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List of Symbols

C complex numbers

N natural numbers

Q rational numbers

R real numbers

Z integers

Z=NZ integers modulo N

GF(q) �nite �eld with q elements

A commutative ring with identity

A[z; z�1] Laurent polynomial ring over the commutative ring A

U(A) group of units of the ring A

M module of �nitely supported sequences with values in A

suppf support of the function or sequence f

AutA(M) group of A-module automorphisms

GL(n;R) general linear group over the ring R

SL(n;R) special linear group over the ring R

�k(x) delta sequence �k(x) = 1 for k = x, �k(x) = 0 otherwise

[#2] decimation by two

["2] upsampling operation

a � b convolution of sequences a and b

ldegf degree of the Laurent polynomial f

lcf leading coe�cient of the (Laurent) polynomial f

Tn translation of sequence s: Tns(k) = s(k � n)

Pe projection of sequence s on subsequence Pes = se with even indices

Po projection of sequence s on subsequence Pos = so with odd indices

OW local rotation operator (explained in the text)

OW;F local rotation operator for fundamental domain F (explained in the text)

OF
spr spreading operator (explained in the text)
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Abstract

We develop a theory of perfect reconstructing �lter banks over commutative rings A with

identity. The �lter bank viewpoint is complemented by interpreting the signals as elements

of the free A-module of �nitely supported sequences with values in A: It is shown that bases

of this module can be obtained by the even translates of the two synthesis �lter sequences

of a perfect reconstructing �lter bank. We associate a group structure with these bases and

thereby obtain a parametrization of synthesis �lter pairs. It is proved that this parametrization

is complete when A is an arbitrary �eld. As a special case we derive a complete parametrization

of biorthogonal real-valued �lter pairs. We discuss lifting techniques and their use to reduce

the computational complexity of implementations.
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1 Introduction

Perfect reconstructing two-channel �lter banks were introduced by Mintzer [27] and by Smith and

Barnwell [34] in the mid eighties. The connection of wavelets with �lter banks was established

by Mallat soon afterwards [26]. Since then, a lot of research has been devoted to the structural

analysis of orthogonal solutions [10, 16, 29, 30, 41, 42, 44, 51, 52] and biorthogonal solutions [3,

9, 12, 18, 19, 46, 47, 48, 50]. Almost all work was con�ned to real or complex �lter coe�cients.

For an overview of these results the reader may consult [1, 11, 15, 43, 49]. Several authors started

to investigate �lter banks with �nite �eld coe�cients [5, 17, 28, 31, 32, 35, 36, 37, 40, 47]. The

proposed applications of these �lter banks include lossless compression of images [17, 35, 36, 37]

and multilevel error protection (an error control coding application) [31, 32]. There is also a

potential for applications in cryptography.

We treat �lter banks over arbitrary �elds and even over arbitrary commutative rings. Many results

are known in the special case when the �lter coe�cients are assumed to be real or complex. Often

it is fairly easy to generalize these results to other �elds of characteristic zero. However, some extra

care is necessary when the �elds or rings have non-zero characteristic. For example, convenient

tools such as modulation matrices are useless when the �lter coe�cients are elements of a �eld of

characteristic two!

Implementations often suggest to consider rings and �elds that di�er from the real or complex

numbers. For example, in integrated circuit implementations it is much more desirable to use �xed-

point arithmetic rather than 
oating point arithmetic regarding costly chip area. A natural choice

for �xed-point implementations are �lters with dyadic rational or integer coe�cients (although

this is not the only possibility, cf. [6, 20]). The dyadic rationals and the integers are commutative

rings but neither is a �eld.

A serious disadvantage of �lter banks over rings of characteristic zero is that more and more

bits are necessary to represent the signal values in successive decomposition steps, a phenomenon

known in computer algebra as intermediate coe�cient swell [45]. This problem is nonexistent for

�lter banks over �nite rings. Examples of such rings are the integers modulo some natural number

Z=NZ or the �nite �elds GF(q).

The preceding discussion shows that it is quite natural to study �lter banks over commutative

rings in full generality. This includes then as special cases the �lter banks over integers Z; over
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dyadic rationals, over �nite �elds GF(q); over integers modulo some natural number Z=NZ; over

algebraic number �elds, over polynomial rings, etc. Although this abstract approach has the

advantage that we can deal with various di�erent arithmetic situations using a single formulation,

we are very well aware of the fact that the language used here might not be familiar to every

reader. If this is the case, we suggest to think of vector spaces instead of more general modules.

The algebraic terminology used is standard and can be found in almost any treatise on algebra,

see for example [2, 25, 33].

The �rst author [21] and the last two authors [13] worked independently on characterizations of

wavelet �lters over arbitrary �elds. Our approaches were quite di�erent and complemented each

other. We decided to join forces and this paper is the compositum of our results. Fortunately,

we uni�ed [13] and [21] while both works were in their infancies, leading to the present coherent

approach.

This paper is organized as follows. In the next section we �x notations and brie
y discuss the anal-

ysis and synthesis steps of a two-channel �lter bank. It turns out that the perfect reconstruction

condition is equivalent to the invertibility of the polyphase matrix, as in the case of biorthogonal

�lter banks with real coe�cients. The module theoretic viewpoint is expounded in xx3 and 4.

We show that the even translates of the synthesis �lters constitute a basis of the module of all

�nitely supported signal sequences; this parallels the situation of QMFs with complex coe�cients

as explained in Holschneider [14]. In xx6 and 7 we derive a parametrization of synthesis �lters and

prove its completeness for arbitrary �elds. We then give some examples in x8. We discuss lifting

techniques and their use to reduce the computational complexity of a �lter bank implementation

in x9.

Since the manuscript of this paper was �rst circulated, one of us applied the ideas explained here

to lossless image compression. Filter banks over the �nite ring Z=256Z were successfully used to

derive particularly area e�cient VLSI layouts, cf. [22].
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2 Perfect Reconstructing Filter Banks

Let A be a commutative ring with identity. We analyse �nitely supported signal sequences with

values in A; these signals are elements of the set

M = ff :Z! A j j supp(f) j <1g:

The set M can be interpreted as an A-module under componentwise addition and scalar multi-

plication. Note that M is a free A-module with basis B = f �k j k 2 Zg de�ned by

�k(x) =

8><
>:

1 if x = k;

0 if x 6= k:

The z-transform of a signal s 2 M is given by the A-module isomorphism between M and the

A-module of Laurent polynomials A[z; z�1]; which is induced by the mapping �k 7! z�k :

Before going any further, we introduce some convenient notation. We denote by U(A) the set

of units of the ring A: We will assume throughout that A is non-trivial, i. e., that 0 6= 1 holds

in A: We write a � b for the convolution of two sequences a; b 2 M: The sign Tn is used for the

translation operation Tn s(k) = s(k � n): The projection of a signal onto its even subsequence is

given by

Pe s(k) =

8><
>:

s(k) for even k;

0 otherwise.

