
Flexible Dynamic Models for User Interfaces

Holger Vogelsang, Uwe Brinkschulte, Marios Siormanolakis
Institute for Microcomputers and Automation, University of Karlsruhe

Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany
E-mail: fvogelsangjbrinksjsiorg@ira.uka.de

December 11th,1996

ABSTRACT

This paper describes an approach for a platform- and implementation- independent design of user interfaces using the
UIMS idea. It is a result of a detailed examination of object-oriented techniques for program specification and implemen-
tation. This analysis leads to a description of the requirements for man-machine interaction from the software-developers
point of view. On the other hand, the final user of the whole system has a different view of this system. He needs metaphors
of his own world to fulfill his tasks. It’s the job of the user interface designer to bring these views together. The approach,
described in this paper, helps bringing both kinds of developers together, using a well defined interface with minimal com-
munication overhead.

Keywords: graphical user interface, behavior model, dynamic model, interpreter, user interface management system

1 OVERVIEW

One of the most important results in the separation of gui and application is the creation of two different working areas:
The user interface designer and the application developer. Both of them have special skills and knowledges, the commu-
nication between them is done using a well defined interface. To reach this goal, firstly, a basic system for symbolization
and manipulation of structured application defined information is used as a hardware independent platform. UIMS design
normally leads to a large communication overhead between UIMS itself and the application: A more important point in the
construction of such a system is to give the UIMS as much independence as possible. One of the best ways to solve this
problem is to allow the man machine service to handle most parts of the dialogue control itself. For this reason, we have
introduced two models in our systemFluidsto define the user interface.5 Thestatic modeldescribes the user interface struc-
ture, using the design and placement of their components.6 The idea of symbolic information visualization is consequently
used:Menusare aggregate symbols, composed of buttons, which are symbols too.Pictureas the basic class is a container
for a set of symbols without any internal relation. From this class are more specific classes derived:Menu, Mask, Table.
Additional basic classes are not necessary, because classes with other semantic likeHierarchical Graphscan be constructed
using thedynamic model. The complete static model is discussed other papers so that we put our focus on the dynamic or
behavior model.

2 REQUIREMENTS ANALYSIS

Different kinds of people have different views of an application:



Example: Embedding

Name: Input 1

1 2 3Count:

OK Abort

0.31415926
Value:

Temp.: 90 

1007550 120

Application
developer

User interface
designer End user

Communicating
objects

Tasks, Metaphors
of its own world

(Pictures, Masks, ...)

Interface

Figure 1: Views of an application

The application developers model consists of objects and relations between objects, the end user see metaphors of its
own world. Finally, the user interface designer has to bring both groups together, building the bridge between them. The
man machine service should help him to solve this task. It must be a powerful tool to map communicating application
objects and relations to user interface components. The user interface designer is a specialist concerning user guidance
questions and familiar with the applied object-oriented modeling technique. His main task is the modeling of the look
and control of the dialogues, independent of the application. The result must be a functional core service, build by an
application developer and the user interface service, build by the user interface designer. Both systems communicate and
coordinate their work to fulfill the overall requirements analysis. This approach based on the separation of application core
functionality and user interface, using the UIMS (user interface management system)22 idea. There are several publications
available, which try to solve this problem.10 Before we start to discuss out approach, we want to give a short overview over
other ideas to solve the dialogue control task.13

2.1 Application coded

This is the classical solution, which was a standard for many years in the construction of interactive applications. And it
is the commonly used approach in many commercial tools nowadays. The dialogue control is hard coded in the application,
mixed with the core function code. As a result, the dialogue control is spread over the whole application, making support
and modifications a very hard job. Microsoft Foundation Classes (MFC) uses this approach.

2.2 Schematic notations

Schematic notations are these notations, which use a graphical specification for dialogue control.



� State transition diagrams
State diagrams are a very old concept, which was applied for many different areas in computer science in the recent
years. It is used in dialogue control to specify states in user work flow and the changes between different tasks. A
state changed is initiated by user events or application interventions. The major problem of state diagrams are the
huge number of states in complex systems.

