Graphical user interfaces for symbol-oriented database visualization
and interaction

Uwe Brinkschulte, Marios Siormanolakis, Holger Vogelsang

Institute for Microcomputers and Automation, University of Karlsruhe
Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany
E-mail: {brinks|sior|vogelsang}@ira.uka.de

ABSTRACT

In this approachfwo basic serviceslesigned forthe engineering of computdrased systems (ECBS) are
combined: a symbol-oriented man-machine-serndoel a highspeed database-servicEhe man-machine
service is used to builgraphical user interfacg§&UI's) for the databasservice; these interfacese stored
using the databaservice.The idea is to create @UI-builder and aGUI-manager forthe databasservice
based uporthe man-machineservice using theconcept of symbolsWith user-definableand predefined
symbols, databassontents can be visualizeshd manipulated in gery flexible andintuitive way. Using the
gui-builderand gui-manager, aser can buildndoperate itsown graphical user interfader a given database
according to its needs without writing a single line of code.

Keywords: Database Visualization, Database Interaction, Graphisal Interfaces, Services, Man-Machine-
Service, Database-Service, Symbols, GUI-Manager, GUI-Builder, Presentation Objects

1. INTRODUCTION

This research arisésom a cooperation witthe IEEE tasKorce onEngineering of Computer Based Systems
(ECBS). Onemain goal is to define standarder reusable software componentise services A service is
designed tosolve agiven problem by processing taséad results. Therefore, an open service architecture
calledOSA+ (OpenSystemArchitecture Platform withUniversalServices) was creatéd

application
services

system platform system
services

measure &
control
service

basic
services

distributed
hardware

Figure 1: OSA+ service architecture

Based upon a distributeslystem servicgthe CORBA®-oriented system platform), several platform- and
language-independent basic services have been develdped.of the most importanbnesare theman-
machine servicand thedatabase service

The man-machine servicevas presented dal'96 *. The mainidea is the introduction afymbolsas graphical
representation obbject states. Asymbol corresponds to a structurethject. State changes lead to different
visual symbol instances. Interactive symbol manipulation result in altered states.

Application Man-Machine-Service

Structured
Object

corresponds

N

sees/manipulates

state change

Simple Example: Visualization
and Manipulation of Crossroads

structured object corresponds

crossroads with traffic lights

traffic-light-north (green, yellow, red, redyBl)

traffic-light-east (green, yellow, red, redyey "

traffic-light-west (green, yellow, red, redygf) ...

traffic-light-south (green, yellow, red, redyely ...

Figure 2: Visualization and manipulation of object states using symbols

Symbolscan be created bysymbol editor All createdsymbolsare arranged anglositioned inplanes Each
plane defines anit of measuremenespectively a scale. Planasedisplayed in windowsising a usedefined
scaling. A plane can kehown in multiplewindowsusing different scales. Furthermore multiple placas be
shown in a window simultaneousiyhis allows the creation oktasy-to-usend flexible distributedgraphical
user interfaces (GUI's).

To achieve a complete separatibetween arapplicationand aGUI, all GUI-elements (windows, planes,
symbols, correspondences to structured objects) are stored in a portable database.

The database servicavas designed as ligh speed process databasgster. It provides relationabata
structures and a simple, set-oriented application program inteMage properties arbigh speeddataaccess,
soft real-time capabilities, configurabl#ata securityand platform independence. For example, ttetabase
service is used to store the GUI's created by the man-machine Service

2. CONCEPTION

In the approach presented here, the man-macemeéce is used to build symbol-orientgdaphical user
interfaces fothe databasservice. A relational database contains structolgects. Theycan be visualized by
correspondingymbols in a GUI. Sthe idea is to create @UI-builder and aGUI-manager for the database
service based upon the man-machine service using the concept of symbols.

GUI-Build er, GUI-Manager
for the Database-Service

access and
modify database access and
A 4 store
GUl-elements .
Database- Man-Machine-

Service

Service

correspond

Database to corresponding GUI's
be visualized stored in a
and manipulated 'Visualization-Database'

Figure 3: System conception

With user-definableand predefined symbols, databasentents can be visualizethd manipulated in &ery
flexible and intuitive way. Using theGUI-builder and GUI-manager, a user can build @g/n graphical user
interface for a given database according to its needs without writing a single line of code

GUI-Builder

oriented GUI for
0. a database

I creates a symbol-

Database . .
interacts with the

database using the
created GUI

GUI-Manager

Figure 4: Role of GUI-Builder and GUI-Manager

3. ARCHITECTURE

The database service provides relational data structheganeans database consists of normalized relations.
A relation is a set of tuples; each tuple has a given number of attributes. To create a graphical user interface for
such a database, the GUI-builder was designed. It consists of two pastantied-editorand theGUI-editor.

The symbol-editorhas three maitasks. Firstly, it allowshe creation obymbols to visualizand manipulate
the attributes of a database relation. For each attribstgnbolcan be either designed by the usesaected
from a set of predefinesiymbols in a symbdlbrary. Predefinegymbolsare for example slidershar graphs,
text fields, buttons, etc.

The second task of theymbol-editor is to definthe relationshipetweerthe attributevalueand the resulting
image of thesymbol. This relationship can be eith@iscrete or continuous, whetmear or logarithmic
functions areprovided. A change in the attributalue leads to a differelsymbolinstance, manipulating the
symbol causes a different attribute value.

