
Graph-Based System Con�guration?

Horst Moldenhauer

Universit�at Karlsruhe, Institut f�ur Programmstrukturen und Datenorganisation,

Vincenz-Prie�nitz Str. 3, 76128 Karlsruhe, Germany

molden@ipd.info.uni-karlsruhe.de

Abstract. We present an optimization problem that arises in the con-

text of system-design and the re�nement of high-level speci�cations.

We present a graph-based formalization of the problem, thus de�ning

a new optimization problem, which we call Minimum Configuration.

We proveMinimum Configuration to be NP-hard and also hard to ap-

proximate, i.e. not to be in APX. These results are obtained by reduction

from graph coloring and Shortest Path with Forbidden Pairs. We

show how to apply the introduced concepts to the application domain

and propose a way to identify subclasses in the input space, for which

Minimum Configuration can be solved e�ciently.

1 Introduction

In this paper we present an optimization problem on graphs, that has appli-
cations to software construction using preexisting building blocks. Often the
methodologies for reusing older work in software construction are based on li-
braries of building blocks and on the re�nement of some high-level speci�cation
of the system to be developed [3, 10, 12]. Re�nement of the speci�cation implies
selection of one implementation for each component of the system from a possi-
bly large number of alternatives. We call this selection process the con�guration
of the system. Our work focuses on the automation of con�guration. We base
the selection process on the concept of cost, which is a means to formalize and
rate the non-functional aspects of building blocks. While the system speci�cation
mostly de�nes the required functionality of each part of the system, handling
and optimization of many non-functional aspects is deferred to the re�nement
process. The notion of cost may be used to express a variety of non-functional
properties, e.g. runtime, resource allocation, development time or the possibility
of fault. The task of con�guration is to control the re�nement process such that
the cost of the �nal system is minimized. This minimization is not a trivial task,
because decisions for or against certain implementation alternatives may depend
on each other, that is the rate of a combination of implementations is di�erent
from the sum of the single implementation rates. Applications for system con�g-
uration include program construction using abstract data types, programming

? This work has been supported by the Deutsche Forschungsgemeinschaft under grant

GRK 209/2-96

with federated databases, program acceleration using con�gurable hardware and
the management of software development.

In the next section we de�ne the theoretical foundations of system con�g-
uration and formally de�ne Minimum Configuration. In section three and
four we prove that Minimum Configuration is NP-hard and hard to approx-
imate. In section �ve we demonstrate how to apply the introduced theoretical
concepts to the application areas mentioned above and propose a way to iden-
tify subclasses of problem instances for which Minimum Configuration can
be solved e�ciently. Section six presents some examples for the application of
con�guration. Section seven concludes.

2 Graph-Based Modelling

In this section we de�ne the theoretical foundations of con�guration. We de�ne
Minimum Configuration and introduce the notion of con�guration graph,
that is used to model the input instances.

Minimum Configuration can be informally de�ned in the following way:
Given a graph G = (V;E) with weighted edges and a partition of V into n

disjoint sets. We want to select exactly one vertex from each set of the partition,
such that the subgraph G0, induced by these vertices, has minimal weight. G0

must not include edges with in�nite weight. In the formal de�nition we follow
Crescenzi and Panconesi [5], who de�ne an NPO problem as a four-tuple F =
(IF ; SF ;mF ; optF), where IF is the space of input instances, SF is the space of
feasible solutions, mF is the objective function and optF de�nes the criterion of
optimality.

De�nition 1. Minimum Configuration:
I = fG = hV;Ei : G is a graph, P = (p1; pi; : : : ; pn) : P is a partition of V into

n disjoint sets, w : E 7! IN [f1g : w is a weight function g,
S(hV;E; P; wi) = f(v1; :::; vn) a sequence of n di�erent vertices,such that

8i : vi 2 pi ^ 8vi; vj : (vi; vj) 2 E) w(vi; vj) 6=1g,
triv(hV;E; P; wi) = V ,
m(hV;E; P; wi; (v1; : : : ; vn)) =

P

(vi; vj) 2 E
i;j2[1::n]

w(vi; vj),

opt = min.

