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ABSTRACT

In this paper we give a brief introduction to �lter banks over commutative rings. In contrast to �lter banks over the
real numbers, we employ �nite ring arithmetic to control the number of bits in the signal representations. This way
we avoid the coe�cient swell problem that is preeminent in rings of characteristic zero. We derive decompositions
for images that are tailored to dedicated hardware implementations. These decompositions reduce the size of line-
bu�ers which dominate the silicon area in integrated circuit implementations. As an application, we derive a lossless
compression scheme for 8 bit monochrome images using wavelet �lters with values in the ring Z=256Z.
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1. INTRODUCTION

We investigate wavelet based methods for lossless compression of images that are well-suited for realization in
dedicated hardware. There is a natural demand for such compression methods. For example, in Germany it is legally
obliged to store radiological images without loss over several years.

Most known lossy wavelet based compression schemes can be subdivided into the three steps transformation,

quantization, and entropy coding, cf. [1, chapter 7]. The transformation and the entropy coding steps are both
invertible, but the quantization has to be omitted to achieve lossless compression. Certainly, the implementation of
the wavelet transform has to ensure that the invertibility is not a�ected by round-o� errors. This suggests to consider
rings and �elds that di�er from the real or complex numbers allowing �xed-point arithmetic. Thus, a natural choice
are �lters with dyadic rational or integer coe�cients.

However, a serious disadvantage of �lter banks over rings of characteristic zero is that more and more bits are
needed to represent the signal values in successive decomposition steps, a phenomenon known in computer algebra
as intermediate coe�cient swell. For example, applying a dyadic rational biorthogonal Coifman wavelet �lter pair2

of degree 3 to a gray-scale image with 8 bits per pixel requires about 32 bits per coe�cient after a few decomposition
steps.

One way to get around the coe�cient swell problem is to employ �nite �eld or �nite ring arithmetic. These
computational structures allow to control the \amplitudes" of all signals and are extensively used for example in
error correcting codes3,4 and in cryptographic schemes.5,6 The use of �lter banks over �nite �elds in error control
code applications were proposed by Sarkar and Poor.7,8 Vaidyanathan suggested to use �lter banks over �nite �elds
in data encryption schemes.9 Lossless compression of binary images with the help of �lter banks over the �nite �eld
with two elements were proposed by Swanson and Tew�k10 and by Johnston.11 These applications motivate the
study of �lter banks over commutative rings.

2. FILTERBANKS OVER COMMUTATIVE RINGS

In this section we discuss two-channel �lter banks for signals with values in a commutative ring A (all rings are
assumed to be associative and to contain an identity element; moreover, we assume that A is non-trivial, that is,
1 6= 0). Later we will impose that A is �nite, but the theory sketched in this section can be developed without this
restriction.12 Filter banks over commutative rings are a natural generalization of �lter banks over the real numbers.
Therefore, many statements below are reminiscent of the special case A = R, the real numbers.



Signals. We assume that the analyzed signals are elements of the free A-module of �nitely supported sequences

M =
�
f :Z! A

�� j supp(f) j <1
	
:

The standard basis B = f �k j k 2 Zg of this module is given by the delta functions �k:Z! A, where

�k(x) :=

�
1 if x = k;

0 if x 6= k:

Thus, any signal s 2M can be expressed formally as s(x) =
P

k2Z s(k)�k(x), where all but �nitely many coe�cients
s(k) are zero.

z-Transform. Let A[z; 1=z] be the A-algebra of Laurent polynomials in the indeterminate z. Recall that there
is an A-module isomorphism from M onto A[z; 1=z] induced by �k 7! z�k: We refer to this isomorphism as the
z-transform. Thus, the z-transform s(z) of a signal s 2M is explicitly given byX

k2Z

s(k) �k(x) 7�! s(z) =
X
k2Z

s(k) z�k:

We interpret signals and �lters freely as elements of M or A[z; 1=z], whatever viewpoint is more convenient.