Database D

Relation R

Attribute A | Attribute B | Attribute C
oftypea | oftypeb of type c

N\

Values Values Values

¥

Symbol
to visualize and alter values of
a given attribute and type

Predefined User-defined
Symbols Symbols

i Symbol-Editor |.||‘ |

B
b}:ﬁ:&:}d [File I[Edit I View I[Insert I[Correspl Helpl

slider text field

= | ()

button bar analog instrumen|

—
archive

Symbol Library Symbol Editor

Figure 5: Symbols and attributes

The last task of theymbol-editor is to combinthe createdymbols torelation-presentation-objectéRPO’S.
EachRPOrepresents thealues of one or more tuples of a database relati@anltbeused to showalter and

search for these tuples.

The GUI-editor is used to build graphical user interface consistingRIPO’sand otherstatic objects.Static
objectsareobjectswhich are notonnected to a database relatifum,example static text or static pictures. All
objectsare placed in planes. These planes simewn in windowsEachwindow can hold multiple planes
simultaneoushand a plane can lwsplayed with different scales in multiple window#is mechanisnoffers

resolution and hardware independent graphiceler interfaces. Each generated interface is stored in a
visualization-databaseA database to be visualized canassociated with one or more visualization-databases

containing different interfaces for different users.

Relation R

(correspond) | Symbol-Editor

Art: [ABC-123 A
\V4
Cnt: it Wiy

State

Symbols for
Attributes of R

updata
searcﬂ

(arrange)

GUI-Editor

Relation Presentation Object for R

Planes

e

Relation Presentation Objects
for Relations of Database D

GUI-Editor

(show)

Windows

El

18]

GUI for Database D

Figure 6: Creating a GUI for a database

The GUI-manager finally operates on an interface created by the gui-buildexcdésseshe database to be

visualizedand one of theassociated visualization-databases. User interactions for database navigation and

modification are handled according to the interface definitions.

4. EXAMPLE

The following simple example shows the construction of a RPO for one relation of a computer manufacturer's
storage database:

Extract of database structure:

Relation Computer Stock

Computer-Type | Productnumber State Storage-Count
enumeration type alphanummeric enumeration type integer
(labtop, tower, string[20] (ordered, ready,
tabletop) under-construction,

damaged)
tower EN-11223-A ordered 125
labtop LT-33128-Z under-construction 26

Corresponding symbol definitions:

Attribute Symbol Graphical symbol representation
Computer-Type user-defined symbol @
discrete enum([3] labtop ©
tower E

tabletop

Productnumber predefined symbol
alphatext[20] ABC
State user-defined symbol

discrete enum[4] ordered @
ready
under-const. T
damaged ‘

Storage-Count predefined symbols
slider + inttext[5] —— —
+
user-defined symbol
contineous range[3] <10 |§| (red)

10.. 100 @ (vellow)
> 100 @ (green)

Note: Asdemonstrated for the attribute ‘Storage-Count’, it is possible to assign more than
one symbol to an attribute

Figure 7 shows a GUI containing the created RPO (together with a RPO for another relation). In this example
each RPO is arranged in a separate plane; each plane is shown in a separate Wiedoain window is
generated by the GUI-manager.

:i' Database-GUI-Manager: Storage-Database I-] J[

Databasl{ Relationl Windowl [Help I

3 Computer Stock =] 5
B
Product-Number:|| T-33128-Z | g A
= v

26 |
O

T updatel AN
7

Figure 7: Example GUI

5. CONCLUSIONS

The presented approacombines twoexisting basic services itwo ways. Onthe onehand, thedatabase
service is used to stographical user interfaces created by the man-madgngce. Ornthe other hand, the
man-machineservice is used to visualize databasethefdatabasservice.This hasseveral advantages. The
symbol-oriented structure tifie man-machinservice allowghe design okasy-to-usendintuitive interfaces
for database visualizaticand interaction. Na@ode needs to beritten by the user. Storing an interface in a
visualization-database (separate from the database to be visualized) npadessbie to create many different
interfaces forthe same database. It alatbows the reuse of parts of an interfaffer examplesymbols or
relation-presentation-objects) for other databases.

6. ACKNOWLEDGEMENT

This paper is based on research done at the Institute for Microcomputers and Automation - Prof. Schweizer and
Prof. Brinkschulte

" This is not neccesarily so. Any assignment between RPO's, planes and windows can be made as shown in figure 6.

7. REFERENCES

G. Schweizer

Foundations for the ECBS Process

ECBS'96, International IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen, Germany, 1996

G. Schweizer, M. Voss
Systems Engineering and Infrastructure for Open Component Based Systems.
Eurocast 95, Computer Aided Systems Theory, Innsbruck, Austria, 1995

OMG
The Common Object Request Brocker: Architecture and Specification - Revision 2.0
Object Management Group (OMG), Technical Paper 95-07-20, 1995

U. Brinkschulte, M. Siormanolakis, H. Vogelsang

Graphical User Interfaces for Heterogeneous Distributed Systems
EI'96, International Symposium on Electronic Imaging,

Visual Data Exploration and Analysis Ill, San Jose, USA, 1996

U. Brinkschulte
MERLIN - Ein Prozel3datenhaltungssystem fir Echtzeitanwendungen.
Echtzeit 93, Karlsruhe, Germany, 1993

H. Vogelsang, U. Brinkschulte, M. Siormanolakis

Archiving System States by Persistent Objects

ECBS'96, International IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen, Germany, 1996