A graph with weighted edges together with a partition of its vertices is called
a con�guration graph. Given a con�guration graph GC , a solution to Minimum

Configuration is called a con�guration for GC . We de�ne a corresponding
decision problem.

De�nition 2. A con�guration graphG is c-con�gurable i� there exists a solution
s 2 S(G), such that m(s) � c.

In the next section we prove that Minimum Configuration is NP-hard in
the general case.

2

3 Minimum Configuration is NP-Hard

For proving NP hardness of Minimum Configuration we present a reduction
from graph coloring [6].

Theorem3. Deciding c-con�gurability is NP-complete.

Proof. We prove the theorem by reduction from graph coloring.
Given a graph G = (VG; EG) and a number k, we want to decide whether G is
k-colorable or not. We construct a con�guration graph K = (VK ; EK) using the
following procedure:

Construction of K. For each vertex A 2 VG we create a set p(A) with k

vertices. Each vertex in p(A) represents a possible coloring of A. We de�ne
VK :=

S
A2VG

p(A) and regard each p(A) to be a partition of VK . Consider
vertices A and B of G and let a 2 p(A) and b 2 p(B). Let col(a) and col(b)
denote the color that is represented by a and b, respectively. If (A;B) 2 E we
add an edge (a; b) to K. The weight of (a; b) is set to c > 0 if col(a) equals col(b)
and to zero otherwise.

The construction of K can be done in polynomial time. It is easy to see that
there is a con�guration forK with a weight of zero, if and only if G is k colorable.
So, if there was an algorithm that could decide in polynomial time whether K
is (c � 1) � configurable, then we could decide in polynomial time whether G
is k-colorable or not. As deciding k-colorability is NP-complete (even for k = 3)
[6], we conclude that deciding c-con�gurability is NP-complete. ut

Corollary 4. Minimum Configuration is NP hard.

4 Minimum Configuration is Hard to Approximate

In this section we show that the con�guration problem is hard to approximate, i.e
that it is not in APX. In fact we demonstrate that a restricted version of Min-

imum Configuration is NPO PB-complete2, so it cannot be approximated
within n" for some " > 0, where n is the size of the problem instance, pro-
vided that P 6= NP . To achieve these results, we construct a reduction from
Shortest Path with Forbidden Pairs [9, 8], that preserves the value of the
objective function3. First we formally de�ne Shortest Path with Forbidden
Pairs(from [9]).

De�nition 5. Shortest Path with Forbidden Pairs:
I = fG = hV;Ei : G is a graph, s 2 V; f 2 V; P � V � V g,
S(hV;E; s; f; P i) = f(v1; :::; vk) a sequence of k di�erent vertices in V such that

2 NPO PB is the class of NPO problems, whose objective function is polynomially

bounded by the size of the input instance [9]
3 Note that this restates the fact that Minimum Configuration ist NP-hard.

3

v1 = s; vk = f;8i 2 [1::k � 1]((vi; vi+1) 2 E ^ 8j 2 [i+ 1::k](vi; vj) 62 Pg,
triv(hV;E; s; f; P i) = V ,
m(hV;E; s; f; P i; (v1; : : : ; vk)) = k � 1,
opt = min.