The corresponding projection onto the odd subsequence is Po := T�1Pe T1: Closely related to

these projection operations are the decimation operation de�ned by [#2]s (k) = s(2k); as well as

the upsampling operation given by ["2] s(2k) = s(k); and ["2] s(2k+1) = 0: Clearly, the projection

operation Pe is the composition of decimation followed by upsampling Pe = ["2][#2]:

We also use the language of z-transforms whenever this is convenient. The convolution is given

in the z-domain by the product a(z)b(z) in the algebra A[z; z�1]: If we write a signal s(z) in its

polyphase form s(z) = se(z
2) + zso(z

2); then the downsampling can be described by [#2] s(z) =

se(z): This operation is de�ned more explicitly by

[#2] zm =

8><
>:

zm=2 for even m;

0 otherwise:

The upsampling operation acts as ["2] s(z) = s(z2):
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We recall brie
y the analysis and synthesis steps of a two-channel �lter bank. It turns out that the

situation does not di�er much from the case of real numbers, except that we avoid formulations

such as Pe s(z) = (s(z) + s(�z))=2; since 2 might not be a unit in the ring A:

Let s(z) be a signal that is written in polyphase form s(z) = se(z
2)+zso(z

2): In the decomposition

step this signal is convolved with the analysis �lters e�; e� followed by a decimation. We thus obtain

the two signals d�(z) = [#2] e�(z)s(z) and d�(z) = [#2] e�(z)s(z): If we express the analysis �lters

as e�(z) = e�e(z2) + z�1 e�o(z2) and e�(z) = e�e(z2) + z�1 e�o(z2); then the decomposition step can be

written in polyphase form as follows:

(se(z); so(z))Hp(z) = (d�(z); d�(z)) ; where Hp(z) =

0
B@ e�e e�e
e�o e�o

1
CA : (1)

The two signals d�; d� are then upsampled and convolved with the synthesis �lters � and �

respectively. The reconstruction step thus yields a signal ŝ given by

ŝ(z) = �(z) d�(z
2) + �(z) d�(z

2): (2)

Expressing the synthesis �lters �; � and the signal ŝ as

�(z) = �e(z
2) + z�o(z

2); �(z) = �e(z
2) + z�o(z

2); (3)

and ŝ(z) = ŝe(z
2) + zŝo(z

2); then equation (2) can be written as follows:

ŝe(z
2) + zŝo(z

2) =
�
�e(z

2)d�(z
2) + �e(z

2)d�(z
2)
�

+z
�
�o(z

2)d�(z
2) + �o(z

2)d�(z
2)
�
:

Comparing coe�cients on the left and right hand side thus yields the following description of the

synthesis �lter bank in polyphase form:

(d�(z); d�(z))G
t
p(z) = (ŝe(z); ŝo(z)); where Gp(z) =

0
B@ �e(z) �e(z)

�o(z) �o(z)

1
CA : (4)

If we combine the equations (1) and (4), then the perfect reconstruction requirement ŝ(z) = s(z)

for all signals s 2 A[z; z�1] is equivalent to

Hp(z)G
t
p(z) = I:

Since A[z; z�1] is a commutative ring, this equation already implies that Hp(z) and Gt
p(z) are

elements of GL(2; A[z; z�1]): In particular we have H�1
p (z) = Gt

p(z):

The results of this section may now be summed up as follows:
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Proposition 1 A pair of analysis (or synthesis) �lters allows perfect reconstruction in a �lter

bank if and only if the corresponding polyphase matrix is invertible.

3 Modules, Filter Pairs, and Groups

The reconstruction �lter bank may be regarded as a simple device that allows to construct all

sequences of M by means of even shifts of the synthesis �lter sequences (�; �): It follows from the

perfect reconstruction property that fT2k�; T2k� j k 2 Zg has to be a generating set of M; since

otherwise we could not compose all signals s 2 M: Moreover, we show in the next section that

this set is free, hence a basis of the module M: This motivates the following de�nition:

De�nition 2 A pair of sequences (�; �) 2 M �M is called a �lter pair if and only if the set

f�(� � 2k); �(� � 2k) j k 2 Zg is a basis of the A-module M:

A simple example of such a basis is given by the �lter pair (�0; �1): The next proposition shows

how new �lter pairs can be obtained from old ones.

Proposition 3 Let (�; �) 2 M �M be a �lter pair, and let B be an A-module automorphisms

of M that commutes with translations by two, i. e., BT2 = T2B: Then (B�;B�) is again a �lter

pair.

Proof. An A-module automorphism maps a basis of M again onto a basis, cf. [33, x36]. Conse-

quently, the set S = fB T2k �;B T2k � j k 2 Zg is a basis. Since B commutes with translations by

two, the set S can be written in the form fT2kB �; T2kB � j k 2 Zg: Therefore, we can conclude

that (B�;B�) is indeed a �lter pair. 2

Lemma 4 Denote by G the set of A-module automorphisms of M that commute with translations

by two. Then G is a subgroup of the group AutA(M) of all A-module automorphisms of M:

Proof. By de�nition, G � AutA(M): The composition of two automorphisms B;C 2 G is again

an automorphism commuting with translations by two, hence BC 2 G: All operators B 2 G

satisfy T2 = B�1BT2 = B�1T2B; which implies T2B
�1 = B�1T2: Thereby we have shown that

B�1 2 G for all B 2 G: Hence, G is a subgroup of AutA(M); which proves our claim. 2

The next theorem tells us that the set of all �lter pairs is endowed with a group structure. In

fact, the following theorem shows that there exists a canonic bijection between �lter pairs and
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elements of the group G:

Theorem 5 Denote by G the group of all A-module automorphisms in M that commute with

even translations. Let (�; �) 2 M �M be a pair of �lters, then there exists a unique operator

B 2 G such that (�; �) = (B�0; B�1):

Proof. An A-module automorphism of M is completely determined by the image of a generating

set, cf. [33, x36]. Hence, any A-module automorphism B of the free module M commuting with

translations by two is completely determined by its image of (�0; �1): This proves uniqueness of

such an operator. The existence of such an operator is proved by de�ning B as

Bs = � � (Pe s) + (T�1 �) � (Po s):

This operator is indeed an A-module endomorphism of M that commutes with translations by

two. Since B maps the basis fT2k �0; T2k �1 j k 2 Zg onto the basis fT2k�; T2k � j k 2 Zg of M;

the mapping B is bijective, hence an automorphism. Therefore, we can conclude that B 2 G �

AutA(M): 2

4 Bases and Filter Banks

The connection between �lter pairs and synthesis �lters of perfect reconstruction �lter banks is

established in this section. In the following proposition we show that a pair of synthesis �lters of

a perfect reconstruction �lter bank is a �lter pair. A similar result was proved for vector spaces

by Chen and Vaidyanathan in [8].

