
A Motivating Example Problem for

Teaching Adaptive Systems Design

Lutz Prechelt (prechelt@ira.uka.de)
Institut f�ur Programmstrukturen und Datenorganisation
Universit�at Karlsruhe, D-76128 Karlsruhe, Germany
Phone: ++49/721/608-4068, Fax: ++49/721/694092

Abstract

There are some general lessons to be learned about

the design of adaptive systems and the best method

to learn them is an appropriate exercise. This paper

lists these lessons, discusses why it is di�cult to

use examples from real applications for the exercise,

and suggests a game to be used as an alternative

example problem.

1 Adaptive Systems

The term adaptive system is being used in various

areas of computer science for quite a while now and

adaptivity has been considered to be one of the most

important properties for information systems of the

future. Adaptive systems are roughly de�ned to

be \systems that react sensibly even in situations

not foreseen by their designers". Of course we are

not satis�ed if such behavior is purely accidental

| we want to design adaptive systems. Incorpo-

rating this aspect into the de�nition above shows

that the de�nition is highly problematic, because

then it reads: \Adaptive systems are systems that

are designed to react sensibly even in situations not

foreseen by their designers", which is almost self-

contradictory. Weaker de�nitions do not help: The

de�nition \An adaptive system can react sensibly

to a set of situations not explicitly considered com-

pletely during the design of the system" allows any

heuristic algorithm to qualify as an adaptive system.

However, although good de�nitions are di�cult, a

computer scientist has an intuitive notion of what

should be called an adaptive system and what is

just an algorithm containing an IF. We thus do not

want to participate in the debate about the proper

de�nition of this term, nor in the debate whether it

is justi�ed to use it in contexts such as connectionist

systems. Instead, this paper contributes an exam-

ple that is useful in teaching the explicit design of

adaptive systems.

Terminology: In the following we will talk about

(adaptive) systems (i.e., programs) that interact

with environments (i.e., parts of the world outside

the programs but relevant to them) in order to im-

plement applications (i.e., useful information sys-

tems).

The questions of concern for teaching are

1. How can students develop a notion of what an

adaptive system is ?

2. How can we teach the design of adaptive sys-

tems ?

2 Teaching Adaptive Systems De-

sign

To answer both questions, we will �rst discuss the

general lessons to be learned by the students about

adaptive systems design, then list some of the \real"

applications of adaptive systems and their problems

for teaching, and �nally suggest a game as a good

example for teaching and exercising adaptive sys-

tems design.

The following lessons must be learned about adap-

tive systems design:

1. Before an adaptive system can be designed, the

state space and dynamics of the environment it

will be exposed to must be analyzed thoroughly.

Hasty designs will often result very weird behav-

ior.

2. It is di�cult to make an adaptive system com-

plete, i.e., surprising situations (which the sys-

tem cannot handle well) often arise in a real en-

vironment.

1



3. Once an adaptive system is created, its dynam-

ics are often di�cult to understand, i.e., the be-

havior of the adaptive system itself may also be

surprising.

4. Not only must systems react to their environ-

ment but also the environment reacts to the ac-

tions taken by the system; this complicates the

dynamics of an adaptive system.

5. In most cases there is no single best solution for

the design of an adaptive system; di�erent ap-

proaches have di�erent strengths and weakness-

es.

All of these issues can be addressed using exam-

ple tasks taken from real applications such as man-

ufacturing control, tra�c control, computer-aided

learning, intelligent cache (or stock) management,

etc. These applications, however, all exhibit one or

more of the following problems when used as exam-

ples to teach adaptive systems design

1. The application domains in themselves are quite

complex and require a lot of knowledge acquisi-

tion work on the part of the student to be un-

derstood well enough.

2. There are many channels (parameters) through

which the system to be used in
uences its en-

vironment. This makes the adaptation problem

multi-dimensional and thus very di�cult.

3. Within the bounds of the simpli�ed form of the

problem that can reasonably be expected to be

tackled in a course, real surprises in environment

behavior tend to be rare for these problems. The

environments are relatively simple and students

understand them pretty well.

4. It is often quite di�cult to evaluate how good

a particular adaptive system for some applica-

tion is. Of course there are objective functions

whose values can be recorded and compared |

but which environment situations should be se-

lected to test the system? In most cases it will be

impossible to perform a long-enough real world

test, which would be the only way to avoid this

problem.

What we need to �nd in order to teach adaptive sys-

tems design is a good example that is simple enough

to be understood and implemented in the context of

a single course, is di�cult enough to let us learn the

lessons listed above, and allows to evaluate solutions

easily.

I propose a game, called Knobeln, for this purpose.

The corresponding adaptive systems design task is

write a program that implements a successful strat-

egy for this game". Using a game has the addition-

al advantage that the evaluation takes the form of a

contest and is thus very motivating for the students.

3 The Knobeln Game

These are the rules:

1. Both players (at the same time) chose an inte-

ger number in the interval a : : :b. This selection

of two numbers is called a throw . The players

can watch each throw as it is made, i.e., they

know all numbers they and their opponent have

thrown up to the current throw.