We now demonstrate how to map an instance of Shortest Path with Forbid-
den Pairs to an instance ofMinimum Configuration. We name this mapping
t1. Given a graph G = (Vsp; Esp), vertices S 2 Vsp, F 2 Vsp and a set of forbid-
den pairs P , we create a con�guration graph K = (Vmc; Emc) by applying the
following procedure:

Speci�cation of t1. For each vertex A in Vsp let in(A) be the number of in-
coming edges (indegree) and let out(A) be the number of outgoing edges (outde-
gree). We name the incoming edges of A Ai

in; i = 1::in(A) and the outgoing edges
Ai
out; i = 1::out(A). Note that an edge in G from some vertex A to some other

vertex B is denoted by two aliases: Ai
out and B

j
in for some i and j. For each vertex

A, except S and F , we de�ne p(A) to contain in(A)�out(A)+1 vertices that are
named aij ; i = 1::in(A); j = 1::out(A) and a00. We de�ne p(S) to contain in(S)
vertices si; i = 1::in(S) and p(F) to contain out(F) vertices fi; i = 1::out(F).
For all A 2 Vsp : p(A) is a partition of the Minimum Configuration problem
instance and we de�ne Vmc :=

S
A2Vsp

p(A).

We now de�ne when to add edges between vertices in Vmc. Let A 2 Vsp with
aij 2 p(A) and B 2 Vsp with bkl 2 p(B). If (A;B) 62 Esp, then there is no edge
between aij and bkl. If (A;B) 2 Esp we assume that it leads from A to B and
that it is the n-th outgoing edge of A and the m-th incoming edge of B. Then
there is an edge between aij and bkl with weight w, where w depends on i; j; k; l

and can be determined from Table 1.

Table 1. Weight assignment to edge (aij ; bkl)

kl = 00 k = m k 6= m

ij = 00 0 1 0

j = n 1 1 1

j 6= n 0 1 0

For each forbidden pair we add additional edges to K. Let (A;B) 2 P be a
forbidden pair. For all aij 2 p(A) and bkl 2 p(B), we add an edge with weight
w, where w depends on i; j; k; l and can be determined from Table 2.

We now de�ne the mapping t2 from solutions of Minimum Configuration

to a subset G0 of G. Remenber that a solution for Minimum Configuration

selects a vertex from each partition of Vmc. Due to the construction of K, each
partition of Vmc corresponds to a vertex in Vsp. Thus a solution for Minimum

4

Table 2. Weight assignment to edge (aij ; bkl) to express forbidden pairs

kl = 00 kl 6= 00

ij = 00 0 0

ij 6= 00 0 1

Configuration de�nes a mapping k : Vsp 7! Vmc. If k(A) = a, we say A is
instantiated to a.

Speci�cation of t2. The following statements specify t2:

{ 8A 2 Vsp n fS; Fg : k(A) = a00) A 62 G0

{ 8A 2 Vsp n fS; Fg : k(A) = aij ^ ij 6= 00) A 2 G0 ^ Ai
in 2 G0 ^ A

j
out 2 G0

{ S 2 G0 ^ F 2 G0

{ k(S) = si) Siout 2 G0

{ k(F) = fi) F i
in 2 G0

The following Lemma states that G0 is a valid solution for the original in-
stance of Shortest Path with Forbidden Pairs.

Lemma6. For all instances x of Shortest Path with Forbidden Pairs the

following holds: if y is a solution to t1(x), then t2(y) is a solution to x, such that

m(y) = m(t2(y)).

Proof. We have to show that t2 maps a valid con�guration for K to a path G0

from S to F , that respects all forbidden pairs and that the cost of the con�gu-
ration is equal to the length of that path.

The second statement in the speci�cation of t2 (see above) de�nes edges
Ai
in and A

j
out to be in G0 if k(A) = aij ; ij 6= 00. We say the instantiation of A

authorizes the edges Ai
in and Aj

out. As all edges in Vsp are named by two di�erent
aliases (see de�nition of t1) there are two vertices (the two end vertices) whose
instantiation may authorize an edge. Although from de�nition of t2 it is possible
that an edge is authorized by one of its end vertices only, the weight assignment
to the edges in the con�guration graph (Table 1) ensures, that all edges in G0

are consistently authorized by both of its end vertices. To prove this consider
an edge e = (A;B), with alisas Bm

in and An
out. If e is authorized by A or B then

it holds that k(A) = aij with j = n or k(B) = bkl with k = m. As a valid
con�guration must not include edges with in�nite weight, it follows from Table
1 that both must be true, that e is authorized by A and B. Additionally we see
that for each e in G0 there is an edge in K ((aij ; bkl) in this case) that has a
weight of 1 and that for all one-weighted edges in K there is an edge e in G0.