� Hierarchical state transition diagrams
Hierarchical state diagrams are the next evaluation step of simple state diagrams. The idea consist of the introduction
of hierarchical states. This makes it possible to examine only these events and states at a hierarchy level, which are
required at this level to describe the changes.

� Concurrent dialogues
The next step to reduce the number of states is the introduction of so called concurrent dialogues. In addition to
simple or hierarchical state transition diagrams, concurrent dialogues allow the specification of parallel dialogues
or parallel state changes, more than one state can be active at a given point of time. A dialogue is split into many
sub-dialogues, state changes are defined on sub-dialogues. Concurrent dialogues are a often solution for systems with
help functionality to avoid the description of state changes due to access to the help function.

� Function flow diagrams
Function flow diagrams are not often used in dialogue control specification, because one of their hardest disadvantage
is the missing of asynchronous events.

2.3 Textual notations

Simple textual notations operate without any (mostly helpful) graphical diagrams.

� Context free grammars
Context free grammars are used in dialogue control specification for many years. Especially theBackus-Naur Form
(BNF) with numerous extensions can be found in many different fields of computer science. But in the last years there
were some disadvantages of BNF for direct-manipulative systems discovered: Grammars are not easy do understand
by humans, which is a real problem for large dialogues.

� Event-based techniques
The trend in textual notations is the relinquishment of BNF to give event-based techniques the advantages due to
demands of direct-manipulative dialogues. In such models input devices generate events, which are processes in a
first-in first-out manner. The event handlers can be expressed in a high-level language or any other notation. This
technique allows the introduction of parallel dialogues, which is — considering the controllability of a dialogue —
often required. A disadvantage of event-based techniques is the nonexistence of control flow, directly visible in state
transition diagrams.

� Formal techniques, CSP
Formal techniques likeCommunicating Sequential Processes(CSP) are discussed here, because the are mainly used
to prove the correctness of a dialogue. This is not part of this paper.

2.4 Object-oriented techniques

Although object-oriented modeling techniques are used in application development for many years, there introduction
in dialogue control is relative new. In this paper we want to present one of the most important representative of this class.



� Jacob
Jacob presents a specification language for direct-manipulative user interfaces, based on an object-oriented ap-
proach.19 He treads user interfaces as a set of interacting objects, which behaviors are firstly described individually.
Objects with a similar behavior are aggregated in classes. They own a set of variables (size, position on screen,. . . )
together with methods to access and modify these variables. New classes can be derived from existing classes. Jacob
applies state transition diagrams, which access methods, to describe the behavior.

3 CONCEPTION

End users of modern systems must be able to adapt the user interface or parts of the functionality for their own re-
quirements or preferences. Some of todays applications like Microsoft Word or Borland Paradox contain an interpreted
or precompiled language to allow such adaptions. These languages are build for very special tasks like database access or
word processing. We want to present a general solution firstly for dialogue control and secondly with some extensions for
general application dependent tasks. Keeping picture 1 in mind, we have to define the visualization of application objects
first:

corresponding
Type

User interface components
1:n

Class 1

Attribute A1
Attribute A2

....
Attribute An

1:n

Application
Object

50.3

Volume

Figure 2: Visualization of application objects

But we put our focus on event handling and user interaction, as shown in picture 3. Each user event causes a state change
at least in the man-machine interface.

S1 S2

Event x

Z1 Z2

Interaction i/
Signal Event x

Application Man-Machine Service End-user

Figure 3: User interaction

Picture 4 shows the simplified system structure of the behavior model using UML notation.2



Symbol WindowInteractor
Binding Binding0...n 0...n1 1

Persistent

Event Event

Interpreter Callback
0...nuses1

Figure 4: Behavior model

The user causes events by symbol or window manipulation. If an interactor object is bound to this symbol and the
binding condition concerning the event type is true, the specified interactor is called. This function is either coded in a
Pascal-like syntax and executed by a built-in interpreter, or a precompiled callback function of the application or man-
machine service Fluids. The interpreter normally “knows” a basic set of built-functions, which are now extended by the
methods defined on the user interface components. Since every application needs some kind of communication with its
user interface, applications can register callback-methods to their own objects to allow asynchronous event notification.
These callback-methods are available in the interpreter as ordinary functions. The class-hierarchy makes a distinction
between callback- and interpreter interactors to allow an uninterpreted fast call of time-critical callbacks. Special application
functionality, which could be required for text editors, is added using this technique. Picture 5 shows the scheme:

Interpreter

Interpreter_Fluids Interpreter_Appl_1

Interpreter_Appl_2

Figure 5: Interpreter usage

The basic interpreter has only a core functionality. Derived interpreter classes add more functions for special tasks. The
user interface management service builds its own extended interpreter, while special application-dependent interpreters are
either derived from the user interface interpreter, if this functionality must be available to the end user too, or directly from
the basic interpreter. Because this work is based on the distributed environmentCORBA, callback-functions are not limited



to platform boundaries. For this reason, the interpreter is also able to call remote functions or methods, if their callbacks are
registered.

The interpreter and its Pascal-like language are not discussed in detail in this paper, because it is based on theLUA
interpreter of the theTeCGraf-Grupo de Tecnologia em Computacao Graficain Rio de Janeiro.14 This interpreter is freely
available for commercial and non-commercial applications.17 More information is also available in the LUA-manual.18

4 EXAMPLE

The largest application build with this tool is a simulator for a driverless transport system, created for a well-known
German company in the car industry. Picture 6 shows a screen-shot of this application.

Crossing

Branching

Branching

Stop point

Stop point

Stop point

Figure 6: Simulator for a driverless transport system

During normal operation, the positions of all transport units are displayed on the screen. But during the configuration of
a new plant or course, the map of this course is constructed using an interactive editor. To test and simulate the behavior of
this course together with the transport units without the need of expensive tests, a simulator is needed. This simulator tool
is based on Fluids, most of the functionality is expressed in interpreter code.

5 CONCLUSIONS

The usefulness of the above described approach was shown in some example applications at our institute. The most
important features are discussed in this section.

� Adaptable dialogue control
The dialogue control, which means the control flow and behavior of the user interface, is adaptable to user preferences



during runtime. As shown in 4, all objects of the user interface are kept persistent in a database. This offers an easy
to handle mechanism for user-dependent graphical user interfaces.

� Extensibility
LUA offers mechanisms to register callback functions and to modify or access all interpreter variables and functions.
It is created as a library, which can be accessed from the host implementation. The untyped language offers a very
flexible way to implement communication with the host language:Tables, defined as associative arrays, allow the
handling of host-specific datastructures. LUA also has built-in functions, which handle so called fallbacks. These
functions are called in special error situations (access to non-existing table indices, call to undefined functions, floating
point errors, . . . ). Fallbacks can be used to implement a kind of object-oriented extension to LUA.

� Unique interpreter
One of the most important advantages of the described approach is the availability of a unique interpreter in all kinds
of applications. The interpreters are scalable, which means, that the application can define, which functionality is
available to the end-user.

� Interpreted code
The interpreter is able process either ASCII-Strings as code or precompiled P-Code. This allows runtime modifica-
tions together with fast code execution using the built-in compiler.

6 ANNOTATION

This paper is based on research done at the Institute for Microcomputers and Automation in Karlsruhe.

7 REFERENCES

[1] Len Bass, Joelle Coutaz, “Developing Software for the User Interface”,Addison-Wesley Publishing Company, 1990

[2] Grady Booch, James Rumbaugh, “Unified Method for Object-Oriented Development”,Document Set 0.8, Rational
Software Corporation, 1995

[3] Grady Booch, Ivar Jacobson, James Rumbaugh, “The Unified Method Language for Object-Oriented Development”,
Document Set Version 0.91 Addendum UML Update, Rational Software Corporation, 1996

[4] U. Brinkschulte, M. Siormanolakis, H. Vogelsang, “Man Machine Service”,in: proceedings of the IAR-Workshop
KEOOA’95 on Knowledge Engineering and Object Oriented Automation, Strasbourg, France, 1995