Proposition 6 Denote by �; � the synthesis �lters of a perfect reconstruction �lter bank. Then

B = fT2k�; T2k� j k 2 Zg is a basis of the free A-module M:

Proof. It is clear that B is a generating set ofM: Suppose that B is not free, meaning that there

exists a non-trivial linear combination

X
k2Z

ak T2k�+
X
k2Z

bk T2k� = 0 (5)

with a �nite number of non-zero coe�cients ak; bk 2 A: Writing this relation in the z-domain, we

obtain: X
k2Z

akz
�2k�(z) +

X
k2Z

bkz
�2k�(z) = 0: (6)
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Denote by a(z); b(z) the Laurent polynomials
P

k2Z akz
�k and

P
k2Z bkz

�k respectively. Then

equation (6) can be written more brie
y as a(z2)�(z) + b(z2)�(z) = 0: Using the polyphase

decompositions (3), we deduce the following relation:

(a(z); b(z))

0
B@ �e(z) �o(z)

�e(z) �o(z)

1
CA = (a(z); b(z))Gt

p(z) = (0; 0):

Since �; � are synthesis �lters of a perfect reconstruction �lter bank, the matrix Gt
p(z) is an

element of GL(2; A[z; z�1]): Therefore, we can conclude that both a(z) and b(z) are identically

zero. Thus there can not exist a non-trivial linear combination (5). 2

The next proposition shows the other direction, namely that any �lter pair in the sense of De�-

nition 2 can be used as a pair of synthesis �lters of a perfect reconstructing �lter bank.

Proposition 7 Let (�; �) be a �lter pair. Then the corresponding polyphase matrix Gp(z) is an

element of GL(2; A[z; z�1]):

Proof. Suppose that there exists a non-trivial linear combination of the columns of Gp(z) :

a(z)

0
B@ �e(z)

�o(z)

1
CA+ b(z)

0
B@ �e(z)

�o(z)

1
CA = 0;

with non-zero a(z); b(z) 2 A[z; z�1]: It follows that

�
a(z2)�e(z

2) + b(z2)�e(z
2)
�
+ z

�
a(z2)�o(z

2) + b(z2)�o(z
2)
�
= 0;

which implies a(z2)�(z) + b(z2)�(z) = 0: Expanding the Laurent polynomials a(z) =
P

k akz
�k

and b(z) =
P

k bkz
�k ; then this equation may be formulated more explicitly as follows:

X
k2Z

akz
�2k�(z) +

X
k2Z

bkz
�2k�(z) = 0:

This implies that there exists a non-trivial linear combination
P

k2Z akT2k� +
P

k2Z bkT2k� = 0;

contradicting the basis property of the even translates of �; �: Therefore, the columns of Gp(z)

are linearly independent.

Similarly, if the columns of Gp(z) do not generate the free A[z; z�1]-module of column vectors,

then it follows that there exists a sequence in M that can not be generated by the even translates

of (�; �): This is again a contradiction to the basis property of T2k�; T2k�:
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Therefore, we have shown that the columns of Gp(z) are a basis of the free A[z; z�1]-module of

column vectors with entries in A[z; z�1]: It follows that the determinant of Gp(z) is a unit, hence

Gp(z) 2 GL(2; A[z; z�1]); cf. [33, Korollar 48.4]. This concludes our proof. 2

5 Properties of Filter Pairs

In this section we derive several properties of �lter pairs that turn out to be useful in later

sections. A question of intrinsic interest is the following: Given a �lter pair (�; �); what can be

said about other �lters 
 complementing � to a new �lter pair (�; 
)? This question was answered

by Sweldens [39] and by Vetterli and Herley [48] for �lters which have real or complex coe�cients.

For �lter pairs over arbitrary commutative rings A the answer is given by the following proposition:

Proposition 8 (Lifting) Let (�; �) 2M �M be a �lter pair. Then a �lter 
 2M complements

� 2M to a �lter pair (�; 
) if and only if it can be written in the following form:


(z) = �(z)�(z2) + �(z)�(z2);

where �(z) is an element of A[z; z�1] and �(z) is a unit in A[z; z�1]:

Proof. The polyphase matrices of (�; �) and (�; 
) are given by

G1

p(z) =

0
B@ �e(z) �e(z)

�o(z) �o(z)

1
CA ; G2

p(z) =

0
B@ �e(z) 
e(z)

�o(z) 
o(z)

1
CA ;

where �(z) = �e(z
2) + z�o(z

2); �(z) = �e(z
2) + z�o(z

2); and 
(z) = 
e(z
2) + z
o(z

2): Suppose

that (�; �) and (�; 
) are �lter pairs, then it follows from Proposition 7 that G1

p(z) and G2

p(z)

are elements of the group GL(2; A[z; z�1]): Hence, there exists a matrix T 2 GL(2; A[z; z�1])

satisfying G1

p(z)T = G2

p(z); namely T is the product of the inverse of G1

p(z) and of G2

p(z): This

matrix is of the following form:

T =

0
B@ 1 �(z)

0 �(z)

1
CA ; �(z) 2 A[z; z�1]; �(z) 2 U(A[z; z�1]);

as can be veri�ed directly by expanding the expression T = [G1

p(z)]
�1G2

p(z): Thus, the polyphase

components of 
 can be written in the form:


e(z) = �e(z)�(z) + �e(z)�(z); 
o(z) = �o(z)�(z) + �o(z)�(z):

11



Consequently, 
(z) is of the desired form 
(z) = �(z)�(z2) + �(z)�(z2):

Conversely, assume that we are given a �lter 
 of this form. Then the polyphase matrix corre-

sponding to the pair (�; 
) can be factored as follows:

G2

p(z) =

0
B@ �e(z) 
e(z)

�o(z) 
o(z)

1
CA =

0
B@ �e(z) �e(z)

�o(z) �o(z)

1
CA
0
B@ 1 �(z)

0 �(z)

1
CA = G1

p(z)T:

Since � is a unit, the determinant of T is a unit, implying T 2 GL(2; A[z; z�1]): Therefore, G2

p(z) is

in GL(2; A[z; z�1]); since it is the product of two invertible matrices. It follows from Proposition 6

that (�; 
) is a �lter pair. 2

A similar reasoning proves the following proposition:

Proposition 9 (Dual-Lifting) Let (�; �) 2 M � M be a �lter pair. Then a �lter 
 2 M

complements � 2M to a �lter pair (
; �) if and only if it can be written in the following form:


(z) = �(z)�(z2) + �(z)�(z2);

where �(z) is an element of A[z; z�1] and �(z) is a unit in A[z; z�1]:

Note that this is equivalent to say that the polyphase matrix of (
; �) factors as follows:0
B@ 
e(z) �e(z)


o(z) �o(z)

1
CA =

0
B@ �e(z) �e(z)

�o(z) �o(z)

1
CA
0
B@ �(z) 0

�(z) 1

1
CA :

We show later that the polyphase matrix can be factored in lifting and dual lifting steps if A is

a �eld. For later use in x9 we remark here that if both polyphase matrices are elements of the

group SL(2; A[z; z�1]) then the unit �(z) is necessarily 1 in the lifting and dual lifting matrix.

Assume now that A is an integral domain, that is, a non-trivial commutative ring with identity in

which zero is the only zero-divisor. It follows that A[z; z�1] is again an integral domain. Moreover,

all units of A[z; z�1] are of the form uzk ; where u is a unit in A and k is an integer, cf. [23, p. 95].

For integral domains we get the following consequence of the lifting proposition, which will be

essential in the parametrization of �lter pairs:

Corollary 10 (Dirac-Lifting) Let A be an integral domain. If (�0; 
) 2M �M is a �lter pair,

then 
 is of the form Po
 = b�2k+1 for some unit b 2 U(A) and some k 2 Z:

Proof. Since (�0; �1) is a �lter pair, the �lter 
 can be written in the form 
(z) = z�1�(z2)+�(z2);

where �(z) is a unit in A[z; z�1]:We assumed that A is an integral domain, therefore �(z) is of the

form �(z) = bz�k; b 2 U(A): It follows that 
(z) = bz�(2k+1)+ �(z2): Hence, Po
 = bz�(2k+1): 2
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Lemma 11 Let A be an integral domain. Let (�; �) be a �lter pair, and assume that � satis�es

� = Pe�; that is, all samples with odd index are zero in �: Then � is of the form b�2m; where b is

a unit in A and m is an integer.

Proof. The z-transform of � is of the form �(z) = �e(z
2): The polyphase matrix corresponding

to (�; �) is of the following form:

Gp(z) =

0
B@ �e(z) �e(z)

0 �o(z)

1
CA :

Since (�; �) is a �lter pair, it follows from Proposition 7 that the polyphase matrix Gp(z) is an

element of GL(2; A[z; z�1]): This means that the determinant of Gp(z) is a unit in A[z; z�1]; i. e.,

the product �e(z)�o(z) is of the form azk; where a 2 U(A); and k 2 Z: Since in a commutative

ring the product of two elements is a unit if and only if the elements are units, it follows that

�e(z) is of the form bzm; with b 2 U(A); and m 2 Z: 2

6 The Factorization Algorithm

Given a fundamental domain F = (2n; 2m+ 1) of Z=2Z and a matrix W 2 GL(2; A); we de�ne

an operator OW;F 2 G by

OW;F �2n = a�2n + b�2m+1; OW;F �2m+1 = c�2n + d�2m+1; W =

0
B@ a b

c d

1
CA 2 GL(2; A):

The action of OW;F on the other basis elements �k is determined by the commutation relation

[OW;F ; T2] = OW;F T2�T2OW;F = 0: In other words, the action of the operator OW;F on the basis

�n can be described by

OW;F �2n+2k = a�2n+2k + b�2m+1+2k; OW;F �2m+1+2k = c�2n+2k + d�2m+1+2k:

We abbreviate OW;F with F = (0; 1) by OW :

The purpose of this section is to prove the following theorem, which shows that every element

B 2 G can be factored into a chain of operators of the form OW;F or Tk: The proof is constructive

and in fact an algorithm if A is a computable �eld.
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Theorem 12 Let A be a �eld. Then any �lter pair (�; �) 2 M �M can be written in the form

(B�0; B�1); where B is a composition of a �nite number of operators of the form OW;F or Tk; with

W 2 GL(2; A); F = (2n; 2m+ 1); and n;m; k 2 Z:

We prove this theorem in three steps. In the �rst step we reduce the �lter pair (�; �) to the form

(�0; 
):We observed in Corollary 10 that 
 is then of a special form, namely Po
 = b�2k+1; where b

is a unit in A: In a second step we show that �lter pairs of this particular form (�0; 
) can reduced

to a �lter pair of the form (�0; �2k+1) by applying operators OW;F : In the �nal step we map this

�lter pair to (�0; �1):

De�nition 13 Let � be a sequence in M; l := min(supp(�)); and r := max(supp(�)): We de�ne

the length of this sequence � by r � l+ 1:

Lemma 14 (Reduction I) Let A be a �eld. A �lter pair (�; �) 2 M �M can be mapped to a

pair of the form (�0; 
) by applying a �nite number of operators of the form Tk or OW;F ; where

k 2 Z; W 2 GL(2; A); and F is a fundamental domain of Z=2Z:

Proof. We prove this lemma by induction on the length N of �: Without loss of generality we

may always assume that the support of � 2 M is contained in the interval [0; N � 1]; which can

be achieved by a translation Tk:

In case of length N = 1 we apply the operator OD; with D = diag(a�1; 1); to the �lter pair

(�; �) = (a�0; �); which leads immediately to a �lter pair of the form (�0; 
):

For N > 1 we see by Lemma 11 that Po� can not be the zero sequence, since this would force � to

be of length one. Denote by l := min(supp(Po �)) the smallest odd index l with non-zero sample

�( l ) 6= 0: We use the abbreviations a := �(0) and b := �(l): Consider the operator OW;F 2 G

associated to the fundamental domain F := (0; l) and the matrix

W :=

0
B@ b 0

�a 1

1
CA 2 GL(2; A):

We apply this operator to (�; �) and obtain the �lter pair (�0; �0) := (OW;F�;OW;F�): Since