As all edges are authorized by both end vertices and each vertex in G0nfS; Fg

authorizes one of its incoming and one of its outgoing edges, it follows that for
each vertex A 2 G0 n fS; Fg there is exactly one edge in G0 that leads to A and
exactly one edge that leaves A. S authorizes exactly one of its outgoing and F

5

authorizes exactly one of its incoming edges. It follows that G0 is a simple path
from S to F . The one-to-one correspondence of one-weighted edges in K and
edges in G0 implies that its lenght is equal to the weight of the con�guration for
K.

It remains to show that G0 respects all forbidden pairs: G0 results from a
valid con�guration. Suppose G0 includes two vertices A and B, such that (A;B)
is a forbidden pair. Then neither a00 nor b00 is part of the con�guration. Because
of this the con�guration must include an edge with in�nite weight (see Table 2),
which is a contradiction to its validity. ut

Theorem7. 1. Minimum Configuration cannot be approximated within n"

for some " > 0, where n is the size of the problem instance, provided that

P 6= NP .

2. A restricted version of Minimum Configuration, where all non-in�nity

weights w are less than some upper bound b is NPO PB-complete.

Proof. 1. Let x be an instance of Shortest Path with Forbidden Pairs and
y = t1(x). The size of y is bounded by some polynomial in the size of x. So there
exists some c > 0 such that jyj < jxjc. As Shortest Path with Forbidden

Pairs is NPO PB-complete it cannot be approximated within jxj"1 for some
"1 > 0, if P 6= NP [9]. If we could approximate y within jyj"2 for all "2 > 0,
then we could approximate x within jxj"1 by using the linear reduction de�ned
by t1 and t2 and by approximating y within jyj"1=c.

2. The restricted version ofMinimum Configuration is included in NPO PB.
As Shortest Path with Forbidden Pairs is NPO PB-complete the NPO PB-
completeness of restrictedMinimum Configuration follows immediately from
the reduction de�ned by t1 and t2. ut

Corollary 8. Minimum Configuration is not in APX.

The corollary follows immediately from Theorem 7 and the de�nition of APX.

5 System Con�guration

In this section we show how to apply the concept of con�guration graph and
Minimum Configuration to system con�guration. Additionally we propose a
way to identify subclasses of systems, that can be con�gured e�ciently.

5.1 Construction of the Con�guration Graph

We model the system to be con�gured as a graph G = (V;E), where V is a set of
components. Components are atomic with respect to con�guration and represent
a part of the system's functionality. The edges of G represent interdependencies
between components that a�ect the con�guration of the system. We name G

the interdependency graph of the system. We do not show how to derive the
interdependency graph from the original system speci�cation, as this is beyond

6

A and B
are
inter-
depen-
dent

B

 constraints

potential implementation for Ap(A)

component A

(a) Interdependency graph (b) Configuration graph

Fig. 1. Interdependency graph and corresponding con�guration graph

the scope of this paper. For the purpose of this paper the interdependency graph
is the starting point of con�guration.

