROW �a�num��bool� �b� bool� �d�num��bool� �f�num��bool�

�hb�num��bool� �c�num��bool�

� ��y�num��bool�� ��n�num��

�CELL �a n� b �d n� �f n� �hb n� �y �SUC n�� �y n� �c n��

The existentially quanti�ed variable y represents the intermediate signals
connecting output yo of cell n� � with input yi of cell n�

����� Array�

The ARRAY�predicate represents the whole multiplier array according to Fig� ��

�array � a b f hb c

� ROW a �b �� ��n�F� f hb c� ��

�array �SUC n� a b f hb c

� ��c
�num��bool� �c��num��bool��

�array n a b f hb c
� ��

�LEFT�SHIFT c
 c�� ��

�ROW a �b �SUC n�� c� f hb c��

ARRAY is recursively de�ned with recursion variable n measuring the number
of rows in the circuit� The base case n � � corresponds to a multiplier array
containing one single row of cells� Predicate LEFT�SHIFT is used to specify the
connecting wires between outputs of row n and inputs of row n� ��

��� Speci�cation Description

To specify the correct behavior of the multiplier circuit� we de�ne four functions

GFadd � �num��bool����num��bool����num��bool�

GFscalar�mult � �num��bool���bool���num��bool�

GFmultX � �num��bool����num��bool�

GFmodf � �num��bool� �num��bool� �num�

performing addition� multiplication with scalar values� multiplication with ��
and modulo computation� respectively� Function GFmodf takes an additional
variable of type num containing the degree of f � All function de�nitions are
fairly straightforward and based on the derived equations in Section �� For ex�
ample� addition in GF ��m� corresponds to a bitwise XOR�operation according
to equation �	�� In HOL� we de�ne

val GFadd � new�definition

��GFadd��

���GFadd �X�num��bool� �Y�num��bool�

� ��n�num�� ���X n� �� ��Y n�� �� ���X n� �� �Y n��������

Multiplication with a scalar value� multiplication with x� and modulo compu�
tation are expressed similarly�

The main theorem we want to prove about the multiplier is

�

Theorem �

Let cm denote the output of row number m� m � �� Then�

cm � ����a � bm���� mod f � a � bm���� mod f � � � ��� mod f � a � b� ����

In terms of HOL�logic� the right side of formula ���� can be expressed re�
cursively as shown below�

�GFproduct �

�a�num��bool� �b�num��bool� �f�num��bool� �m�num�

� �GFscalar�mult a �b ���� ��

�GFproduct �SUC n�

�a�num��bool� �b�num��bool� �f�num��bool� �m�num�

� �GFadd �GFmodf �GFmultX �GFproduct n a b f m�� f m�

�GFscalar�mult a �b �SUC n�����

Hence� theorem � can be stated as

�n a b f hb m� ASS ��� array n a b f hb �GFproduct n a b f m�

where ASS is a list of assumptions we have to make about the input vectors a�
f � and hb� More precisely� for computations in GF ��m�� we need to postulate
the following assumptions�

 the highest coe�cient of f is m

 hbn equals � if and only if n � m

 an � � for n � m

Using HOL� the assumptions are written as

�f m � T� ��

��n� � �n � m� ��� �f n � F��� ��

�hb m � T� ��

��n� n � m ��� �hb n � F�� ��

��n� n � m ��� �hb n � F�� ��

�a m � F� ��

��n� n � m ��� �a m � F��

Theorem � can be proven by induction on parameter n� We get two major
subgoals�

�a b f hb m� ASS ��� array � a b f hb �GFproduct � a b f m�

and

��a b f hb m� ASS ��� array n a b f hb �GFproduct n a b f m��

��� ��a b f hb m� ASS ���

array �SUC n� a b f hb �GFproduct �SUC n� a b f m��

	

For both the base case and the induction step� we make use of an interme�
diate lemma about the ROW�predicate�

Lemma �

For each row with inputs a� f� hb � GF ��m�� b � GF ��� and output c�

c � �d mod f� � a � b ����

Lemma � is equivalent to the following HOL theorem�

�a b d f hb m� ASS ���

ROW a b d f hb �GFadd �GFmodf d f m� �GFscalar�mult a b��

The proof of lemma � mainly consists of term rewrites and two user guided
case splits� At the end� most subgoals are statements about the CELL predicate
that can be solved automatically by applying a user de�ned HOL tactic�

While working on the proofs� we have captured an error in the circuit design
due a missing NOT�gate in the cell�layout��

If we have a closer look at the assumption list� we note that �a m� is as�
sumed to store F� In theory� for computations in GF ��m�� only the coe�cients
a� to am�� have to be taken into account since a is considered to be a reduced
polynomial� However� given the cell�layout in Fig� �� the contents of am in�u�
ences the computed result and the assumption �a m � F� is indispensable for
the correct circuit behavior� Otherwise� theorem � does no longer hold�

An important property of our speci�cation is its generic nature� The circuit
has been speci�ed for arbitrary size� i�e�� even for in�nite input vectors a�

We have made the observation that the unconstraint size of the array has
considerably simpli�ed the proof instead of making it more complicated� Similar
experiences with other theorem provers have been reported in ��
�

� Summary

In this paper� we have formally speci�ed and proven a real�life DSP multiplier
circuit presented in ��
 performing multiplication in Finite Fields GF ��m�� Un�
like conventional shift�register type multipliers the circuit is user programmable
and well suited for DSP integration due to its very high e�ciency�

The circuit has been speci�ed in higher�order logic using the HOL�	 theorem
prover� While proving the behavioral correctness� we have captured a missing
gate in the circuit architecture�

Our speci�cation is generic and the correctness results hold for multipliers
of arbitrary size�

Although a lot of subgoals can be proven automatically because of their
propositional nature� a fairly high amount of user guidance is still needed�
The PROSPER project� aims on the integration of di�erent proof tools in a
higher�order logic environment to achieve a higher degree of automation� The

�Fig� � already shows the �xed cell architecture with the missing NOT�gate added
�http	

www�dcs�gla�ac�uk
prosper

�

multiplier circuit has been chosen to serve as one of the benchmark examples
for PROSPER to evaluate its practical strength�

Furthermore� we plan to apply our veri�cation approach to more com�
plex circuits for Finite Field Arithmetic like inversion� division� or GCD�
computation�

References

�	
 Wolfram Drescher and Gerhard Fettweis� VLSI architectures for multiplication in
GF ��m� for application tailored digital signal processors� In Workshop on VLSI
Signal Processing IX� San Francisco � CA
 	����

��
 R�J� Mc Eliece� Finite Fields for Computer Scientists and Engineers� Kluwer
Academic Publishers
 Boston
 MA
 	����

��
 M�J�C� Gordon and T�F� Melham� Introduction to HOL� A Theorem Proving En�
vironment for Higher Order Logic� Cambridge University Press
 	����

��
 S� Lin and D�J� Costello
 Jr� Error Control Coding� Fundamentals and Applications�
Prentice Hall
 	����

��
 J� Lipson
 editor� Elements of Algebra and Algebraic Computing� The Ben�
jamin�Cummings Publishing Company
 Inc�
 	��	�

��
 J�S� Moore� Ongoing commercial applications of the ACL� theorem prover� In
Alan J� Hu and Moshe Y� Vardi
 editors
 Proceedings of the ��th International
Conference on Computer�Aided Veri�cation 	CAV
��

 volume 	��� of Lecture
Notes in Computer Scienc
 pages �������� Springer�Verlag
 August 	����

��
 C�C� Wang
 T�K� Troung
 H�M� Shao
 L�J� Deutsch
 and I�S�Reed� VLSI architec�
tures for computing multiplications and inverses in GF ��m�� IEEE Transactions
on Computers
 c���������	�
 August 	����

��
 C�S� Yeh
 I�S� Reed
 and T�K� Troung� Systolic multipliers for �nite �elds GF ��m��
IEEE Transactions on Computers
 c����pp� �������
 April 	����

��

A Appendix� HOL Proof�Script

�� �� ��

�� Verification of an multiplier�circuit ��

�� for finite fields GF�
�m� ��

�� ��

�� Dirk Hoffmann ��

�� Institut fuer Rechnerentwurf und Fehlertoleranz ��

�� Universitaet Karlsruhe ��

�� hoff�ira�uka�de ��

�� http���goethe�ira�uka�de�hvg ��

�� ��

�� �	���� ��

�� ��

�� requires HOL� ��

�� �� ��

app load !�decisionLib���tautLib�"�

open decisionLib�

open tautLib�

val num�Axiom � prim�recTheory�num�Axiom�

val INDUCT�TAC � INDUCT�THEN numTheory�INDUCTION ASSUME�TAC�

new�theory �GFmult��

�� �� ��

�� Circuit description ��

�� �� ��

val NOT�GATE � new�definition

��NOT�GATE��

����NOT�GATE X Y� � �Y � �X������

val AND�GATE � new�definition

��AND�GATE��

����AND�GATE X Y Z� � �Z � X �� Y������

val OR�GATE � new�definition

��OR�GATE��

����OR�GATE X Y Z� � �Z � X �� Y������

val XOR�GATE � new�definition

��XOR�GATE��

��

����XOR�GATE X Y Z� � �Z � �X �� �Y� �� ��X �� Y�������

val LEFT�SHIFT � new�definition

��LEFT�SHIFT��

����LEFT�SHIFT �X�num��bool� �Y�num��bool�� �

�n� ��Y � � F� �� �Y �SUC n� � X n�������

val CELL � new�definition

��CELL��

���CELL �a�bool� �b�bool� �d�bool� �f � bool�

�hb � bool� �yi�bool� �yo�bool� �c�bool�

� ��s	 s
 s� s� s
 s����AND�GATE hb d s	� ��

�OR�GATE yi s	 yo� ��

�AND�GATE a b s
� ��

�XOR�GATE s
 d s�� ��

�AND�GATE f yo s�� ��

�XOR�GATE s� s� s
� ��

�NOT�GATE hb s�� ��

�AND�GATE s� s
 c��������

val ROW � new�definition

��ROW��

���ROW �a�num��bool� �b� bool� �d�num��bool�

�f�num��bool� �hb�num��bool� �c�num��bool�

� ��y�num��bool�� ��n�num��

�CELL �a n� b �d n� �f n� �hb n� �y �SUC n��

�y n� �c n�������

val array � new�recursive�definition

#name��array��

fixity�Prefix�

rec�axiom� num�Axiom�

def �

����array � a b f hb c � ROW a �b �� ��n�F� f hb c� ��

�array �SUC n� a b f hb c

� ��c
�num��bool� �c��num��bool��

�array n a b f hb c
� ��

�LEFT�SHIFT c
 c�� ��

�ROW a �b �SUC n�� c� f hb c�����$�

�� �� ��

�� Specification ��

�� �� ��

�� A R I T H M E T I C F U N C T I O N S ��

��

�� Addition in GF�
�n� � component�wise XOR ��

val GFadd � new�definition

��GFadd��

���GFadd �X�num��bool� �Y�num��bool�

� ��n�num�� ���X n� �� ��Y n�� �� ���X n� �� �Y n��������

�� Scalar multiplication in GF�
�n� � component�wise AND ��

val GFscalar�mult � new�definition

��GFscalar�mult��

���GFscalar�mult �X�num��bool� �scalar � bool�

� ��n�num�� ��X n� �� scalar������

�� Multiplication with %x% � left shift ��

val GFmultX � new�definition

��GFmultX��

���GFmultX �A�num��bool�

� ��n�num�� �n � �� �� F & �A �PRE n�������

val GFmodf � new�definition

��GFmodf��

���GFmodf �X�num��bool� �f�num��bool� �degree�f�num�

� ��X degree�f� �� �GFadd X f� & X������

val GFproduct � new�recursive�definition

#name��GFproduct��

fixity � Prefix�

rec�axiom�num�Axiom�

def � ����GFproduct � �a�num��bool� �b�num��bool�

�f�num��bool� �m�num�

� �GFscalar�mult a �b ���� ��

�GFproduct �SUC n� �a�num��bool� �b�num��bool�

�f�num��bool� �m�num�

� �GFadd �GFmodf �GFmultX �GFproduct n a b f m�� f m�

�GFscalar�mult a �b �SUC n��������$�

�� �� ��

�� A S S U M P T I O N S ��

�� �� ��

val asm � ����f m � T� ��

��n� � �n � m� ��� �f n � F��� ��

��

�hb m � T� ��

��n� n � m ��� �hb n � F�� ��

��n� n � m ��� �hb n � F�� ��

�a m � F� ��

��n� n � m ��� �a n � F������

�� �� ��

�� T H E O R E M S ��

�� �� ��

val mod� � prove�����f m� �GFmodf ��n�F� f m � ��n�F������

REWRITE�TAC!GFmodf"��

val add� � prove������x�num��bool�� �GFadd ��n�F� x � x�����

STRIP�TAC

THEN REWRITE�TAC!GFadd�

�ETA�CONV�Term ��n��x�num��bool� n���"��

val LEFT�SHIFT�lemma �

let

val stdrw � DECIDE ������n� �PRE �SUC n� � n�� ��

��n� ���SUC n� � �� � F�������

in

prove ������X�num��bool�� LEFT�SHIFT X �GFmultX X�����

REWRITE�TAC!LEFT�SHIFT�GFmultX"

