
Adaptable Dialogue Controls in User Interfaces

Holger Vogelsang

Institute for Microcomputers and Automation, University of Karlsruhe

Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

E-mail: vogelsang@ira.uka.de

Abstract

This paper describes an approach for a platform- and

implementation-independent design of user interfaces us-

ing the UIMS idea. It is a result of a detailed examina-

tion of object-oriented techniques for program specification

and implementation. This analysis leads to a description of

the requirements for human-computer interaction from the

software-developers point of view. On the other hand, the

final user of the whole system has a different view of this

system. He needs metaphors of his own world to fulfill his

tasks. It’s the job of the user interface designer to bring

these views together. The approach, described in this pa-

per, helps bringing both kinds of developers together, using

a well defined interface with minimal communication over-

head.

Keywords:graphical user interface, behavior model, dy-

namic model, interpreter, user interface management sys-

tem

1. Overview

One of the most important results in the separation of

gui and application is the creation of two different working

areas: The user interface designer and the application de-

veloper. Both of them have special skills and knowledges,

the communication between them is done using a well de-

fined interface. To bring both together, firstly, we have de-

fined a basic system for symbolization and manipulation

of structured information. This system is used as a hard-

ware independent platform [4],[5],[6]. On the other hand,

we wanted to realize the whole system as a UIMS (user in-

terface management system, [21]), which normaly leads to

a large communication overhead between UIMS itself and

the application: A solution in the construction of such a sys-

tem is to give the UIMS as much independence as possible.

One of the best ways to solve this problem is to allow the

UIMS to handle most parts of the dialogue control itself.

For this reason, we have introduced two models in our sys-

temFluids to define the user interface [5]. Thestatic model

describes the user interface structure, using the design and

placement of their components [6]. The idea of symbolic

information visualization is consequently used:Menusare

aggregate symbols, composed of buttons, which are sym-

bols too.Pictureas the basic class is a container for a set of

symbols without any internal relation. From this class are

more specific classes derived:Menu, Mask, Table. Addi-

tional basic classes are not necessary, because classes with

other semantic likeHierarchical Graphscan be constructed

using thedynamic model. The complete static model is dis-

cussed in other papers ([4],[5],[6]), so that we put our focus

on the dynamic or behavior model.



2. Requirements Analysis

Different kinds of people have different views of an ap-

plication:

Example: Embedding

Name: Input 1

1 2 3Count:

OK Abort

0.31415926
Value:

Temp.: 90 

1007550 120

Application
developer

User interface
designer End user

Communicating
objects

Tasks, Metaphors
of its own world

(Pictures, Masks, ...)

Interface

Figure 1. Views of an application

The application developers model consists of objects and

relations between objects, the end user see metaphors of its

own world. Finally, the user interface designer has to bring

both groups together, building the bridge between them.

Our system “Fluids” should help him to solve this task. It

must be a powerful tool to map communicating application

objects and relations to user interface components. The user

interface designer is a specialist concerning user guidance

questions. He is familiar with the applied object-oriented

modeling technique. His main task is the modeling of the

look and control of the dialogues, independent of the appli-

cation desgin. The result must be an user interface service,

build by the user interface designer and a functional core

service, build by an application developer. Both systems

communicate and coordinate their work to fulfill the overall

requirements analysis. This approach is based on the sep-

aration of application core functionality and user interface,

using the UIMS idea. There are several publications avail-

able, which try to solve this problem [9]. Before we start to

discuss our approach, we want to give a short overview over

other ideas to solve the dialogue control task [12].

2.1. Application coded

This is the classical solution, which was a standard for

many years in the construction of interactive applications.

And it is the commonly used approach in many commer-

cial tools nowadays. The dialogue control is hard coded in

the application, mixed with the core function code. As a

result, the dialogue control is spread over the whole appli-

cation, making support and modifications a very hard job.

Microsoft Foundation Classes (MFC) uses this approach.

2.2. Schematic notations

Schematic notations are these notations, which use a

graphical specification for dialogue control.

� State transition diagrams

State diagrams are a very old concept, which was ap-

plied for many different areas in computer science in

the recent years. It is used in dialogue control to spec-

ify states in user work flow and the changes between

different tasks. A state changed is initiated by user

events or application interventions. The major prob-

lem of state diagrams are the huge number of states in

complex systems.

� Hierarchical state transition diagrams

Hierarchical state diagrams are the next evaluation step

of simple state diagrams. The idea consist of the intro-

duction of hierarchical states. This makes it possible

to examine only these events and states at a hierarchy

level, which are required at this level to describe the

changes.



