Tree-Based Buffer Management in Real-Time Database Systems

Uwe Brinkschulte
Institute for Microcomputers and Automation, University of Karlsruhe
Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany, E-mail: brinks@ira.uka.de

Abstract

This paper deals with buffer managament for tree-based
access-path structures in real-time database system
kernels. A predictable and efficient buffer replacement
strategy for B- and B'-trees is introduced. The strategy
called LC (Level Control) uses the structural information
known about the trees and the tree search to determine a
node to be replaced. The basic idea is to use the level of
a node as replacement criteria. This allows a certain
prediction of buffer hits and misses for tree search
operations, even if the item's value searched for is
unknown. A small prediction interval can be calculated
for search operations and a larger interval for update
operations. Simulations show the correctness of these
calculations and the efficiency of LC for B- and B -trees
compared to common other replacement strategies.

1. Introduction

The use of a main-memory buffer is a good way to
increase the speed of systems dealing with mass storage
such as database systems. Therefore, most real-time
database systems try to keep the whole database (or at
least the whole actual working set) resident in the buffer
at runtime. This avoids slow mass storage access and
makes the system behavior more predictable. If the
database (or working set) becomes too big to entirely fit
in the buffer, a replacement strategy is needed. A good
replacement strategy keeps the average system
performance still high, but it becomes very difficult to
predict buffer misses and the resulting performance for a
single database operation (¢.g. search).

In the approach presented here, a partial solution for
this problem is proposed. This solution works for a
specific part and type of data structures kept in the
database files: the access-paths based on B or B*-trees.
The data to keep in the buffer for these structures are the
tree nodes. A buffer replacement strategy for these tree
nodes is introduced, which allows a certain prediction of

buffer hits and misses for tree secarch and update
operations.

2. The replacement strategy

A search operation in a B- or B'-tree walks from the
root to the leaves [1]. Searching an item X starts with the
root node. Depending on the data found in this node, a
node from the next deeper level is seclected. This
continues until a leaf node is reached. So, on each tree
level a single node is used. The node needed on level i+1
depends on the result of level i.

sample search path level 1 (roct)
level 2
level 3

/
level 4 (leaves)

Figure 1. A sample search path through a tree

Standard buffer replacement strategies such as LRU,
LRD, LFU, CLK, FIFO, etc. [2][3] use the knowledge
about the past to estimate future behavior. By analyzing
the past, e.g. how often each node in the buffer was used
until now, they try to find a node to replace, which has
the least likelihood to be reused in the future. For real-
time database applications, these strategies have been
enhanced to respect transaction priorities [4][5][6]. But
for all these strategies a buffer hit or miss can only be
predicted for a specific known node.

So if one of these strategies is used for B- or B'-
trees, it is impossible to predict the buffer hits or misses
for a search operation, because the nodes needed during
the walk through the tree are unknown at the beginning
of the search operation.

To avoid this, the replacement strategy presented
here uses other principles, which allow the prediction of
buffer hits and misses for a tree search, even if the value
of the item searched itself is not known.

This strategy called LC (Level Control) uses the
structural information known about the trees and the tree
search to determine a node to be replaced. The basic idea
is to use the level of a node as replacement criteria. The
replacement priority R, of a node n is calculated by the
node's distance from the root level, which is level 1.

R, =level(n), where: level(root) = 1 D

The node with the highest replacement priority will
be replaced.

This strategy has two advantages: Firstly, it should
be efficient. Because only a single node is used on ecach
tree-level during a search operation, the usage probability
P, of a node depends mainly on the number of nodes
sharing its level. The usage probability of the root node is
1. In general, P, can be calculated as:

P, = 1/nodes(level(n)), 3]

where: nodes(level(n)) = number of nodes
on the level of
node n

Supposing a B- or B*- tree with an average of f
successors for each node, P, can be cstimated as a

function of a node's level:
Pn = 1/f level(n)-1 (3)

It is obvious, that the usage probability of a node is
as higher as closer this node is to the root level. So the
proposed replacement strategy favors nodes with high
usage probabilities.