W satis�es the relations (a; b)W = (0; b) and (c; 0)W = (b c; 0); the coe�cient �0(0) is zero and

the support of �0 is contained in [1; N � 1]: It follows that the length of the sequence �0 is less

than N: 2
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Lemma 15 (Reduction II) Suppose that (�0; 
) 2M �M is a �lter pair and assume that 
 is

a sequence of the form Po
 = u�2k+1; where u 2 U(A) and k 2 Z (recall that Corollary 10 assures

that this assumption on 
 is always satis�ed if A is a �eld or an integral domain). Then (�0; 
)

can be mapped to (�0; �2k+1) by applying a �nite number of operators of the form OW;F ; where

W 2 GL(2; A) and F is a fundamental domain of Z=2Z:

Proof. Suppose that 
 has a non-zero sample at the position 2n; where n 6= 0 (the other case

is discussed below). The idea is to apply an operator of the group G that �xes the sequence �0

(up to a multiplication with a unit) and that maps 
 to a sequence which has a support that is

strictly included in the support of the sequence 
:

Denote by b the value b = 
(2n): Let W be the following matrix W =
�

u 0

�b 1

�
, where u is a

unit according to our hypothesis. This matrix is an element of GL(2; A) and satis�es the relations

(b; u)W = (0; u) and (c; 0)W = (uc; 0): If we take the fundamental domain F = (2n; 2k+1); then

we claim that the operator OW;F has the desired properties.

Indeed, the operator OW;F maps the sequence �0 onto u�0: We note that

OW;F (
(2n)�2n + 
(2k+ 1)�2k+1) = u�2k+1 ;

since (
(2n); 
(2k+1)) = (b; u): Furthermore, we have by hypothesis (
(2n+m); 
(2k+1+m)) =

(� ; 0) on all even translates of the fundamental domain with m 2 2Z; m 6= 0: It follows from the

relations satis�ed by the matrix W that

OW;F

0
B@
(2n+m)�2n+m + 
(2k+ 1+m)| {z }

=0

�2k+1+m

1
CA = u 
(2n+m)�2n+m

holds for all m 2 2Z; m 6= 0:

The support of the resulting sequence OW;F 
 is thus strictly contained in the support of 
:

Using these operators, we can reduce successively the �lter pair (�0; 
) to a �lter pair of the form

B := (ui�0; d�0+ u�2k+1); where d 2 A and i 2 Z: Finally, we apply the operator OV;F associated

to the fundamental domain F = (0; 2k+ 1) and the matrix

V =

0
B@ u�i 0

�u�(1+i)d u�1

1
CA 2 GL(2; A):

This operator OV;F maps B to the desired form. 2
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Let now F be the fundamental domain F = (0; 2k + 1) where k is some integer. Denote by

OF
spr 2 G the \spreading operator" that maps (�0; �1) to (�0; �2k+1): The next lemma tells us that

this operator can be expressed with the help of the operators T1; T�1; and OS with S =

�
0 1

1 0

�
.

Consequently, the inverse of OF
spr can also be expressed by these operators. This proves the �nal

step of our theorem, since the inverse of the spreading operator maps (�0; �2k+1) to (�0; �1):

Lemma 16 Let F = (0; 2k+ 1); k 2 Z: Then the spreading operator OF
spr can be expressed by

(a) composing k-times OST�1; if k is non-negative.

(b) composing (�k)-times T1OS ; if k is negative.

Proof. (a) If k is zero, then there is nothing to prove. Let now k be positive and assume that our

claim holds for k� 1: We notice that O
(0;2k+1)
spr is equal to OST�1O

(0;2k�1)
spr ; which proves part (a).

(b) The case k = �1 follows from the identity O
(0;�1)
spr = T1OS : Let now k be smaller than �1

and assume that the claim holds for k + 1: It is easy to see that O
(0;2k+1)
spr equals T1OS O

(0;2k+3)
spr :

Therefore, part (b) follows by induction on �k: 2

To summarize, we have seen that a given �lter pair (�; �) can be reduced to the �lter pair (�0; �1):

The necessary reduction steps required only a �nite number of operators of the form OW;F or Tk:

Denote the composition of these operators by B�1; that is, (B�1�;B�1�) = (�0; �1). Notice that

the inverse operators of OW;F and Tk are given by OW�1;F and T�k respectively. Consequently,

the operator B with (�; �) = (B�0; B�1) is also a composition of operators OW;F and Tk; which

concludes our proof of Theorem 12. 2

A worked example illustrating these reduction steps can be found in x8.

7 Generating the Group G

Recall that there exists a bijection between �lter pairs and elements of the group G: This allows

us to deduce from Theorem 12 that all operators B 2 G can be composed by a �nite number of

operators of the form Tk or OW;F ; provided A is a �eld. In other words, the group G is generated

by these operators. In this section we want to derive a reduced set of generators for the group G:

More precisely, we want to prove the following theorem:
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Theorem 17 Let A be a �eld. The group G of all A-module automorphisms commuting with

even translations is generated by T1; and operators of the form OW ; W 2 GL(2; A): Moreover, all

operators B 2 G can be expressed as

TnOW1
T1OW2

� � �T1OWm
; where Wi 2 GL(2; A); Wi 6= I; n 2 Z; m 2 N:

Proof. We observe that each operator OW;F with fundamental domain F = (2n; 2m+ 1) can be

expressed as OW;F = OW;F 0 ; where F 0 = (0; 2m� 2n+1): Let now F be the fundamental domain

F = (0; 2k + 1) where k is some integer. We note that all operators OW;F with F = (0; 2k+ 1)

can be written as follows:

OW;F = OF
sprOW :

It follows from Lemma 16 that OF
spr can be expressed by means of the translations T1; T�1; and

the swap OS with S =
�

0 1

1 0

�
, which proves the �rst part of the theorem.

It remains to show that each operator B can be expressed in the form given in the theorem.

We note that B can be written as an alternating composition of Tk and OW ; since we have the

identities TmTn = Tn+m and OWOV = OVW : Furthermore, since T2 is in the center of G; we can

bring this alternating product to one of the following forms:

TnOW1
T1OW2

� � �T1OWm
or as TnOW1

T1OW2
� � �T1OWm

T1;

where Wi 2 GL(2; A) and n;m 2 Z; m > 0: Clearly, we may assume without loss of generality

that all matrices Wi di�er from the identity matrix.

The second form is a special case of the �rst form, since we can write T1 more complicated as

T1 = T�2OV T1OW T1OX T1OY ; where V; W; X; and Y are the following elements of GL(2; A) :

V :=

0
B@ 1 0

�1 1

1
CA ; W :=

0
B@ 1 �1

0 1

1
CA ; X :=

0
B@ 1 0

1 1

1
CA ; Y :=

0
B@ 1 1

0 1

1
CA :

It follows that

TnOW1
T1OW2

� � �T1OWm
T1 = Tn�2OW1

T1OW2
� � �T1OVWm

T1OW T1OX T1OY ;

which concludes the proof of the theorem. 2

The second part of the theorem gives a convenient (non-unique) parametrization of all �lter pairs.