� Concurrent dialogues

The next step to reduce the number of states is the in-

troduction of so called concurrent dialogues. In addi-

tion to simple or hierarchical state transition diagrams,

concurrent dialogues allow the specification of paral-

lel dialogues or parallel state changes, more than one

state can be active at a given point of time. A dia-

logue is split into many sub-dialogues, state changes

are defined on sub-dialogues. Concurrent dialogues

are a often solution for systems with help functionality

to avoid the description of state changes due to access

to the help function.

� Function flow diagrams

Function flow diagrams are not often used in dialogue

control specification, because one of their hardest dis-

advantage is the missing of asynchronous events.

2.3. Textual notations

Simple textual notations operate without any (mostly

helpful) graphical diagrams.

� Context free grammars

Context free grammars are used in dialogue control

specification for many years. Especially theBackus-

Naur Form(BNF) with numerous extensions can be

found in many different fields of computer science.

But in the last years there were some disadvantages

of BNF for direct-manipulative systems discovered:

Grammars are not easy do understand by humans,

which is a real problem for large dialogues.

� Event-based techniques

The trend in textual notations is the relinquishment of

BNF to give event-based techniques the advantages

due to demands of direct-manipulative dialogues. In

such models input devices generate events, which are

processes in a first-in first-out manner. The event han-

dlers can be expressed in a high-level language or any

other notation. This technique allows the introduction

of parallel dialogues, which is — considering the con-

trollability of a dialogue — often required. A disad-

vantage of event-based techniques is the nonexistence

of control flow, directly visible in state transition dia-

grams.

� Formal techniques, CSP

We will not discuss any formal techniques likeCom-

municating Sequential Processes(CSP) here, because

they are mainly used to prove the correctness of a dia-

logue. This is not part of this paper.

2.4. Object-oriented techniques

Although object-oriented modeling techniques are used

in application development for many years, their introduc-

tion in dialogue control is relative new. In this paper we

want to present one of the most important representative of

this class.

� Jacob

Jacob presents a specification language for direct-

manipulative user interfaces, which is based on an

object-oriented approach [18]. He treads user inter-

faces as a set of interacting objects, which behaviors

are firstly described individually. Objects with a sim-

ilar behavior are aggregated in classes. They own a

set of variables (size, position on screen,. . . ) together

with methods to access and modify these variables.

New classes can be derived from existing classes. Ja-



cob applies state transition diagrams, which access

methods, to describe the behavior.

3. Conception

End users of modern systems must be able to adapt the

user interface or parts of the functionality for their own re-

quirements or preferences. Some of todays applications like

Microsoft Word or Borland Paradox contain an interpreted

or precompiled language to allow such adaptions. These

languages are build for very special tasks like database ac-

cess or word processing. We want to present a general solu-

tion firstly for dialogue control and secondly with some ex-

tensions for general application dependent tasks. The con-

ception consists of two steps: Firstly, we present the idea of

equal partners. This means, a core application and a user

interface application communicate using the UIMS system.

Secondly, we show the realization of the user interface ap-

plication, using the interpreted language. The overall struc-

ture looks like the diagram, shown in picture 2.

Core
Application

GUI
Application

Core
ApplicationCoordinator

VisualizationManipulation

Figure 2. System of equal partners

Keeping picture 1 in mind, we have to define the visual-

ization of application objects first. This can easily be done

using a slider as an example. The attributes of the slider

symbol are divided into two parts: Thestatic part is con-

figured (f.e. off-line) and not changed by the application

in most cases. Thedynamic part can be changed by the

end-user or the application and works as the communica-

tion attribute between application and user.

50.3ValueValue: float

Name: string

Min: float

1
1

1

1

S1: Slider

Max: float
1

Value: float

C: color

...

1
1

1

1

SY1: SYMB_SL

Runtime

Config
ura

tio
n

Figure 3. Visualization of application objects

But we put our focus on event handling and user inter-

action, as shown in picture 4. Each user event causes a

state change at least in the man-machine interface. Picture 4

shows the interaction idea, found in nearly any kind of user

interface system. We extend this idea in the next section to

the principle of equal partners.

S1 S2

Event x

Z1 Z2

Interaction i/
Signal Event x

Application Fluids End-user

Figure 4. Interaction in conventional system

In addition to this picture, the principle of interaction in

Fluids is the change of a control flow either in the core ap-

plication or in the behavior of the user. Both are equal part-

ners, where the UIMS is used as the guidance to coordinate

the actions. Picture 5 contains the basic structure. As we

can see, the result is a (nearly) symmetric diagram. Both

partners pass their orders and queries as events to the sym-

bol management. On the other hand, input are transmitted

back as events too. The applications (core or gui) interpret



the events and act as configured.