For the following let us assume that player P

choses number p1 and player Q choses q1.

2. If p1 = q1, nobody wins a point.

3. Otherwise, the player with the higher number

wins, unless the number is more than twice as

high as that of his/her opponent. Let us assume

that p1 > q1, then P wins if p1 � 2q1 and Q wins

if p1 > 2q1.

4. A player who wins a throw with some number

n gets blog2(n)c points in this throw. The other

player gets 0 points in this throw.

Example: if P wins, he/she gets blog2(p1)c

points e.g. if p1 = 6800, player P gets 12 points.

5. A game consists of L throws.

6. Both players must throw series of non-decreasing

throws. These series must (for each player in-

dividually) have a length of at least k throws;

longer series are allowed.

Example: If P throws (p1; p2; p3; : : :) then p1 �

p2 � p3 � : : : � pk is required. After that,

pk > pk+1 is allowed. If pk > pk+1 then pk+1 �

pk+2 � : : : � pk+k is required; else there exists

some smallest number j (with j > k) for which

pj > pj+1 and then pj+1 � pj+2 � : : : � pj+k is

required. (And so on through the whole game.)

If for instance k = 3 then the sequence 1, 2, 3,

1, 4, 5, 6, 8, 2 is allowed, while 1, 2, 3, 4, 1, 2, 1

is not because the last 1 (less than 2) comes too

early.

7. The values for the parameters are: a = 1,

b = 12288, k = 8, L = 1000 (other values could

be used). This means the maximum number of

points to win in a single throw is 13.

8. The game is always played as a tournament in

which each player plays against every other. The

2



objective of the players is to get as many points

as possible. The points made by a player in all

his/her games are summed. The player with the

most points is the winner of the tournament.

The �nal rule means that there is no such notion

as \winning a particular game": A player is not

interested in how many points the opponent gets,

but only in how many own points can be achieved.

This, together with the logarithmic counting rule,

makes cooperation attractive: If I am greedy and

try to let my opponent not get many points, the

opponent may start throwing small numbers and I

cannot get many points as well; a good solution is

to arrange with my opponent so that �rst one of us

gets 13 points 8 times in a row, then the other gets

13 points 8 times in a row, and so on and on (or

some similar schedule).

The adaptation problems to solve in this game are

1. How can I arrange a cooperation with my oppo-

nent ?

2. How can I detect how my opponent tries to ar-

range a cooperation with me ?

3. How can I detect whether (or when) my oppo-

nent is non-cooperative ?

4. How can I maximize my points in the non-

cooperation case ?

Another approach would be to chose the non-

cooperation case from begin on.

Experimentation with the game showed that these

problems are not easy to solve (see below). All the

\lessons to learn" mentioned above are addressed by

this game: Quick hacks fail miserably; even sophis-

ticated programs encounter situations their design-

ers �nd surprising or react in surprising ways; since

the game is symmetric, there is heavy bidirectional

interaction between \system" (player 1) and \envi-

ronment" (player 2); �nally, since the success of a

particular strategy depends heavily on the behavior

of the other strategies in the tournament, there is

clearly no single best solution.

4 The Knobeln Contest

The Knobeln game has not yet been used in an

actual computer science course. It was, howev-

er, the subject of two small student contests here

in Karlsruhe and one larger international contest.

The latter, the First International Knobeln Contest ,

was announced in various newsgroups of the Usenet

News system and took place in May 1993. 41 teams

from 9 di�erent countries sent strategy programs

written in C by email. The actual contest was run

on local machines.

The surprise of the contest was that despite the clear

bias of the game towards cooperative approaches,

the highest-scoring strategies were all aggressive, ex-

ploitative ones. This clearly shows that the Knobeln

game, despite the simplicity of its rules, is su�cient-

ly complex in its dynamics to be challenging: It is

quite di�cult to defeat exploitative moves of the op-

ponent successfully. This is emphasized further by

the fact that aggressive strategies won although the

contest was carried out in two tournaments which

both counted for the �nal result with a one week

pause in between. During this pause, the partici-

pants could review their results from the �rst tour-

nament (delivered to them in the form of throw-by-

throw game protocols) and could modify their strat-

egy program | a possibility that about half of the

participants (the winner was not one of them) used.

The winning strategy was one that had been creat-

ed by a genetic algorithm (employing decision table

learning); a fact that opens an interesting perspec-

tive on the use of state-of-the-art computer science

techniques in the development of adaptive systems.

The software used to carry out the contest and the

strategy programs of the participants are available

for anonymous ftp from i41s10.ira.uka.de in di-

rectory /pub/knobeln (please get and read the �le

README.FIRST �rst).

5 Conclusion

A synthetic example, (here: an N-person game), can

avoid many of the problems that other examples

of adaptive systems have for normal course situa-

tions. The suggested Knobeln game features most

of the fundamental problems of adaptive systems

design, but is simple enough to be discussed and

implemented without simpli�cations or restrictions

in the context of normal computer science courses.

In addition, its game character implies direct com-

petition of various solutions, making the example

very motivating.

3