Decimation Operator. The decimation operator [#2] is de�ned (as usual) by

[#2] :

�
A[z; 1=z] �! A[z; 1=z];
a(z) 7�! ae(z);

with a(z) = ae(z
2) + zao(z

2):

Two-Channel Filter Banks. Consider the two-channel �lter bank as illustrated in Figure 1. We assume that
the analysis �lters e�; e� and the synthesis �lters �; � are all elements of the A-module M , thus all �lters have �nite
impulse response. We want to derive now necessary and su�cient conditions on these �lters that ensure perfect
reconstruction [ in the sense that on input of an arbitrary signal s 2M the output of the �lter bank ŝ 2M coincides
with s ].

e�(z)

�(z)

�(z)

e�(z) #2
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Figure 1. Two-channel �lter bank for signals with values in a commutative ring A.

Analysis. Let s(z) 2 A[z; 1=z] be an arbitrary signal. The output of the analysis step may be described by the

convolutions e�(z)s(z) and e�(z)s(z), followed by decimations. Thereby we obtain two signals

d�(z) = [#2] e�(z)s(z) and d�(z) = [#2] e�(z)s(z): (1)

The intermediate results d�(z) and d�(z) in equation (1) can be expressed more explicitly with the help of the
polyphase components of the signal and of the �lters. Let

s(z) = se(z
2) + zso(z

2); e�(z) = e�e(z2) + z�1e�o(z2); e�(z) = e�e(z2) + z�1 e�o(z2)



be the decomposition according to cosets of A[z2; 1=z2] in A[z; 1=z] (note that we used di�erent coset representatives
for the signal and for the �lters for later convenience). The analysis step can now be formulated as follows:

(se(z); so(z))Hp(z) = (d�(z); d�(z)) ; where Hp(z) =

 e�e(z) e�e(z)e�o(z) e�o(z)
!
: (2)

The matrix Hp(z) is called the polyphase matrix associated with the �lter pair e�; e�. Polyphase matrices are of
fundamental importance in the analysis of multirate systems.

Synthesis. The analysis stage produces the signals d�; d�. The rate of these signals is expanded by inserting zero-
valued samples between adjacent samples. The result of the rate expansion can be described by ["2]d�(z) = d�(z

2)
and ["2]d�(z) = d�(z

2). These sequences d�(z
2); d�(z

2) are �ltered with � and � respectively. The synthesis step
thus yields a signal ŝ given by

ŝ(z) := �(z) d�(z
2) + �(z) d�(z

2): (3)

Let
�(z) = �e(z

2) + z�o(z
2); �(z) = �e(z

2) + z�o(z
2); ŝ(z) = ŝe(z

2) + zŝo(z
2):

Using these decompositions, one can express equation (3) as follows:

ŝe(z
2) + zŝo(z

2) =
�
�e(z

2)d�(z
2) + �e(z

2)d�(z
2)
�

+ z
�
�o(z

2)d�(z
2) + �o(z

2)d�(z
2)
�
:

Comparing coe�cients on the left and right hand side thus yields the following description of the synthesis �lter
bank in polyphase form:

(d�(z); d�(z))G
t
p(z) = (ŝe(z); ŝo(z)); where Gp(z) =

�
�e(z) �e(z)
�o(z) �o(z)

�
: (4)

Perfect Reconstruction. The analysis of the decomposition and recomposition steps did not reveal any conditions
on the characteristic of the ring so far. This characteristic free approach via polyphase matrices yields the following
result on perfect reconstruction �lter banks:

Theorem 2.1. Let e�; e� 2M be analysis �lters of a two-channel �lter bank with polyphase matrix Hp(z). A perfect

reconstructing synthesis �lter pair �; � 2M exists for e�; e� 2M i� the polyphase matrix Hp(z) is an element of the

general linear group GL(2; A[z; 1=z]).

Proof. If we combine the equations (2) and (4), then the perfect reconstruction requirement ŝ(z) = s(z) for
all signals s 2 A[z; z�1] is equivalent to Hp(z)G

t
p(z) = I: Thus Hp(z) has a right inverse. Since A[z; z�1] is a

commutative ring, this shows that the determinant detHp(z) is a unit in A[z; z�1]. A matrix over a commutative
ring is invertible i� its determinant is a unit, cf. [13, Korollar 48.3] or [14, III x8.3 Prop. 5]. This implies that Hp(z)
is an element of GL(2; A[z; z�1]): The other direction is trivial. 2

Remark 2.2. The same style of argument can be used for the M -channel case. An M -channel �lter bank allows

perfect reconstruction (with FIR �lters) i� Hp(z) 2 GL(M;A[z; 1=z]).