We assume that for each component A 2 V we are given a set of imple-
mentations that might substitute A during the process of re�nement. The set
of potential implementations for a component A is denoted by the function
p(A),p : V 7! IPR, that maps components of G to subsets of the universe R of
implementations. Each implementation is associated with some cost, which is
described by a function cr : R 7! IN [f1g. The employment of combinations
of implementations might be subject to additional requirements. These require-
ments are called constraints and are also associated with cost, described by a
function cc : R�R 7! IN[f1g. Given an interdependency graphGD = (VD; ED)
of a system, we construct a con�guration graph GC = (VC ; EC) in the following
way:

Construction of GC. We de�ne VC :=
S
A2VD

p(A) and regard each p(A) to
be a partition of VD . Consider vertices A and B of GD and let a 2 p(A) and
b 2 p(B). We add an edge (a; b) to GC if and only if (A;B) 2 ED. If (a; b) 2 EC

we de�ne the weight of (a; b): w(a; b) := cc(a; b). As a temporary extension to
Minimum Configuration we weight the vertices of GC with w(a) := cr(a); a 2
VC . We later show that this extension is equivalent to the original problem by
demonstrating how to transform vertex weights into edge weights.

A solution to Minimum Configuration for GC selects a vertex from each
partition of GC , thus de�ning a function k : VD 7! VC . Re�ning each component

7

A 2 VD by k(A) yields a system that is optimal with respect to the cost described
by cc and cr. Thus k de�nes the optimal con�guration for the system modelled
by GD .

Fig. 1 shows the interdependency graph of an imaginary system with four
components, each with two possible implementations, and the corresponding
con�guration graph. As can be seen in the picture, the interdependency graph
provides some sort of abstraction from the con�guration graph. The function p

maps each vertex A of GD to a partition of vertices in GC . Additionally we can
de�ne a function p0 : ED 7! IPEC ; p0((A;B)) = f(a; b)ja 2 p(A)^ b 2 p(B)g, that
maps each edge in GD to a partition of edges in GC .

Removal of vertex weights Now we refer back to the construction of the con-
�guration graph and show that the vertex weights can be transformed to edge
weights without a�ecting the result of con�guration. Let GD = (VD ; ED) be
the interdependency graph and GC = (VC ; EC) the corresponding con�guration
graph. Remember that p and p0 map vertices and edges in GD to partitions of
vertices and edges in GC (see above).

Construction of GC (continued). Consider A 2 VD and a 2 p(A) with
weight w(a) = cr(a). To transform the weight of a into edge weights we choose
exactly one edge e from the edges that are adjacent to A. We de�ne �(a) :=
f(v1; v2) 2 p0(e)jv1 = a _ v2 = ag. �(a) are the edges in p0(e) that are ad-
jacent to a. We rede�ne the weight of all edges (v1; v2) 2 �(a): w(v1; v2) :=
cc(v1; v2) + w(a) and eliminate the weight of a.

Proposition. The presented transformation of vertex weights to edge weights

does not a�ect the result of con�guration.

Proof. Given a con�guration for GC that induces a subgraph G0. The following
holds:

{ a is part of G0) exactly one edge from �(a) is part of G0

{ a is not part of G0) no edge from �(a) is part of G0

From this it follows that w(a) is added if and only if a is part of G0. So the
weight of G0 is not a�ected by the transformation. ut

5.2 Identi�cation of Subclasses of Systems

We now demonstrate, that the interdependency graph is not only the starting
point for con�guration, but also has another important property. Because of the
results of Sect. 3 and 4, we cannot expect to �nd good con�gurations (with
bounded error) for all kinds of systems in an e�cient way. The abstraction
provided by the interdepenency graph provides a means to identify subclasses
of systems for which that can be done. These subclasses will be identi�ed by
structural properties of the interdependency graph.

8

F

S

Fig. 2. Creation of a DAG from a special interdependency graph

An example of such a special subclass is the class of systems for which the in-
terdependency graph is a sequence of components, that is a tree with two leaves.
Every con�guration graph that can be derived from such a interdependency
graph is strati�ed and can easily be transformed into a topologically sorted DAG
with a single start vertex S and end vertex F (see Fig. 2). Solving Minimum

Configuration for this type of con�guration graph is equivalent to �nding
the shortest path from S to F in the corresponding DAG. This can be done in
O(jEC j) time [4].

