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ABSTRACT

In this approachfwo basic serviceslesigned forthe engineering of computdrased systems (ECBS) are
combined: a symbol-oriented man-machine-serndoel a highspeed database-servicEhe man-machine
service is used to builgraphical user interfacg§&UI's) for the databasservice; these interfacese stored
using the databaservice.The idea is to create @UI-builder and aGUI-manager forthe databasservice
based uporthe man-machineservice using theconcept of symbolsWith user-definableand predefined
symbols, databassontents can be visualizeshd manipulated in gery flexible andintuitive way. Using the
gui-builderand gui-manager, aser can buildndoperate itsown graphical user interfader a given database
according to its needs without writing a single line of code.
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1. INTRODUCTION

This research arisésom a cooperation witthe IEEE tasKorce onEngineering of Computer Based Systems
(ECBS). Onemain goal is to define standarder reusable software componentise services A service is
designed tosolve agiven problem by processing taséad results. Therefore, an open service architecture
calledOSA+ (OpenSystemArchitecture Platform withUniversalServices) was creatéd
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Figure 1: OSA+ service architecture

Based upon a distributeslystem servicgthe CORBA®-oriented system platform), several platform- and
language-independent basic services have been develdped.of the most importanbnesare theman-
machine servicand thedatabase service



The man-machine servicevas presented dal'96 *. The mainidea is the introduction afymbolsas graphical
representation obbject states. Asymbol corresponds to a structurethject. State changes lead to different
visual symbol instances. Interactive symbol manipulation result in altered states.
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Figure 2: Visualization and manipulation of object states using symbols

Symbolscan be created bysymbol editor All createdsymbolsare arranged anglositioned inplanes Each
plane defines anit of measuremenespectively a scale. Planasedisplayed in windowsising a usedefined
scaling. A plane can kehown in multiplewindowsusing different scales. Furthermore multiple placas be
shown in a window simultaneousiyhis allows the creation oktasy-to-usend flexible distributedgraphical
user interfaces (GUI's).

To achieve a complete separatibetween arapplicationand aGUI, all GUI-elements (windows, planes,
symbols, correspondences to structured objects) are stored in a portable database.

The database servicavas designed as ligh speed process databasgster. It provides relationabata
structures and a simple, set-oriented application program inteMage properties arbigh speeddataaccess,
soft real-time capabilities, configurabl#ata securityand platform independence. For example, ttetabase
service is used to store the GUI's created by the man-machine Service



2. CONCEPTION

In the approach presented here, the man-macemeéce is used to build symbol-orientgdaphical user
interfaces fothe databasservice. A relational database contains structolgects. Theycan be visualized by
correspondingymbols in a GUI. Sthe idea is to create @UI-builder and aGUI-manager for the database
service based upon the man-machine service using the concept of symbols.
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Figure 3: System conception

With user-definableand predefined symbols, databasentents can be visualizethd manipulated in &ery
flexible and intuitive way. Using theGUI-builder and GUI-manager, a user can build @g/n graphical user
interface for a given database according to its needs without writing a single line of code
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Figure 4: Role of GUI-Builder and GUI-Manager



3. ARCHITECTURE

The database service provides relational data structheganeans database consists of normalized relations.
A relation is a set of tuples; each tuple has a given number of attributes. To create a graphical user interface for
such a database, the GUI-builder was designed. It consists of two pastantied-editorand theGUI-editor.

The symbol-editorhas three maitasks. Firstly, it allowshe creation obymbols to visualizand manipulate
the attributes of a database relation. For each attribstgnbolcan be either designed by the usesaected
from a set of predefinesiymbols in a symbdlbrary. Predefinegymbolsare for example slidershar graphs,
text fields, buttons, etc.

The second task of theymbol-editor is to definthe relationshipetweerthe attributevalueand the resulting
image of thesymbol. This relationship can be eith@iscrete or continuous, whetmear or logarithmic
functions areprovided. A change in the attributalue leads to a differelsymbolinstance, manipulating the
symbol causes a different attribute value.
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Figure 5: Symbols and attributes



The last task of theymbol-editor is to combinthe createdymbols torelation-presentation-objectéRPO’S.
EachRPOrepresents thealues of one or more tuples of a database relati@anltbeused to showalter and

search for these tuples.

The GUI-editor is used to build graphical user interface consistingRIPO’sand otherstatic objects.Static
objectsareobjectswhich are notonnected to a database relatifum,example static text or static pictures. All
objectsare placed in planes. These planes simewn in windowsEachwindow can hold multiple planes
simultaneoushand a plane can lwsplayed with different scales in multiple window#is mechanisnoffers

resolution and hardware independent graphiceler interfaces. Each generated interface is stored in a
visualization-databaseA database to be visualized canassociated with one or more visualization-databases

containing different interfaces for different users.
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Figure 6: Creating a GUI for a database

The GUI-manager finally operates on an interface created by the gui-buildexcdésseshe database to be

visualizedand one of theassociated visualization-databases. User interactions for database navigation and

modification are handled according to the interface definitions.



4. EXAMPLE

The following simple example shows the construction of a RPO for one relation of a computer manufacturer's
storage database:

Extract of database structure:

Relation Computer Stock

Computer-Type | Productnumber State Storage-Count
enumeration type alphanummeric enumeration type integer
(labtop, tower, string[20] (ordered, ready,
tabletop) under-construction,

damaged)
tower EN-11223-A ordered 125
labtop LT-33128-Z under-construction 26

Corresponding symbol definitions:

Attribute Symbol Graphical symbol representation
Computer-Type user-defined symbol @
discrete enum([3] labtop ©
tower E

tabletop

Productnumber predefined symbol
alphatext[20] ABC
State user-defined symbol

discrete enum[4] ordered @
ready
under-const. T
damaged ‘

Storage-Count predefined symbols
slider + inttext[5] —— —
+
user-defined symbol
contineous range[3] <10 |§| (red)

10.. 100 @ (vellow)
> 100 @ (green)

Note: Asdemonstrated for the attribute ‘Storage-Count’, it is possible to assign more than
one symbol to an attribute




Figure 7 shows a GUI containing the created RPO (together with a RPO for another relation). In this example
each RPO is arranged in a separate plane; each plane is shown in a separate Wiedoain window is
generated by the GUI-manager.
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Figure 7: Example GUI

5. CONCLUSIONS

The presented approacombines twoexisting basic services itwo ways. Onthe onehand, thedatabase
service is used to stographical user interfaces created by the man-madgngce. Ornthe other hand, the
man-machineservice is used to visualize databasethefdatabasservice.This hasseveral advantages. The
symbol-oriented structure tifie man-machinservice allowghe design okasy-to-usendintuitive interfaces
for database visualizaticand interaction. Na@ode needs to beritten by the user. Storing an interface in a
visualization-database (separate from the database to be visualized) npadessbie to create many different
interfaces forthe same database. It alatbows the reuse of parts of an interfaffer examplesymbols or
relation-presentation-objects) for other databases.
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" This is not neccesarily so. Any assignment between RPO's, planes and windows can be made as shown in figure 6.
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