Core
Application

Symbol
Management

Core
Application

GUI
Application

Input Output

Callback

Order, Query Order, Query

Callback

Result Result

VisualizationManipulation

UIMSApplication

User

Figure 5. Interaction in Fluids

Picture 6 shows the simplified system structure of the

behavior model using UML notation[2].

Symbol WindowInteractor
Binding Binding0...n 0...n1 1

Persistent

Event Event

Interpreter Callback
0...nuses1

Figure 6. Behavior model

The user causes events by symbol or window manipu-

lation. If an interactor object is bound to this symbol and

the binding condition concerning the event type is true,

the specified interactor is called. This function is either

coded in a Pascal-like syntax and executed by a built-in

interpreter, or a precompiled callback function of the ap-

plication or man-machine service Fluids. The interpreter

normally “knows” a basic set of built-functions, which are

now extended by the methods defined on the user interface

components. Since every application needs some kind of

communication with its user interface, applications can reg-

ister callback-methods to their own objects to allow asyn-

chronous event notification. These callback-methods are

available in the interpreter as ordinary functions. The class-

hierarchy makes a distinction between callback- and inter-

preter interactors to allow an uninterpreted fast call of time-

critical callbacks. Special application functionality, which

could be required for text editors, is added using this tech-

nique. Picture 7 shows the scheme:

Interpreter

Interpreter_Fluids Interpreter_Appl_1

Interpreter_Appl_2

Figure 7. Interpreter usage

The basic interpreter has only a core functionality. De-

rived interpreter classes add more functions for special

tasks. The user interface management service builds its own

extended interpreter, while special application-dependent

interpreters are either derived from the user interface inter-

preter, if this functionality must be available to the end user

too, or directly from the basic interpreter. Because this work

is based on the distributed environmentCORBA, callback-

functions are not limited to platform boundaries. For this

reason, the interpreter is also able to call remote functions

or methods, if their callbacks are registered.

The interpreter and its Pascal-like language are not dis-

cussed in detail in this paper, because it is based on theLUA

interpreter of the theTeCGraf-Grupo de Tecnologia em

Computacao Graficain Rio de Janeiro[13]. This interpreter

is freely available for commercial and non-commercial

applications[16]. More information is also available in the

LUA-manual[17].



4. Example

The largest application build with this tool is a simulator

for an automated guided vehicle system (AGVS), created

for a well-known German company in the car industry. Pic-

ture 8 shows a screen-shot of this application.

Crossing

Branching

Branching

Stop point

Stop point

Stop point

Parameters

Simulation: #23

Stop Devices Result

Figure 8. Simulator for an automated guided

vehicle system

During normal operation, the positions of all transport

units are displayed on the screen. But during the configura-

tion of a new plant or course, the map of this course is con-

structed using an interactive editor, written (mostly) in the

interpreter code. To test and simulate the behavior of this

course together with the transport units without the need of

expensive tests, a simulator is needed. This simulator tool

is based on Fluids, most of the functionality is expressed in

interpreter code.

5. Conclusions

The usefulness of the above described approach was

shown in some example applications at our institute. The

most important features are discussed in this section.

� Adaptable dialogue control

The dialogue control, which means the control flow

and behavior of the user interface, is adaptable to user

preferences during runtime. As shown in Picture 6,

all objects of the user interface are kept persistent in a

database. This offers an easy to handle mechanism for

user-dependent graphical user interfaces.

� Extensibility

LUA offers mechanisms to register callback functions

and to modify or access all interpreter variables and

functions. It is created as a library, which can be ac-

cessed from the host implementation. The untyped

language offers a very flexible way to implement com-

munication with the host language:Tables, defined as

associative arrays, allow the handling of host-specific

data-structures. LUA also has built-in functions, which

handle so called fallbacks. These functions are called

in special error situations (access to non-existing table

indices, call to undefined functions, floating point er-

rors, . . . ). Fallbacks can be used to implement a kind

of object-oriented extension to LUA.

� Unique interpreter

One of the most important advantages of the described

approach is the availability of a unique interpreter in

all kinds of applications. The interpreters are scalable,

which means, that the application can define, which

functionality is available to the end-user.

� Interpreted code

The interpreter is able process either ASCII-Strings

as code or precompiled P-Code. This allows runtime

modifications together with fast code execution using

the built-in compiler.



6. Annotation

This paper is based on research done at the Institute for

Microcomputers and Automation in Karlsruhe.

References

[1] Len Bass, Joelle Coutaz, “Developing Software for

the User Interface”,Addison-Wesley Publishing Com-

pany, 1990

[2] Grady Booch, James Rumbaugh, “Unified Method

for Object-Oriented Development”,Document Set 0.8,

Rational Software Corporation, 1995

[3] Grady Booch, Ivar Jacobson, James Rumbaugh, “The

Unified Method Language for Object-Oriented Devel-

opment”,Document Set Version 0.91 Addendum UML

Update, Rational Software Corporation, 1996

[4] Uwe Brinkschulte, Marios Siormanolakis, Holger Vo-

gelsang, “Man Machine Service”,in: proceedings

of the IAR-Workshop on Knowledge Engineering and

Object Oriented Automation, KEOOA’95, Strasbourg,

France, 1995

[5] Uwe Brinkschulte, Marios Siormanolakis, Holger Vo-

gelsang, “Graphical User Interfaces for Heteroge-

neous Distributed Systems”,in: proceedings of EI’96,

San Jose, USA, 1996

[6] Uwe Brinkschulte, Marios Siormanolakis, Holger Vo-

gelsang, “Visualization and Manipulation of Struc-

tured Information”, in: proceedings of Visual’96,

February 1996, Melbourne, Australia

[7] Uwe Brinkschulte, Holger Vogelsang, “Eine objekto-

rientierte Schnittstelle f¨ur ein Echtzeitprozeßdatenhal-

tungssystem”,in: Proceedings of Echtzeit’96, Karls-

ruhe, Germany, 1996

[8] Hans-Jörg Bullinger, Klaus-Peter F¨ahnrich, Christian

Janssen, “Ein Beschreibungskonzept f¨ur Dialogab-

läufe bei graphischen Benutzungsschnittstellen”,In-

formatik Forschung und Entwicklung 11: page 84–93,

Springer, 1996

[9] David T. Clarke, Geoff P. Crum, “Dialogue Specifi-

cation and Control: A Review of Models and Tech-

niques”, Information and Software Technologie, Vol-

ume 9/36, 1994

[10] Ralf Danzer, “An Object-Oriented Architecture for

User Interface Management in Distributed Applica-

tions”, University of Kaiserslautern, Fachbereich In-

formatik, 1992

[11] Rich McDaniel, Brad A. Myers, “Amulet’s Dynamic

and Flexible Prototype-Instance Object and Con-

straint System in C++”,Carnegie Mellon University,

Human-Computer Interaction Institute Technical Re-

port CMU-HCII-95-104, July 1995

[12] Alan Dix, “Human-computer interaction”,Prentice

Hall, 1993

[13] Luiz Henrique de Figueiredo, Roberto Ierosalimschy,

Waldemar Celes, “Lua: an Extensible Embedded Lan-

guage”,Dr. Dobb’s Journal, December 1996

[14] D. Galara, B. Iung, G. Morel, F. Russo, “Intelligent

actuation and measurement: system based modeling

in priam”, in: proceedings of the 2nd IFAC Workshop

on Computer Software Structures, August 94, Lund,

Sweden



[15] Oliver Hammerschmidt, Holger Vogelsang, “Design

of Distributed Real-Time Systems in Process Con-

trol Applications”, in: proceedings of I-CIMPRO’96,

Eindhoven, The Netherlands, 1996

[16] Roberto Ierosalimschy, Luiz Henrique de Figueiredo,

Waldemar Celes, “Lua: an extensible extension lan-

guage”,Software Practice and Experience, 19xx

[17] Roberto Ierosalimschy, Luiz Henrique de Figueiredo,

Waldemar Celes, “Reference Manual of the Program-

ming Language Lua 2.5”, 1996

[18] R. Jacob, “A Specification Language for Direct-Mani-

pulation User Interfaces”,ACM Transactions on Com-

puter Graphics, Vol. 4, No. 4, Page 283–317

[19] OMG, “IDL C++ Language Mapping Specification”,

Object Management Group (OMG), Technical Paper

94-09-14, 1994

[20] OMG, “The Common Object Request Broker: Ar-

chitecture and Specification — Revision 2.0”,Object

Management Group (OMG), Technical Paper 95-07-

20, 1995

[21] Günther E. Pfaff (ed.), “User Interface Management

Systems”,proceedings of the Workshop on User Inter-

face Management Systems in Seeheim, Eurographics

(The European Association for Computer Graphics),

1985, Seeheim, Germany

[22] C. Pereira, Th. Rathke, “Objektorientierte Entwick-

lung von Echtzeitsystemen in der Automatisierungs-

technik”, in: proceedings of the 39th Int. Wissensch.

Kolloquium, Sep. 94, Illmenau, Germany