Clearly, the theorem does imply the following parametrization of �lter pairs over integral domains:
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Corollary 18 Let A be an integral domain and denote by Quot(A) its quotient �eld. Then every

�lter pair (�; �) 2M �M can be obtained by applying some operator of the form

TnOW1
T1OW2

� � �T1OWm
; where Wi 2 GL(2;Quot(A)); Wi 6= I; n 2 Z; m 2 N;

to the �lter pair (�0; �1):

The claim of this corollary does not hold in general, if we restrict the matrices Wi to be elements

of GL(2; A):

As a further consequence of the proof of the theorem we note the following fact:

Corollary 19 Let A be an arbitrary commutative ring with identity. Denote by G the group of

all A-module automorphisms commuting with the even translations. Let H be the subgroup of G

generated by the operators Tk; and OW;F ; where k 2 Z; W 2 GL(2; A); and F is a fundamental

domain of Z=2Z: Then H is already generated by the operators T1 and OW ; W 2 GL(2; A):

Moreover, all operators in H can be expressed as

TnOW1
T1OW2

� � �T1OWm
; where Wi 2 GL(2; A); Wi 6= I; n 2 Z; m 2 N:

Theorem 17 assures that the group H coincides with G provided A is a �eld, thereby we obtain a

complete parametrization of �lter pairs; for other rings A we obtain at least a rich family of �lter

pairs by applying the elements of H to the �lter pair (�0; �1):

8 Examples

We give three examples in this section. The �rst one is meant to illustrate the reduction steps in

the proof of Theorem 12. The second example gives a parametrization of real-valued biorthogonal

�lters; and the third example is concerned with the construction of �lter pairs over the �nite �eld

GF(2):

Worked Example. Consider the following �lter pair [9] with values in the dyadic rationals:

� =
1

2
�0 � �1 +

1

2
�2; � = �

1

4
�0 +

1

2
�1 +

3

2
�2 +

1

2
�3 �

1

4
�4:

The �rst reduction step sets out to map the �lter pair (�; �) to a �lter pair of the form (�0; 
):

Following the algorithm described in the proof of Lemma 14 (Reduction I), we derive the operator
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OW3
T1OW2

T1OW1
; where the matrices Wi 2 GL(2;Q) are given by

W1 =

0
B@ �1 0

�1=2 1

1
CA ; W2 =

0
B@ �1=2 0

1 1

1
CA ; W3 =

0
B@ �2 0

0 1

1
CA :

It is easy to check that this operator maps (�; �) to the �lter pair (�0; 
) with


 = �2��1 +
7

2
�0 �

1

2
�2:

According to the second reduction step (Lemma 15), we have to apply �rst the operator OW4;F4

and then OW5;F5 ; which correspond the the fundamental domains F4 = (2;�1) and F5 = (0;�1)

of Z=2Z and the matrices

W4 =

0
B@ �2 0

1=2 1

1
CA ; W5 =

0
B@ �1=2 0

7=4 �1=2

1
CA :

The result of this second reduction is

(OW5;F5 OW4;F4�0; OW5;F5 OW4;F4
) = (�0; ��1):

The �nal reduction uses the inverse of the spreading operator O
(0;�1)
spr = T1OS ; i. e., the operator

OST�1; to map (�0; ��1) to the �lter pair (�0; �1): Upon inverting all operators and reversing the

order of composition, we �nally obtain the operator B which maps (�0; �1) to (�; �) :

B = OW�1

1

T�1OW�1

2

T�1OW�1

3

OW�1

4
;F

4

OW�1

5
;F

5

T1OS :

The Real Numbers R. Recall that all elements of the special linear group SL(2;R) can be

expressed as a product u(x)s(a)r(�) of the following matrices, cf. Lang [24, p. 238] or Segal [7]:

u(x) =

0
B@ 1 x

0 1

1
CA ; s(a) =

0
B@ a 0

0 a�1

1
CA ; r(�) =

0
B@ cos � sin �

� sin � cos �

1
CA ;

where x; a; � 2 R; a > 0:

Let Wi 2 SL(2;R) be the matrix

0
@ ai bi

ci di

1
A. Then we have

OW1
�0 = a1�0 + b1�1; OW1

�1 = c1�0 + d1�1:
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Thus the matrix W (x; a; �) = u(x)s(a)r(�) leads to a three parameter family of �lter pairs

(OW (x;a;�)�0; OW (x;a;�)�1); where an easy calculation shows that

OW (x;a;�) �0 = (a cos� � (x=a) sin �)�0 + (a sin � + (x=a) cos�)�1;

OW (x;a;�) �1 = (�a�1 sin �) �0 + (a�1 cos �)�1:

If we apply the operator OW2
T1OW1

to the �lter pair (�0; �1); then we obtain:

OW2
T1OW1

�0 = a1c2 ��2 + a1d2 ��1 + b1a2 �0 + b1b2 �1;

OW2
T1OW1

�1 = c1c2 ��2 + c1d2 ��1 + d1a2 �0 + d1b2 �1:

Using the parametrized matrices W (xi; ai; �i); with i = 1; 2; then a simple substitution yields the

following six parameter family of �lter pairs:

OW (x2;a2;�2)T1OW (x1;a1;�1)�0 = ��2 ��2 + ��1 ��1 + �0 �0 + �1 �1;

OW (x2;a2;�2)T1OW (x1;a1;�1)�1 = ��2 ��2 + ��1 ��1 + �0 �0 + �1 �1;

with

�
�2 =

(�a2
1
cos �1 + x1 sin �1) sin �2

a1a2
; �

�2 =
sin �1 sin �2

a1a2
;

�
�1 = �

(�a2
1
cos �1 + x1 sin �1) cos �2

a1a2
; �

�1 = �

sin �1 cos �2
a1a2

;

�0 = �

(a2
1
sin �1 + x1 cos �1)(�a

2

2
cos �2 + x2 sin �2)

a1a2
; �0 = �

cos �1(�a
2

2
cos �2 + x2 sin �2)

a1a2
;

�1 =
(a2

1
sin �1 + x1 cos �1)(a

2

2
sin �2 + x2 cos �2)

a1a2
; �1 =

cos �1(a
2

2
sin �2 + x2 cos �2)

a1a2
:

This gives a convenient parametrization of biorthogonal real-valued �lter pairs. For the sake of

simplicity we restricted ourselves to matrices with determinant one, ignoring a further scaling

factor. The submanifold obtained by �xing the parameters xi = 0 and ai = 1 parametrizes the

real-valued QMFs, see for example [14, 15].

The Finite Field GF(2). The �nite �eld with two elements GF(2) is very attractive from

a computational point of view, since the addition in this �eld can be realized by an `exclusive-

or ' gate and the multiplication by an `and ' gate. Furthermore, the storage of one �eld element

requires only a single one-bit register. Therefore, this arithmetic is particularly suitable for digital

circuit or binary computer implementations.
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The general linear group over GF(2) is of order six; its elements are given by the following matrices:

M1 :=

0
B@ 1 0

0 1

1
CA ; M2 :=

0
B@ 1 1

0 1

1
CA ; M3 :=

0
B@ 1 0

1 1

1
CA ;

M4 :=

0
B@ 0 1

1 0

1
CA ; M5 :=

0
B@ 0 1

1 1

1
CA ; M6 :=

0
B@ 1 1

1 0

1
CA :

If we apply the operator OM2
T1OM3

to the �lter pair (�0; �1); then we obtain

� = OM2
T1OM3

�0 = OM2
T1�0 = OM2

��1 = ��1;

� = OM2
T1OM3

�1 = OM2
T1(�0 + �1) = OM2

(��1 + �0) = ��1 + �0 + �1:

Clearly, a sequence over GF(2) is completely determined by its support. For example, the �lter

pair (T1�; T1�) is determined by supp(T1� ) = f�2g and supp(T1� ) = f�2;�1; 0g: We give

in Appendix A a table of �lter pairs (�; �) with small support; this table lists analysis and

synthesis �lters for several operators. The interested reader may check that our calculation of

T1� = T1OM2
T1OM3

�0 and T1� = T1OM2
T1OM3

�1 coincides with the tabulated sequences.

9 Lifting Steps and Euclid's Algorithm

There exist numerous techniques to reduce the computational complexity of a �lter bank. We

discuss only one technique here, namely the factorization of �lters into lifting (or ladder) steps.

Lifting techniques were advocated by Sweldens [39, 38] and others [3, 18]. The basic idea is to

avoid convolutions with lengthy �lters using a network of small length �lters.

Daubechies and Sweldens showed in a recent paper [12] that all real-valued �lter pairs can be

factored into lifting and dual lifting steps. We extend their approach to arbitrary �elds and show

that it can not be generalized further to integral domains which fail to be �elds.

Assume that we are given a Laurent polynomial f 2 A[z; z�1] of the form f(z) =
Pn

k=m akz
k ;

where both an and am are non-zero. Then an is called the leading coe�cient of f and is denoted

by lc(f); the corresponding exponent n is denoted by lcdeg(f): We de�ne the degree of a Laurent

polynomial f by

ldeg(f) := lcdeg f(z) + lcdeg f(1=z):
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If A is a �eld, then A[z; z�1] is an Euclidean domain, that is, for all f; g 2 A[z; z�1]; g 6= 0; there

exist elements q; r 2 A[z; z�1] with the property f = q g+ r and either r = 0 or ldeg(r) < ldeg(g):

Thus, the greatest common divisor of two elements x0; x1 2 A[z; z�1] exists and can be determined

by the well-known Euclidean algorithm by successive application of division with remainder:

x0 = q1 x1 + x2; ldeg(x2) < ldeg(x1)

x1 = q2 x2 + x3; ldeg(x3) < ldeg(x2)

...

xn�2 = qn�1 xn�1 + xn; ldeg(xn) < ldeg(xn�1)

xn�1 = qn xn:

It is easily seen that xn = gcd(x0; x1): Let us rewrite the equations xi = qi+1 xi+1+xi+2 in terms of

matrices. Denote by Ei the matrix

0
@ 0 1

1 �qi

1
A and let xn+1 := 0; then the Euclidean remainder

scheme yields: 0
B@ xj

xj+1

1
CA = Ej � � � E1

0
B@ x0

x1

1
CA ; for 1 � j � n;

and in particular 0
B@ xn

0

1
CA = En � � � E1

0
B@ x0

x1

1
CA : (7)

The Euclidean algorithm is the main tool in the constructive proof of the following theorem:

Theorem 20 Let A be a �eld, let (�; �) 2 M �M be a �lter pair with polyphase matrix Hp(z):

Then there exist Laurent polynomials �i(z) 2 A[z; z�1] such that Hp(z) can be written as an

alternating product of lifting and dual lifting matrices, followed by a diagonal matrix:

Hp(z) =
mY
i=1

2
64
0
B@ 1 �2i(z)

0 1

1
CA
0
B@ 1 0

�2i+1(z) 1

1
CA
3
75
0
B@ 1 0

0 d

1
CA ; (8)

where d = detHp(z):

Proof. Multiplication of the polyphase matrix Hp(z) with the diagonal matrix diag(1; d�1);

d = detHp(z); yields an element of the special linear group SL(2; A[z; z�1]): Therefore, we may

assume from now on that the polyphase matrices are elements of SL(2; A[z; z�1]): We proceed to

show how the Euclidean algorithm allows us to factor the polyphase matrix Hp(z) in lifting and

dual lifting steps.
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The polyphase components �e(z) and �o(z) of � are coprime, since a common factor would divide

the determinant of the polyphase matrix. Let x0 := �e(z) and x1 := �o(z): Then the Euclidean

algorithm (7) allows us to write the vector (�e(z); �o(z))
t in the following form:

E�1
1

� � � E�1
n

0
B@ 1

0

1
CA =

0
B@ �e(z)

�o(z)

1
CA ; where E�1

i =

0
B@ qi 1

1 0

1
CA : (9)

The matrices E�1
i can be written as

E�1
i

a:
=

0
B@ 1 qi

0 1

1
CA
0
B@ 0 1

1 0

1
CA b:
=

0
B@ 0 1

1 0

1
CA
0
B@ 1 0

qi 1

1
CA : (10)

Suppose that n is even, then we can extend (9) to a matrix in SL(2; A[z; z�1]) upon setting

H0

p(z) = E�1
1

� � � E�1
n

0
B@ 1 0

0 1

1
CA :

If we subsitute the matricesE�1
i with even index i by the factored form given in (10, a.) and replace

the matrices E�1
i with odd index i by the factored form (10, b.), then we obtain a factorization

of H0

p(z) in lifting and dual lifting matrices. A single lifting from H0

p (z) to Hp(z) then leads to

the desired factorization of Hp(z):