The second advantage using this strategy is the
predictability of buffer hits and misses. As shown in
figure 2, the LC-strategy causes the following buffer
organization: The first L levels (1 .. L) of a tree are
completely stored in the buffer. Level L+1 is stored
partially. The remaining levels (L+2 .. L) are not stored.
The value of L depends on the available buffer size for
that tree and on the size of the tree itself. So it is very
simple to calculate the number of buffer hits and misses
during a tree search operation. In worst case, we have:

Hits, =L C)
Misses,, = L - L Q)

In best case, we have:

Hits, =L+1)
Misses, = L, - (L +1) @)

This is a good prediction, because the difference
between best and worst case is only 1. Based on (4) .. (7),
resulting best and worst buffer hit rates during a tree
search operation can be calculated as:

Hitrate, =L/ L, 8
Hitrate, = (L +1) /Ly, ¢

So if only L and L are known (which is not difficult
in a concrete buffer management implementation based
on LC), the number of buffer hits and misses in worst
and best case can be calculated independent of a specific
search item's value.

buffer
level 1 (root)
sample search path, .
level L
1
levl L+1
e
level L+2
level Ly, (leaves)

Figure 2. A tree stored in buffer using the LC-
strategy

If the number of stored nodes s, of a B- or B'-tree
with m to 2 m successors per node is known, the worst

and best case for the value of L can be calculated as well:

ogrm+12ms,+ 1)KL <
ogn+1((si- D m/2+1)+10 (10)

(O U= floor function)

O Hitrate, =| log,m12ms,+1) [/L; (11
Hitrate, = (|_ logy +1((st- 1) m/2 + 1) +
1l+n/L 12)

Of course, hit rates calculated by (8) and (9) are
more precise than those by (11) and (12), because
equations (8) and (9) use the actual value of L, equations
(11) and (12) use worst and best case values of L.

Additionally, if the total number of nodes and the
number of mnodes stored in buffer for level
L + 1 are known, the probability of the best case hit rate
can be calculated:

Py, = nodesyugrerea(l + 1) / nodes(L + 1) (13)

If the total number of nodes on level L+1 is
unknown, an upper limit can be given:

nodes(L + 1) <2 m"“ "’ (14)
d Py, = nodeSyugerea(L + 1) /2 m™ ! (15)

So far, we have analyzed search operations in B-
and B'-trees using LC as buffer replacement strategy.
Finally let's have a look at insert and delete operations.
Each insert and delete operation is preceded by a search
operation. In best case, only a single value in one of the
nodes accessed has to be removed or inserted. No further
access to any other node is necessary. This means, in best
case the number of misses and the hit rate is equal to the
one for search operations (7):

InsDelMisses, = Ly, - (L + 1) (16)

In worst case, a second node has to be accessed on
each tree level due to splitting, melting or compensating
tree nodes. This means, in worst case the number of
misses for insert and delete operations doubles (5):

InsDelMisses,, = 2 (L, - L) an

3. Simulation results and comparison to other
strategies

To confirm the results and to compare the LC
strategy to other strategies, several simulations have been
made. Figures 3 a, b and ¢ show some of the measured
hit rates for search operations in different trees compared
to the calculated worst and best case hit rates based on
equations (11) and (12). As expected, the calculated
worst case hit rate is the lower limit in all cases. For
slender trees (low values of m), the hit rate gets closer to
the best case hit rate. This behavior can be explained by
equation (15). If the value of m decreases, the probability
P, for best case hit rates increases. So as expected,
equations (4) to (7) produce a good and small prediction
interval for buffer hits and misses.

Figures 4 a, b and c show some of the simulation
results, that compare the LC strategy to other common
replacement strategies. All hit rates are measured under

a: Tree with 1999 nodes, 8 levels, m=2

Hit Rate (x 100%)

1.0 —
0.8 —
0.6 —
0.4 |
02 % e measured hit rate
B S calculated best case hit rate
00 - —-- calculated worst case hit rate
) [[[[[|
1 5 10 50 100 500 1000
Buffered Tree Nodes
b: Tree with 2281 nodes, 4 levels, m=10
Hit Rate (x 100%)
1.0 — T
0.8 — =,
i S 7
06 4 !
i N e /
04 | J
. '/
v /
02 — measured hit rate
4/ calculated best case hit rate
00 - calculated worst case hit rate
) [[[
1 5 10 50 100 500 1000
Buffered Tree Nodes
¢: Tree with 2463 nodes, 3 levels, m=30
Hit Rate (x 100%)
10— e
0.8 —
0.6 — !
'/
17 /
04 4 ;
S T /
02 — measured hit rate
4/ calculated best case hit rate
0.0 —— e calculated worst case hit rate
) I I I
1 5 10 50 100 500 1000
Buffered Tree Nodes

Figure 3 a, b, c. Calculated and measured hit
rates of the LC-strategy

identical conditions. Furthermore, as a measure of
quality, an 'optimal strategy' [7] is used, which is
unrealizable outside a simulation. This strategy uses

knowledge about the future to determine the node, that
will be unused for the longest time in future. So the
'optimal strategy' can be considered as an upper limit to
all realizable strategies.

a: Tree with 1999 nodes, 8 levels, m=2

Hit Rate (x 100%)

1.0 —
0.8 [
-7 7

1 R
06 R
0.4 /// /‘/"_;:2'/“

J P [P — Optimal strategy

PRy LC-strategy

0.2+ P LRU-strategy

J e - LRD-strategy

K —mee CLK-strategy
00 T 1 1
1 5 10 50 100 500 1000
Buffered Tree Nodes

b: Tree with 2281 nodes, 4 levels, m=10

Hit Rate (x 100%)

1.0 4
0.8 —
0.6 —
0.4 | .
| A2 e Optimal strategy
/o LC-strategy
0.2 — I S LRU-strategy
J /i K == LRD-strategy
—— CLK-strategy
0.0 E— 1 1
1 5 10 50 100 500 1000
Buffered Tree Nodes

¢: Tree with 2463 nodes, 3 levels, m=30

Hit Rate (x 100%)

1.0 4
0.8 — S
1 e
0.6 — - /,“/;.»'/
] 7 L
04 4 =TT
i S — Optimal strategy
e LC-strategy
0.2 — S LRU-strategy
i V4 - LRD-strategy
; = CLK-strat
0.0 =ty T T
1 5 10 50 100 500 1000
Buffered Tree Nodes

Figure 4 a, b, c. Hit rate comparison of different
strategies

The comparison shows, that the LC strategy is a
very efficient strategy. In nearly all simulations made, the
LC strategy got the best results of the compared
realizable strategies. Sometimes it even comes close to
the 'optimal strategy'. Especially for a small number of
nodes buffered, the LC strategy has significant hit rate
advantages. This is because upper levels of a tree contain
a small number of nodes compared to the lower levels,
but ecach level is used exactly once during a search
operation. So the LC strategy can be considered efficient
in hit rates and in the use of buffer capacities.

4. Applications

The LC strategy can be applied to realize an
efficient buffer management for B- or B'-trees in a real-
time database system kernel. If this management software
maintains the values of L and L;, the number of buffer
misses for ecach tree access can be predicted. A first
implementation of LC was made for the soft real-time
database kernel Merlin [8]. A second implementation is
planned for a scaleable firm and hard real-time database
kernel, which is in the conception phase at the moment.

In a real-time database application, some
enhancements to the basic strategy can be made without
affecting predictability: First it is very likely, that there is
more than one node with the same highest replacement
priority. To decide between these nodes, a secondary
strategy is needed. A good secondary strategy, ¢.g. LRU,
can increase the value of Py,

Furthermore, in a database application more than
one tree is stored in buffer at the same time. Several trees
must share the buffer. Some of those trees may be used
more often than others. To respect this, trees can be
given a usage-dependend weight to increases the value of
L for often used trees.

Transaction priorities and deadlines may affect the
tree weights and the secondary strategy as well.

5. Conclusions

The presented LC strategy is an efficient and
predictable buffer replacement strategy for B- and B'-
trees. Buffer hits and misses during search operations can
be predicted in small intervals of constant size 1. During
update operations, the prediction interval is of larger size
(Ly - L + 1), but a worst case value can be guarantied as
well. So LC seems to be a good strategy for access-path
buffer management based on B- or B'-trees in real-time
database system kernels.

With some modifications, it should be furthermore
possible, to adapt the LC strategy to other types of trees
as well.

6. References

[1] R. Bayer and E. M. McCreight, “Organisation and
Maintenance of Large Ordered Indexes”, Acta Informatica,
Volume 1, Number 3, 1972, pp. 173-189

[2] W. Effelsberg and T. Harder, “Principles of Database
Bufter Management”, ACM Transactions on Database
Systems, Volume 9, Number 4, 1984, pp. 560-565

[3] P.C. Lockemann and J.W. Schmidt, Datenbank-Handbuch,
Springer Verlag, Berlin, 1987

[4] J. Huang and J.A. Stankovic, “Buffer Management in Real-
Time Databases™, COINS Technical Report 90-65, University
of Massachusetts, 1990

[5] M.J. Carey, R. Jauhari and M. Livny, “Priority in DBMS
Resource Scheduling”, 15th. Int. Conf- on Very Large
Databases, Amsterdam, 1989, pp. 397-410

[6] H. Pang, M.J. Carey and M. Livny, “Managing Memory for
Real-Time Queries ", ACM Sigmod Int. Conf. on the
Management of Data, Minneapolis, 1994, pp. 221-232

[7] L.A. Belady, “A Study of Replacement Algorithms for
Virtual Storage Computers”, IBM Systems Journal, Volume 5,
Number 2, 1960, pp. 78-101

[8] H. Vogelsang, U. Brinkschulte and M. Siormanolakis,
“Archiving System States by Persistent Objects”, ECBS'96
International IEEE Symposium and Workshop on Engineering
of Computer Based Systems, Friedrichshafen, Germany, 1996,
pp. 292-297