THEN BETA�TAC

THEN REWRITE�TAC !stdrw"�

end�

fun MY�SPLIT�TAC cond �

let

val cond�thm � DECIDE cond�

in

�ASSUME�TAC cond�thm�

THEN UNDISCH�TAC cond

THEN STRIP�TAC

end�

fun CELL�TAC a b d f hb yi �

let

val XOR � new�definition

��XOR�� ���XOR a b � �a �� �b� �� ��a �� b������

in

REWRITE�TAC!CELL"

THEN EXISTS�TAC �Term ��hb �� �d��

��

THEN EXISTS�TAC �Term ��a �� �b��

THEN EXISTS�TAC �Term �XOR ��a �� �b� �d��

THEN EXISTS�TAC �Term ��f �� ��yi �� ��d �� �hb����

THEN EXISTS�TAC �Term �XOR �XOR ��a �� �b� �d�

��f �� ��yi �� ��d �� �hb�����

THEN EXISTS�TAC �Term ����hb���

THEN REWRITE�TAC!XOR�NOT�GATE�AND�GATE�XOR�GATE�OR�GATE"

THEN TAUT�TAC

end�

val ROW�lemma �

let

val t � ���T����

val f � ���F����

val b � ���b�bool����

val a�n � ����a�num��bool� n����

val f�n � ����f�num��bool� n����

val d�n � ����d�num��bool� n����

val witness � �����n�num�� ��n � m� �� F & �d m������

val num	 � prove �����n m� n � m ��� ��SUC n � m� � F�����

DECIDE�TAC��

val num
 � prove �����n m� n � m ��� ��n � m� � F�����

DECIDE�TAC��

val num� � prove �����n m� n � m ��� ��SUC n� � m�����

DECIDE�TAC��

val std�rw � prove �����SUC n � n � T� ��

�n � n � F� ��

�n � n � F�����DECIDE�TAC��

in

store�thm ��ROW�lemma��

����a b d f hb m� ��asm ��� ROW a b d f hb

�GFadd �GFmodf d f m� �GFscalar�mult a b�������

�REPEAT STRIP�TAC

THEN REWRITE�TAC!ROW"

THEN EXISTS�TAC witness

THEN STRIP�TAC

THEN �MY�SPLIT�TAC

�Term ��n � m� �� �n � m� �� �n � m����

THEN �MY�SPLIT�TAC

�Term ��d �m�num� � T� �� �d �m�num� � F����

THEN ASM�REWRITE�TAC!std�rw�GFmodf�GFscalar�mult�GFadd"

THEN BETA�TAC

��

THEN ASM�REWRITE�TAC!std�rw"

THEN ASSUME�TAC num	

THEN ASSUME�TAC num

THEN ASSUME�TAC num�

THEN RES�TAC

THEN ASM�REWRITE�TAC!"

THENL !�CELL�TAC f b t t t f��

�CELL�TAC f b f t t f��

�CELL�TAC a�n b d�n f�n f t��

�CELL�TAC a�n b d�n f�n f f��

�CELL�TAC f b d�n f f f��

�CELL�TAC f b d�n f f f�"��

end�

val MAIN�THM �

let

val ROW�lem�spec	 � PURE�REWRITE�RULE !mod��add�"

�SPECL !�Term �a�num��bool���

�Term ���b�num��bool� �����

�Term ���n�num��F���

�Term �f�num��bool���

�Term �hb�num��bool���

�Term �m�num��"

ROW�lemma��

val ROW�lem�spec
 � SPECL !�Term �a�num��bool���

�Term ���b�num��bool� �SUC n�����

�Term ��GFmultX

�GFproduct n a b f m�����

�Term �f�num��bool���

�Term �hb�num��bool���

�Term �m�num��"

ROW�lemma�

val witness	 � ���GFproduct n a b f m����

val witness
 � ���GFmultX �GFproduct n a b f m�����

in

store�thm��MAIN�THM��

����n a b f hb m�

�asm ��� array n a b f hb �GFproduct n a b f m�����

INDUCT�TAC

THEN REPEAT STRIP�TAC

THEN REWRITE�TAC!array�GFproduct"

THENL !�ASSUME�TAC ROW�lem�spec	�

THEN RES�TAC�

�EXISTS�TAC witness	�

��

THEN �EXISTS�TAC witness
�

THEN REPEAT STRIP�TAC"

THENL !RES�TAC�

�ASSUME�TAC LEFT�SHIFT�lemma��

ASSUME�TAC ROW�lem�spec

THEN RES�TAC"

THEN ASM�REWRITE�TAC!"�

end�

print�theory ���

export�theory ���

��

