
Visualization and Manipulation of Database Contents Using Corresponding Symbols
Uwe Brinkschulte, Marios Siormanolakis, Holger Vogelsang

Institute for Microcomputers and Automation, University of Karlsruhe
Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

E-mail: {brinks|sior|vogelsang}@ira.uka.de

ABSTRACT

This paper deals with the problem of representing complex database contents to human operators and
manipulating these contents in an intuitive and user definable way. This approach makes use of the graphical
facilities of todays computer systems. Information presentation is achieved by displaying graphical components
on a screen, where information manipulation is done via haptical interfaces (e.g. mouse, joystick) with optical
feedback. We introduce corresponding symbols as universal and user definable interface between database
contents and graphical presentation. The graphical attributes of these symbols (like form or color) correspond
with the attributes of database information to be represented. Further we introduce a tool to create and arrange
corresponding symbols and compose user interfaces for database visualization and manipulation.

1. INTRODUCTION

A main research area of our institute is the design of automation systems. To aid this design process, an open
service architecture for automation systems called OSA+ (Open System Architecture - Platform with Universal
Services) was created [1].*) A service is a reusable software component, designed to solve a given problem by
processing tasks and results.

m an
m achine
service

database
service

system platform

m easure &
co ntrol
serv ice

bas ic
services

system
services

dis tr ibuted
hard w are

applicatio n
services

. . .

. . .

. . .

Figure 1: OSA+ service architecture

Based upon a distributed system service (the CORBA [3] -oriented system platform), several platform- and
language-independent basic services have been developed. Two of the most important ones are the man-
machine service and the database service.

*) This research arises from a cooperation with the IEEE task force on Engineering of Computer Based Systems
 (ECBS) [2]

The man-machine service was presented on Visual 96 [4]. The main idea is the introduction of symbols as
graphical representation of object states. A symbol corresponds to a structured object. State changes lead to
different visual symbol instances. Interactive symbol manipulation result in altered states.

Structured
O bject

Symbol

Application Man-Machine-Service

corresponds

state change

shape change

 Shape sees/m anipulates

Figure 2: Visualization and manipulation of object states using symbols

Symbols are composed recursively from basic symbols like polygons, ellipses, arcs, text, etc. The attributes of a
structured object correspond to the graphical attributes of a symbol (and symbol components) like form, color,
fill pattern, visibility, text, size, position, rotation angle and scale. The relationship functions between
corresponding attributes can be discrete or continuous, where linear or logarithmic functions are provided.

consists of

Symbol

Basic SymbolSymbol

structured
object

corresponding
attributes

Figure 3: Recursive symbol definition

Figure 4 gives an example. It shows the graphical representation of a vehicle and its states by a corresponding
symbol. The symbol consists of several basic symbols. Some symbol and basic symbol attributes correspond to
the attributes of the structured object. The symbol position corresponds to the x-position and y-position attribute
of the structured object. The symbol angle corresponds to the direction attribute. The battery-charge attribute
corresponds to the length and color of a bar (red on low battery charge, else green) and to a text field. The
freight attribute corresponds to the fill pattern of a rectangle (white, shaded or black). Manipulating the symbol
(e.g. dragging the bar with the mouse) can change the attribute values. Because this makes more or less sense
for a given attribute, it can be restricted.

Symbols and their relationships to corresponding objects are created and defined by a symbol editor. All
created symbols are arranged and positioned in planes. Each plane defines a unit of measurement respectively a
scale. Planes are displayed in windows using a user defined scaling. A plane can be shown in multiple windows
using different scales. Furthermore multiple planes can be shown in a window simultaneously. This allows the
creation of easy-to-use and flexible distributed graphical user interfaces (GUI’s).
To achieve a complete separation between an application and a GUI, all GUI-elements (windows, planes,
symbols, correspondences to structured objects) are stored in a portable database.

(bar length and color,
 text)

(symbol x/y-position)

(symbol angle)

B
a
t
t
e
r
y

(rectangle fillpattern and
color: white, shaded, black)

autonomous transport vehicle

x-position integer

y-position integer

direction real

batterie-charge integer

freight (none, normal, max)

corresponds symbolstructured object

40%

Figure 4: Simple example: Visualization and manipulation of an autonomous transport vehicle

The database service was designed as a high speed process database system [5]. It provides relational data
structures and a simple, set-oriented application program interface. Main properties are high speed data access,
soft real-time capabilities, configurable data security and platform independence. For example, the database
service is used to store the GUI’s created by the man-machine service [6].