The algorithm for �nding the shortest path in a topologically sorted DAG is
based on dynamic programming. It should also be possible to apply this prin-
ciple to solve Minimum Configuration in polynomial time for con�guration
graphs that are derived from trees in general. We are currently looking for other
properties of interdependency graphs that ensures, that for con�guration graphs,
derived from these graphs,Minimum Configuration can be solved in polyno-
mial time or can be approximated (at least) within some constant.

In the next section we present some examples for applications that bene�t
from con�guration.

6 Applications

In this section we present some applications of con�guration and explain how to
map the examples to the concepts presented in this paper. We concentrate on
examples concerning the runtime of sequential programs. Additionally we give

9

one example for applications with more complex structural interdependencies
and di�erent kinds of cost.

Programming with ADTs: Consider a program that uses several abstract data
types. We regard each use of an ADT operation and the data of the ADT as a
component of the system to be con�gured. The functionality and the semantics
of each component is fully speci�ed but the implementations can be chosen
arbitrarily in a later re�nement process. The implementations are supposed to
exist and can be selected from a given library of algorithms and data structures,
e.g. [11, 7] . It is obvious that the selection of concrete implementations for the
data structures and the operations can have a signi�cant e�ect on the runtime of
the �nal program. Independent selection of the cheapest (fastest) implementation
for each component is not a solution, because this may produce con
icts in the
re�nement of the data that is cooperatively used by di�erent operations. A very
simple example is the insertion and deletion of elements in/from a sorted set
(a priority queue). The fastest solution for the insert operation is the use of an
unsorted string of data, whereas the fastest solution for the delete operation is the
use of a sorted representation. To make the right choice it is necessary to �nd the
trade-o� between several solutions, including those that use both representations
and perform a representation change (sorting) at some places in the program.
Which of these solutions is minimal with respect to the runtime depends on the
type of operations that are to be performed, where and how often in the program
they are performed and on the initial size of the set. The use of di�erent data
representations for subsequent operations require the transformation of the data.
These transformations become the constraints between the implementations.
The cost of implementations and constraints is set to the expected runtime of
operations and transformations. The form of the resulting interdependency graph
depends on the actual program. In simple cases however, it will be a sequence
of components. In this example con�guration selects the best implementation
for each component in the system, such that the expected overall runtime is
minimized.

Other examples may be constructed just by exchanging the scenario and
what is considered the components and the constraints.

Programming with Databases: Here components are query-operations on an
(object-oriented) federated database, that are initiated by an application pro-
gram. The requirements for using a certain implementation of an operation might
be the migration of some data to the local host or the construction of a special
index structure. Construction of these data structures from the already existing
ones is mapped to constraints. Execution time is mapped to cost.

With con�guration it is possible to include knowledge of the application into
the optimization of query processing, which is not possible with just using classic
query optimization techniques.

Con�gurable Hardware: In a third example we consider con�gurable hardware,
e.g. an external FPGA board, that is used to accelerate parts of a program

10

[2, 13]. In this example we have hardware and software implementations for
each component. The time to upload the data to the external board or the time
to recon�gure the hardware is mapped to constraints.

Software Design: Our last example addresses the design process itself. The soft-
ware architecture of a system is a network of operators4, each expressing a certain
part of the system's functionality and connectors, that support cooperation of
the operators [1]. The re�nement of the architecture includes the choice between
di�erent design alternatives for the operators and the connectors. The variants
for the re�nement are typically not fully realized by existing building blocks. A
cost measure that, besides the already mentioned ones, is a target for minimiza-
tion, is the estimated development time for the system. The time to implement
di�erent parts of the system from scratch, the time to adapt preexisting building
blocks to the rest of the system and the degree of interleaving during the develop-
ment of di�erent parts of the system are mapped to cost of implementations and
constraints. Other possible measures are the use of I/O bandwith or the degree
of reliability. An especially interesting but of course very ambitious application
in this context is the handling of combinations of these cost measures.