Suppose that n is odd, then we can extend (9) to a matrix in SL(2; A[z; z�1]) upon setting

H0

p(z) = E�1
1

� � � E�1
n

0
B@ 1 0

0 �1

1
CA :

If we replace E�1
i with even index i by the factored form (10, a.), substitute all E�1

i with odd

index i < n by the factored form (10, b.), and write

E�1
n

0
B@ 1 0

0 �1

1
CA =

0
B@ qn �1

1 0

1
CA =

0
B@ 1 qn � 1

0 1

1
CA
0
B@ 1 0

1 1

1
CA
0
B@ 1 �1

0 1

1
CA ;

then we obtain a factorization of H0

p(z) in lifting and dual lifting steps. Again, a single lifting

step is necessary to recover Hp(z) from H0

p (z): This completes the proof. 2

The theorem essentially comes down to saying that the group SL(2; A[z; z�1]) is generated by

elementary matrices, i. e., matrices that di�er from the identity matrix by at most one non-zero

o�-diagonal entry. It is well-known that the special linear group over any Euclidean domain is
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generated by elementary matrices, see e. g. [33, Satz VI.B.6]. We gave the full proof, since it yields

a simple algorithm to construct a network of small length �lters. The above proof di�ers only in

detail from the proof given in [12] for the special linear group with entries in R[z; z�1]:

We discuss brie
y the bene�t of the factorization in lifting steps. A single decomposition step

amounts to convolve the even and odd part of the signal with the �lters �e(z); �e(z) and �o(z);

�o(z) respectively. Thus, the standard algorithm requires at most

ldeg �e(z) + ldeg �o(z) + ldeg �e(z) + ldeg �o(z) + 4

multiplications.

The Euclidean representation of x0; x1 is given by the sequence of quotients qi and the greatest

common divisor: (q1; : : : ; qn; xn): The sequence

(d1; : : : ; dn; g) := ( ldeg q1; : : : ; ldeg qn; ldeg xn )

is the corresponding degree pattern. Denote by N0 and N1 the degrees of the Laurent polynomials

x0; x1: It can be shown that the \typical" degree pattern of two elements x0; x1 2 A[z; z�1] with

N0 > N1 is of the form (N0 �N1; 1; : : : ; 1; 0); provided that A is a �eld, cf. [4].

Assume now that ldeg � � ldeg � (otherwise exchange the rôle of � and �). Consider a �lter

pair (�; �) with ldeg�(z) = 2N and ldeg � = 2M and assume that their polyphase components

have the degrees ldeg �e(z) = N; ldeg�o(z) = N � 1; ldeg �e(z) = M; and ldeg �o(z) = M � 1:

Thus, the Euclidean algorithm applied to �e(z); �o(z) usually will need N steps. Consequently,

the convolutions with the �lters qi; 1 � i � N; typically need 2N multiplications. The �nal lifting

step is realized with a �lter of degree M � N and therefore can be implemented with at most

M �N + 1 multiplications. The diagonal matrix yields a futher multiplication. In summary, we

typically needM+N+2 multiplications for the lifting implementation which compares favourably

with the 2M + 2N + 2 multiplications for the standard implementation!

10 Conclusion

We presented a parametrization of �lter pairs. We proved that this parametrization allows to

generate all �lter pairs with values in a �eld A by applying to (�0; �1) a �nite number of translation

operators or operators OW associated to matrices of the general linear group W 2 GL(2; A):
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This result extends to integral domains A; provided that we allow operators OW associated to

matrices of the general linear group over the quotient �eld W 2 GL(2;Quot(A)): A complete

parametrization of all real-valued biorthogonal �lters was obtained as a special case. We showed

that in general it is possible to reduce the computational complexity of a two-channel �lter bank

by a factorization into lifting steps, assuming that A is a �eld.
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A Filter Pairs over GF(2)

Table 1 lists operators, analysis �lters (e�; e�); and synthesis �lters (�; �) for sequences over GF(2):

The operator B is given in the �rst column. The last two columns list the support of the synthesis

�lters (�; �) = (B�0; B�1): The corresponding analysis �lters (e�; e�) are given in the second and

third column of the table.
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Table 1: Table of some analysis and synthesis �lter sequences over GF(2):

Operator supp( e� ) supp( e� ) supp(� ) supp( � )

T1OM2
1 0; 1 �1; 0 0

T1OM3
0; 1 0 �1 �1; 0

T1OM4
0 1 0 �1

T1OM5
0; 1 1 0 �1; 0

T1OM6
0 0; 1 �1; 0 �1

T1OM2
T1OM2

2; 3 1; 2; 3 �2;�1; 0 �1; 0

T1OM2
T1OM3

1; 2; 3 1 �2 �2;�1; 0

T1OM2
T1OM4

1 2; 3 �1; 0 �2

T1OM2
T1OM5

1; 2; 3 2; 3 �1; 0 �2;�1; 0

T1OM2
T1OM6

1 1; 2; 3 �2;�1; 0 �2

T1OM3
T1OM2

2 0; 1; 2 �3;�2;�1 �1

T1OM3
T1OM3

0; 1; 2 0; 1 �3;�2 �3;�2;�1

T1OM3
T1OM4

0; 1 2 �1 �3;�2

T1OM3
T1OM5

0; 1; 2 2 �1 �3;�2;�1

T1OM3
T1OM6

0; 1 0; 1; 2 �3;�2;�1 �3;�2

T1OM4
T1OM2

3 0; 3 �3; 0 0

T1OM4
T1OM3

0; 3 0 �3 �3; 0

T1OM4
T1OM4

0 3 0 �3

T1OM4
T1OM5

0; 3 3 0 �3; 0

T1OM4
T1OM6

0 0; 3 �3; 0 �3

T1OM5
T1OM2

3 0; 1; 3 �3;�2; 0 0

T1OM5
T1OM3

0; 1; 3 0; 1 �3;�2 �3;�2; 0

T1OM5
T1OM4

0; 1 3 0 �3;�2

T1OM5
T1OM5

0; 1; 3 3 0 �3;�2; 0

T1OM5
T1OM6

0; 1 0; 1; 3 �3;�2; 0 �3;�2

T1OM6
T1OM2

2; 3 0; 2; 3 �3;�1; 0 �1; 0

T1OM6
T1OM3

0; 2; 3 0 �3 �3;�1; 0

T1OM6
T1OM4

0 2; 3 �1; 0 �3

T1OM6
T1OM5

0; 2; 3 2; 3 �1; 0 �3;�1; 0

T1OM6
T1OM6

0 0; 2; 3 �3;�1; 0 �3
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