In the approach presented here, the man-machine service is used to build symbol-oriented graphical user
interfaces for the database service.

2. COMMON DATABASE VISUALIZATION AND MANIPULATION TECHNIQUES

GUI's for database visualization and interaction can be divided in two groups. The first group contains GUI's
dealing with specific data items. They are designed to find, show or alter a single or a few sets of data. Several
techniques have been developed for that purpose. The most common technique is the use of tables, forms and
masks, which can be arranged by a GUI-builder. This is based on form filling approaches like QBE [7] and is
used today in most commercial database systems, e.g. Access [8]. Graph based systems such as Visual SQL [9]
are related, but the user is able to create queries in a graphical way by pointing and clicking on tables and
forms. Iconic systems such as Iconic Query [10] introduce icons to represent data objects (e.g. a table), to show
their structure and interrelations and to create queries.

The second group contains GUI's to summarize large mount of data for data exploration. A wide range of
visualization techniques are used, such as maps, coordinate based charts (2- or 3-dimensional charts,
scattergrams, line charts, ...), ratio based charts (pie charts, profiles, ...), hybrid charts (bar charts, histograms,
...) or iconic charts. Most systems offer a combination of these techniques. The connection between the
visualization component and the database component can be tightly coupled as in ExBase [11] (visualization
component ExVis [12]) or in Sequoia2000 [13] (visualization component Tioga [14]). It can as well be loosely
coupled or independent from a specific database component as for example the IBM Data Explorer [15].
A detailed description of these database visualization and manipulation techniques can be found e.g. in [16].

The approach presented here belongs to the first group of GUI's. It is intended to visualize, find and modify
specific database items in a very intuitive way using the corresponding symbols introduced in chapter 1. The
visualization component (man-machine service) is tightly coupled to the database component (database
service).
Corresponding symbols and the variety of their possible representations exceed iconic representations.
Corresponding symbols are a superset over icons. Limiting the attributes of corresponding symbols to visibility
and symbol position leads to an iconic presentation. The powerful symbol manipulation functionality allows
easy and intuitive change of information respectively database contents.

3. CONCEPTION AND ARCHITECTURE

A relational database contains structured objects. They can be visualized by corresponding symbols in a GUI.
So the idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-
machine service using the concept of symbols.

GUIDatabase

GUI-Builder, GUI-Manager
for the Database-Service

Man-Machine-
Service

corresponding GUI’s
stored in a

’Visualization-Database’

Database to
be visualized

and manipulated

correspond

access and
store

GUI-elements

access and
modify database

Database-
Service

Figure 5: System architecture

With user-definable and predefined symbols, database contents can be visualized and manipulated in a very
flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build its own graphical user
interface for a given database according to its needs without writing a single line of code

creates a symbol-
oriented GUI for
a database

interacts with the
database using the
created GUI

GUIDatabase

GUI-Builder

GUI-Manager

Figure 6: Role of GUI-Builder and GUI-Manager

The database service provides relational data structures, that means a database consists of normalized relations.
A relation is a set of tuples; each tuple has a given number of attributes. These attributes can correspond to the
graphical attributes of symbols (Figure 7).

Attribute C
of type c

Attribute B
of type b

Attribute A
of type a

slider text field
ABC

bar analog instrument

. . .

Symbol Library Symbol Editor

archive

Symbols
 to visualize and alter values of

database relation attributes

Predefined
Symbols

User-defined
Symbols

. . .

Database D

Relation R

Values Values Values

.

.

 abc

button

. . .

Symbol-Editor

Edit ViewFile Insert Corresp. Help

correspond

Figure 7: Symbols and database attributes

To create a graphical user interface for such a database, the GUI-builder was designed. It consists of two parts,
the symbol-editor and the GUI-editor.
The symbol-editor has three main tasks. Firstly, it allows the creation of symbols to visualize and manipulate
the attributes of a database relation. A symbol can be either designed by the user or selected from a set of
predefined symbols in a symbol library. Predefined symbols are for example sliders, bar graphs, text fields,
buttons, etc.
The second task of the symbol-editor is to define the relationship between the database attributes and the
graphical attributes of the symbols. This relationship can be either discrete or continuous, where linear or
logarithmic functions are provided. A change in the value of a database attribute leads to a different symbol
instance, manipulating the symbol causes a different database attribute value.

Figure 8 shows the most import relationship functions between database attributes and corresponding symbol
attributes. Depending on the database attribute type, several functions can be applied to affect different
graphical attributes of the symbol.

database attribute
type

relationship function
type

can affect the following attributes
of a symbol (or symbol component)

enum discrete enum [s] form, color, pattern, visibility,
position, size, angle

subrange, int, real discrete range [s] form, color, pattern, visibility,
position, size, angle

subrange, int, real continuous linear form, position, size, angle
subrange, int, real continuous logarithmic form, position, size, angle
char alphatext [k] text
subrange, int inttext [k] text
real realtext [k,l] text

s : number of states
k: number of characters or digits
l: number of digits behind the decimal point

Figure 8: most important relationship functions

Assignments between database attributes and symbols can be made n:m. This means, a symbol can correspond
to several database attributes and a database attribute can correspond to several symbols. In the example shown
in Figure 9, database attribute A corresponds to symbol 1. Attributes B and C correspond to symbol 2, which
means, each database attribute controls a specific graphical attribute of the symbol, e.g. color and angle.
Additionally, attribute C corresponds to symbol 3. So this attribute has two graphical representations.

Database Attribute A

Database Attribute B

Database Attribute C

Symbol 1

Symbol 3

Symbol 2

corresponds

Figure 9: n:m correspondations

The last task of the symbol-editor is to combine the created symbols to relation-presentation-objects (RPO’s).
Each RPO represents the values of one or more tuples of a database relation. It can be used to show, alter and
search for these tuples. In that context a database relation must not be a physical relation. It can be a virtual
relation as well, created from physical database relations by join, restriction or selection operations.

The GUI-editor is used to build a graphical user interface consisting of RPO’s and other static objects. Static
objects are objects, which are not connected to a database relation, for example static text or static pictures. All
objects are placed in planes. These planes are shown in windows. Each window can hold multiple planes
simultaneously and a plane can be displayed with different scales in multiple windows. This mechanism offers
resolution and hardware independent graphical user interfaces. Each generated interface is stored in a
visualization-database. A database to be visualized can be associated with one or more visualization-databases
containing different interfaces for different users.

GUI-Editor

GUI-Editor

Symbol-Editor

GUI-Manager

update

search
Symbols for
Attributes of R

Art: ABC-123

Cnt:

State

Relation R

Relation Presentation Object for R

Relation Presentation Objects
for Relations of Database D

Planes

Windows

GUI for Database D

(correspond)

(arrange)

(show)

(operate)

Figure 10: Creating a GUI for a database

The GUI-manager finally operates on an interface created by the gui-builder. It accesses the database to be
visualized and one of the associated visualization-databases. User interactions for database navigation and
modification are handled according to the interface definitions.

4. EXAMPLE

The following simple example shows the construction of a RPO for one relation of a computer manufacturer’s
storage database:

Extract of database structure:

Relation Computer Production

Computer-Type Productnumber Production Stage Delivery Month Storage-Count

enumeration type alphanummeric subrange type subrange type integer
(labtop, tower, string[20] (1 .. 4) (1 .. 12)
 tabletop)

.

...

tower
labtop

EN-11223-A
LT-33128-Z

2
4

125
26

. . .

8
9

...

Corresponding symbol definitions:

contineous linear
affects: x-position of bar

discrete range
affects: color of circle

ABC

123

Computer-Type discrete enum [3]
affects: visibility

User defined symbol
Graphical representation:

labtop

tower

tabletop

Productnumber alphatext [20]
affects: text

Predefined symbol text
Graphical representation:

Production-Stage contineous linear
affects: form (y-length) of bar
discrete range
affects: color of bar

Predefined symbol bar
Graphical representation:

1: red
2 .. 3 : yellow
4 : green

Delivery-Month

Storage-Count contineous linear
affects: form (x-length) of
 inner bar
inttext [4]
affects: text

Predefined symbol slider + text
Graphical representation:

User defined symbol
Graphical representation:

< 10 : red
10 .. 100 : yellow
> 100 : green

Attribute Relationship Function Symbol

Figure 11a shows a GUI containing the created RPO (together with a RPO for another relation). In this
example each RPO is arranged in a separate plane; each plane is shown in a separate window. The main
window is generated by the GUI-manager. In Figure 11b, a part of the plane containing the created RPO is
shown in an additional window using a larger scale. Furthermore, static text was placed in separate planes to
allow different grid text for both windows. In general, any assignment between RPO’s, static objects, planes and
windows can be made.

update

search

Database Relation Help

26

Computer Production

Product-Number: LT-33128-Z

Database-GUI-Manager: Storage-Database

Window

1 3 6 9 12
Month

Stage
Storage-Count

Figure 11a

update

search

Database Relation Help

26

Computer Production

Product-Number: LT-33128-Z

Database-GUI-Manager: Storage-Database

Window

1 3 6 9 12
Month

Stage

Storage-Count
Production Stage & Delivery Month

1 2 3 4 5 6 7 8 9 10 11 12
Month

4

3

2

1

Stage

Figure 11b: sample GUI’s

5. CONCLUSIONS

The presented approach combines two existing basic services in two ways. On the one hand, the database
service is used to store graphical user interfaces created by the man-machine service. On the other hand, the
man-machine service is used to visualize databases of the database service. This has several advantages. The
symbol-oriented structure of the man-machine service allows the design of easy-to-use and intuitive interfaces
for database visualization and interaction. No code needs to be written by the user. Storing an interface in a
platform-independent visualization-database (separate from the database to be visualized) makes it possible to
create many different interfaces for the same database. The created interfaces can run on different hard- and
software platforms. It also allows the reuse of parts of an interface (for example symbols or relation-
presentation-objects) for other databases.

6. REFERENCES

1 G. Schweizer, M. Voss
Systems Engineering and Infrastructure for Open Component Based Systems.
Eurocast 95, Computer Aided Systems Theory, Innsbruck, Austria, 1995

2 G. Schweizer
Foundations for the ECBS Process
ECBS’96, International IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen, Germany, 1996

3 OMG
The Common Object Request Broker: Architecture and Specification - Revision 2.0
Object Management Group (OMG), Technical Paper 95-07-20, 1995

4 U. Brinkschulte, M. Siormanolakis, H. Vogelsang
Visualization and Manipulation of Structured Objects
Visual 96, Melbourne, Australia, 1996

5 U. Brinkschulte
MERLIN - Ein Prozeßdatenhaltungssystem für Echtzeitanwendungen.
Echtzeit 93, Karlsruhe, Germany, 1993

6 H. Vogelsang, U. Brinkschulte, M. Siormanolakis
Archiving System States by Persistent Objects
ECBS'96, International IEEE Symposium and Workshop on Engineering of
Computer Based Systems, Friedrichshafen, Germany, 1996

7 M. Zloof
Query by Example
IBM Systems Journal 16, 1977

8 Access 7.0 User Manual
Microsoft, 1996

9 J.H. Trimble, D. Chappel
A Visual Introduction to SQL
Wiley, New York, 1990

10 Iconic Query Reference Manual
IntelligenceWare, Los Angeles, 1992

11 J. P. Lee
Data Exploration Interaction and the Ex Base System
Database Issues for Data Visualization, IEEE Visualization Workshop 93, San Jose 1993
Springer, New York, Lecture Notes in Computer Science 871

12 G. G. Grinstein, R. M. Pickett, M. S. Williams
Exvis, An Exploratary Visualization Environement
Eurographics 92, Cambridge, England, 1992

13 M. Stonebraker, J. Frew
The Sequoia 2000 Architecture and Implementation Strategy
Sequoia 2000 Technical Report 93/23, University of California Berkley, 1993

14 M. Stonebraker, J. Chen, N. Nathan, C. Pax ton, A. Su, J. Wu
Tioga: A Database-Oriented Visualization Tool
Visualization 93, San Jose, USA, 1993

15 IBM Visualization Data Explorer User’s Guide
IBM, New York, 1993

16 K. Parsaye, M. Chignell
Intelligent Database Tools & Applications
Wiley, New York, 1993