We conclude this section with a �nal remark concerning the use of in�nite
weights. When introducing Minimum Configuration, we allowed the de�ni-
tion of in�nite weighted edges (Def. 1). In�nite weight is used to model com-
binations of implementations for di�erent components that are impossible to
construct. For the purpose of theoretical proof we excluded con�gurations with
in�nite weighted edges from the set of valid solutions, thus ensuring that the
objective function is �nite. For implementations that try to �nd a good con�g-
uration for a given system it will mostly be su�cient to replace in�nite weight
by a su�ciently large value5, such that no solution that includes impossible
combinations is stated to be the optimum unless there is no other solution.

7 Conclusion

In this paper we presented a new optimization problem, Minimum Config-

uration, that has important applications to software construction. A formal
de�nition of the problem was presented, based on the employment of graphs for
the description of the problem instance. We proved Minimum Configuration

to be NP-hard and hard to approximate by constructing reductions from graph
coloring and Shortest Path with Forbidden Pairs. We introduced the no-
tion of con�guration graph and demonstrated how to employ the new concepts
to system con�guration. A means of abstraction called interdependency graph
was de�ned. We demonstrated that this abstraction is useful for the identi-
�cation of special subclasses of systems for which con�guration can be done

4 These are usually called components. We use the term operators to avoid ambiguity.
5 This could be a multiple of the sum of all �nite weight values that have to be taken

into account during con�guration.

11

e�ciently. Examples from the application domain showed how a concrete con-
�guration problem is mapped to the concepts introduced in this paper. Being a
su�cient platform for the formal de�nition of the problem and for demonstrat-
ing the applicability we expect that the concepts introduced in this paper act as
a theoretical foundation for future work in this area.

Our future work on this problem includes the identi�cation of further classes
of systems, characterized by their interdependency graph, for which con�gura-
tion can be done e�ciently. Another important aspect is the use of functions
and vectors of di�erent measures for the description of cost, which will extend
applicability of the presented concepts.

References

1. Special Issue on Software Architecture, IEEE Transactions on Software Engineer-

ing, April 1995.

2. Peter M. Athanas and Harvey F. Silverman. Processor recon�guration through

instruction-set metamorphosis. Computer, 26(3), March 1993.

3. Gianluigi Caldiera and Victor R. Basili. Identifying and qualifying reusable soft-

ware components. Computer, February 1991.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The

MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge,

Massachusetts, 1990.

5. P. Crescenzi and A. Panconesi. Completeness in approximation classes. Informa-

tion and Computation, 93(2):241{261, 1991.

6. Simon Even. Graph Algorithms. Computer Software Engineering Series. Computer

Science Press, Rockville Maryland, 1979.

7. A. Frick, W. Zimmer, and W. Zimmermann. On the design of reliable libraries. In

TOOLS 17 { Technology of Object-Oriented Programming, pages 13{23. Prentice

Hall, 1995.

8. H.N. Gabow, S.N. Maheshwari, and L.J. Osterweil. On two problems in the gener-

ation of program test paths. IEEE Transactions on Softw. Eng., 2(3), September

1976.

9. V. Kann. Polynomially bounded minimization problems that are hard to approx-

imate. Nordic J. Comput, 1:317{331, 1994.

10. Charles W. Krueger. Software reuse. ACM Computing Surveys, 24(2), June 1992.

11. Kurt Mehlhorn and Stefan N�aher. Leda - a platform for combinatorial and geo-

metric computing. Communications of the ACM, 38(1), January 1995.

12. Ruben Prieto-Diaz and James M. Neighbors. Module interconnection languages.

Journal of Systems and Software, 6(4), November 1986.

13. Markus Weinhardt. Integer programming for partitioning in software oriented

codesign. In Field-Programmable Logic and Applications; 5th International Work-

shop, volume 975 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

This article was processed using the LATEX macro package with LLNCS style

12

