
Graphical user interfaces for symbol-oriented database visualization
and interaction

Uwe Brinkschulte, Marios Siormanolakis, Holger Vogelsang

Institute for Microcomputers and Automation, University of Karlsruhe
Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

E-mail: {brinks|sior|vogelsang}@ira.uka.de

ABSTRACT

In this approach, two basic services designed for the engineering of computer based systems (ECBS) are
combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine
service is used to build graphical user interfaces (GUI’s) for the database service; these interfaces are stored
using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service
based upon the man-machine service using the concept of symbols. With user-definable and predefined
symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the
gui-builder and gui-manager, a user can build and operate its own graphical user interface for a given database
according to its needs without writing a single line of code.

Keywords: Database Visualization, Database Interaction, Graphical User Interfaces, Services, Man-Machine-
Service, Database-Service, Symbols, GUI-Manager, GUI-Builder, Presentation Objects

1. INTRODUCTION

This research arises from a cooperation with the IEEE task force on Engineering of Computer Based Systems
(ECBS)1. One main goal is to define standards for reusable software components, the services. A service is
designed to solve a given problem by processing tasks and results. Therefore, an open service architecture
called OSA+ (Open System Architecture - Platform with Universal Services) was created2.

m an
m ach ine
service

da tab ase
service

system pla tform

m easure &
contro l
se rvice

bas ic
services

system
services

distr ibuted
hardw are

applica tion
services

. . .

. . .

. . .

Figure 1: OSA+ service architecture

Based upon a distributed system service (the CORBA3-oriented system platform), several platform- and
language-independent basic services have been developed. Two of the most important ones are the man-
machine service and the database service.

The man-machine service was presented on EI'96 4. The main idea is the introduction of symbols as graphical
representation of object states. A symbol corresponds to a structured object. State changes lead to different
visual symbol instances. Interactive symbol manipulation result in altered states.

Structured
O bject

Symbol

App lication Man-Machine-Service

corresponds

state change

shape change

 Sha pe sees/manipulates

crossroads with traffic lights

traffic-light-north (green, yellow, red, redyel)

traffic-light-east (green, yellow, red, redyel)

traffic-light-west (green, yellow, red, redyel)

traffic-light-south (green, yellow, red, redyel)

corresponds

symbol
Simple Example: Visualization
and Manipulation of Crossroads

structured object

Figure 2: Visualization and manipulation of object states using symbols

Symbols can be created by a symbol editor. All created symbols are arranged and positioned in planes. Each
plane defines a unit of measurement respectively a scale. Planes are displayed in windows using a user defined
scaling. A plane can be shown in multiple windows using different scales. Furthermore multiple planes can be
shown in a window simultaneously. This allows the creation of easy-to-use and flexible distributed graphical
user interfaces (GUI’s).
To achieve a complete separation between an application and a GUI, all GUI-elements (windows, planes,
symbols, correspondences to structured objects) are stored in a portable database.

The database service was designed as a high speed process database system5. It provides relational data
structures and a simple, set-oriented application program interface. Main properties are high speed data access,
soft real-time capabilities, configurable data security and platform independence. For example, the database
service is used to store the GUI’s created by the man-machine service6.

2. CONCEPTION

In the approach presented here, the man-machine service is used to build symbol-oriented graphical user
interfaces for the database service. A relational database contains structured objects. They can be visualized by
corresponding symbols in a GUI. So the idea is to create a GUI-builder and a GUI-manager for the database
service based upon the man-machine service using the concept of symbols.

GUIDatabase

GUI-Build er, GUI-Manager
for the Database-Service

Man-Machine-
Service

corresponding GUI's
stored in a

'Visualization-Database'

Database to
be visualized

and manipulated

correspond

access and
store

GUI-elements

access and
modify database

Database-
Service

Figure 3: System conception

With user-definable and predefined symbols, database contents can be visualized and manipulated in a very
flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build its own graphical user
interface for a given database according to its needs without writing a single line of code

creates a symbol-
oriented GUI for
a database

interacts with the
database using the
created GUI

GUIDatabase

GUI-Builder

GUI-Manager

Figure 4: Role of GUI-Builder and GUI-Manager

3. ARCHITECTURE

The database service provides relational data structures, that means a database consists of normalized relations.
A relation is a set of tuples; each tuple has a given number of attributes. To create a graphical user interface for
such a database, the GUI-builder was designed. It consists of two parts, the symbol-editor and the GUI-editor.

The symbol-editor has three main tasks. Firstly, it allows the creation of symbols to visualize and manipulate
the attributes of a database relation. For each attribute, a symbol can be either designed by the user or selected
from a set of predefined symbols in a symbol library. Predefined symbols are for example sliders, bar graphs,
text fields, buttons, etc.
The second task of the symbol-editor is to define the relationship between the attribute value and the resulting
image of the symbol. This relationship can be either discrete or continuous, where linear or logarithmic
functions are provided. A change in the attribute value leads to a different symbol instance, manipulating the
symbol causes a different attribute value.

Attribute C
of type c

Attribute B
of type b

Attribute A
of type a

slider text field

ABC

bar analog instrument

. . .