[5] U. Brinkschulte, M. Siormanolakis, H. Vogelsang, “Graphical User Interfaces for Heterogeneous Distributed Sys-
tems”,in: proceedings of EI’96, San Jose, USA, 1996

[6] Uwe Brinkschulte, Marios Siormanolakis, Holger Vogelsang, “Visualization and Manipulation of Structured Informa-
tion”, in: proceedings of Visual’96, February 1996, Melbourne, Australia

[7] U. Brinkschulte, H. Vogelsang, “Eine objektorientierte Schnittstelle f¨ur ein Echtzeitprozeßdatenhaltungssystem”,in:
Proceedings of Echtzeit’96, Karlsruhe, Germany, 1996

[8] U. Brinkschulte, M. Siormanolakis, H. Vogelsang, “Graphical User Interfaces for Symbol-Oriented Database Visual-
ization and Interaction”,in: proceedings of EI’97, San Jose, USA, 1997

[9] Hans-Jörg Bullinger, Klaus-Peter F¨ahnrich, Christian Janssen, “Ein Beschreibungskonzept f¨ur Dialogabläufe bei
graphischen Benutzungsschnittstellen”,Informatik Forschung und Entwicklung 11: 84–93, Springer, 1996



[10] David T. Clarke, Geoff P. Crum, “Dialogue Specification and Control: A Review of Models and Techniques”,Infor-
mation and Software Technologie, Volume 9/36, 1994

[11] Ralf Danzer, “An Object-Oriented Architecture for User Interface Management in Distributed Applications”,Univer-
sity of Kaiserslautern, Fachbereich Informatik, 1992

[12] Rich McDaniel, Brad A. Myers, “Amulet’s Dynamic and Flexible Prototype-Instance Object and Constraint System in
C++”, Carnegie Mellon University, Human-Computer Interaction Institute Technical Report CMU-HCII-95-104, July
1995

[13] Alan Dix, “Human-computer interaction”,Prentice Hall, 1993

[14] Luiz Henrique de Figueiredo, Roberto Ierosalimschy, Waldemar Celes, “Lua: an Extensible Embedded Language”,
Dr. Dobb’s Journal, December 1996

[15] D. Galara, B. Iung, G. Morel, F. Russo, “Intelligent actuation and measurement: system based modeling in priam”,in:
proceedings of the 2nd IFAC Workshop on Computer Software Structures, August 94, Lund, Sweden

[16] Oliver Hammerschmidt, Holger Vogelsang, “Design of Distributed Real-Time Systems in Process Control Applica-
tions”, in: proceedings of I-CIMPRO’96, Eindhoven, The Netherlands, 1996

[17] Roberto Ierosalimschy, Luiz Henrique de Figueiredo, Waldemar Celes, “Lua: an extensible extension language”,
Software Practice and Experience, 19xx

[18] Roberto Ierosalimschy, Luiz Henrique de Figueiredo, Waldemar Celes, “Reference Manual of the Programming Lan-
guage Lua 2.5”, 1996

[19] R. Jacob, “A Specification Language for Direct-Manipulation User Interfaces”,ACM Transactions on Computer
Graphics, Vol. 4, No. 4, Page 283–317

[20] OMG, “IDL C++ Language Mapping Specification”,Object Management Group (OMG), Technical Paper 94-09-14,
1994

[21] OMG, “The Common Object Request Broker: Architecture and Specification — Revision 2.0”,Object Management
Group (OMG), Technical Paper 95-07-20, 1995

[22] Günther E. Pfaff (ed.), “User Interface Management Systems”,proceedings of the Workshop on User Interface Man-
agement Systems in Seeheim, Eurographics (The European Association for Computer Graphics), 1985, Seeheim, Ger-
many

[23] C. Pereira, Th. Rathke, “Objektorientierte Entwicklung von Echtzeitsystemen in der Automatisierungstechnik”,in:
proceedings of the 39th Int. Wissensch. Kolloquium, Sep. 94, Illmenau, Germany

[24] H. Vogelsang, U. Brinkschulte, M. Siormanolakis, “Flexible Dynamic Models for User Interfaces”,in: proceedings of
EI’97, San Jose, USA, 1997