Symbol Library Symbol Editor

archive

Symbol
 to visualize and alter values of

a given attribute and type

Predefined
Symbols

User-defined
Symbols

. . .

Database D

Relation R

Values Values Values

.

.

.

.

 abc

button

. . .

Symbol-Editor

Edit ViewFile Insert Corresp. Help

Figure 5: Symbols and attributes

The last task of the symbol-editor is to combine the created symbols to relation-presentation-objects (RPO’s).
Each RPO represents the values of one or more tuples of a database relation. It can be used to show, alter and
search for these tuples.

The GUI-editor is used to build a graphical user interface consisting of RPO’s and other static objects. Static
objects are objects, which are not connected to a database relation, for example static text or static pictures. All
objects are placed in planes. These planes are shown in windows. Each window can hold multiple planes
simultaneously and a plane can be displayed with different scales in multiple windows. This mechanism offers
resolution and hardware independent graphical user interfaces. Each generated interface is stored in a
visualization-database. A database to be visualized can be associated with one or more visualization-databases
containing different interfaces for different users.

GUI-Editor

GUI-Editor

Symbol-Editor

update

search
Symbols for
Attributes of R

Art: ABC-123

Cnt:

State

Relation R

Relation Presentation Object for R

Relation Presentation Objects
for Relations of Database D

Planes

Windows

GUI for Database D

(correspond)

(arrange)

(show)

Figure 6: Creating a GUI for a database

The GUI-manager finally operates on an interface created by the gui-builder. It accesses the database to be
visualized and one of the associated visualization-databases. User interactions for database navigation and
modification are handled according to the interface definitions.

4. EXAMPLE

The following simple example shows the construction of a RPO for one relation of a computer manufacturer's
storage database:

Extract of database structure:

Relation Computer Stock

Computer-Type Productnumber State Storage-Count

enumeration type alphanummeric enumeration type integer
(labtop, tower, string[20] (ordered, ready,
 tabletop) under-construction,
 damaged)

.

...

...

tower
labtop

EN-11223-A
LT-33128-Z

ordered
under-construction

125
26

Corresponding symbol definitions:

Attribute Symbol Graphical symbol representation

Computer-Type user-defined symbol
discrete enum[3] labtop

tower

tabletop

Productnumber predefined symbol
alphatext[20]

State user-defined symbol
discrete enum[4] ordered

ready

under-const.

damaged

Storage-Count predefined symbols
slider + inttext[5]
+
user-defined symbol
contineous range[3] < 10 (red)

10 .. 100 (yellow)

> 100 (green)

ABC

123

Note: As demonstrated for the attribute ‘Storage-Count’, it is possible to assign more than
one symbol to an attribute

Figure 7 shows a GUI containing the created RPO (together with a RPO for another relation). In this example
each RPO is arranged in a separate plane; each plane is shown in a separate window*. The main window is
generated by the GUI-manager.

update

search

Database Relation Help

26

Computer Stock

Product-Number: LT-33128-Z

Database-GUI-Manager: Storage-Database

Window

Figure 7: Example GUI

5. CONCLUSIONS

The presented approach combines two existing basic services in two ways. On the one hand, the database
service is used to store graphical user interfaces created by the man-machine service. On the other hand, the
man-machine service is used to visualize databases of the database service. This has several advantages. The
symbol-oriented structure of the man-machine service allows the design of easy-to-use and intuitive interfaces
for database visualization and interaction. No code needs to be written by the user. Storing an interface in a
visualization-database (separate from the database to be visualized) makes it possible to create many different
interfaces for the same database. It also allows the reuse of parts of an interface (for example symbols or
relation-presentation-objects) for other databases.

6. ACKNOWLEDGEMENT

This paper is based on research done at the Institute for Microcomputers and Automation - Prof. Schweizer and
Prof. Brinkschulte

* This is not neccesarily so. Any assignment between RPO's, planes and windows can be made as shown in figure 6.

7. REFERENCES

1 G. Schweizer
Foundations for the ECBS Process
ECBS'96, International IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen, Germany, 1996

2 G. Schweizer, M. Voss
Systems Engineering and Infrastructure for Open Component Based Systems.
Eurocast 95, Computer Aided Systems Theory, Innsbruck, Austria, 1995

3 OMG
The Common Object Request Brocker: Architecture and Specification - Revision 2.0
Object Management Group (OMG), Technical Paper 95-07-20, 1995

4 U. Brinkschulte, M. Siormanolakis, H. Vogelsang
Graphical User Interfaces for Heterogeneous Distributed Systems
EI'96, International Symposium on Electronic Imaging,
Visual Data Exploration and Analysis III, San Jose, USA, 1996

5 U. Brinkschulte
MERLIN - Ein Prozeßdatenhaltungssystem für Echtzeitanwendungen.
Echtzeit 93, Karlsruhe, Germany, 1993

6 H. Vogelsang, U. Brinkschulte, M. Siormanolakis
Archiving System States by Persistent Objects
ECBS'96, International IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen, Germany, 1996