Remark 2.3. Another approach to perfect reconstruction �lter banks makes use of modulation matrices. These

matrices are obtained from the polyphase matrix by multiplication with a \diagonal delay matrix" and with a Fourier

matrix, cf. [15, p. 310]. This approach can only be used over rings that support this Fourier matrix. In the two-channel

case this means that the modulation matrix approach is restricted to rings where 2 is a unit.

Much more can be said about �lter banks over commutative rings. We have a good structural knowledge in the
case where A is a �eld (�nite or not).12 In particular, there exists a complete parameterization. Moreover, we know
how to factor wavelet �lters into lifting (or ladder) steps.16 Matters get more di�cult when we consider commutative
rings that fail to be �elds. For example, it can be shown that a factorization into lifting steps is not possible over the
integers.17 However, the basic principles of �lter banks over some commutative ring are as simple as in the special
case of real numbers.



3. SOME FILTER EXAMPLES

In this section we illustrate the generation of �lters. We choose the dyadic rationals and the integers modulo 256
as examples. The ring of dyadic rationals is obtained from the integers by localizing at 2. Thus, the elements of
this ring are given by quotients a=2b, a; b 2 Z; b � 0. Filters with coe�cients in the dyadic rationals Z[1=2] allow
implementations with �xed-point arithmetic, which explains the considerable interest of circuit designers in these
�lters. The ring of integers modulo 256 is a \natural" candidate for the representation of pixels in 8 bit monochrome
images. We will use this ring in the lossless image compression application.

Dyadic Rationals Z[1=2]. A simple way to generate numerous examples of these �lters is as follows. Consider
the group SL(2;Z[1=2]). This group has the presentation (cf. Serre [18, p. 81]):

SL(2;Z[1=2])�=


S; T; S2

�� S4 = 1; S2 = S2
2 = (ST )3 = (S2T

2)3; STS�1 = S2T
4S�1

2

�
;

with

S =

�
0 1

�1 0

�
; T =

�
1 0
1 1

�
; S2 =

�
0 1=2

�2 0

�
:

The general linear group GL(2;Z[1=2]) is given by the semidirect product of SL(2;Z[1=2]) with the group H = hU; V i
generated by the diagonal matrices

U =

�
1=2 0
0 1

�
; V =

�
�1=2 0

0 1

�
:

Thus GL(2;Z[1=2]) is generated by the matrices S; T; U; and V (note that S2 can be expressed as S2 = USU�1).
Finally, take the matrices of GL(2;Z[1=2]) and the delay matrix

D =

�
0 z�1

1 0

�
:

These matrices generate a subgroup G = hS; T; U; V;Di of the group GL(2;Z
�
1
2

�
[z; 1=z]). Any matrix in G gives a

polyphase matrix and hence a �lter with dyadic rational coe�cients. For example, the polyphase matrix Hp(z) given

by Hp(z) = U�1T�1DTU leads to the �lter pair e�(z); e�(z):�e�(z); e�(z)� = (1; z�1)Hp(z
2) = (1; z�1)

�
z�2 2z�2

(1� z�2)=2 �z�2

�
=

�
1

2
z�1 + z�2 +

1

2
z�2 ; 2z�2 � z�3

�
:

Finite Ring Z=256Z. The canonical group homomorphism SL(2;Z)! SL(2;Z=256Z), induced by Z! Z=256Z,
x 7! (x mod 256), is surjective. The group SL(2;Z) is generated by the matrices S; T given in the previous example.
Hence, SL(2;Z=256Z) is generated by the image of the generators S and T under the canonical homomorphism.
Thus, the general linear group GL(2;Z=256Z) is generated by S; T and the diagonal matrices��

d 0
0 1

� ���� d 2 U (Z=256Z)

�
; where U (Z=256Z) denotes the units of the ring Z=256Z:

Again, a simple way to generate polyphase matrices in GL(2;Z=256Z[z; 1=z]) is to take products of matrices in
GL(2;Z=256Z) and powers of the delay matrix D (notation being as in the previous example). For example, the
product of T�1, S, and the diagonal matrix d = diag(�1; 1) gives the polyphase matrix

Hp(z) = T�1 S diag(�1; 1) =

�
1 0

�1 1

��
0 �1
1 0

��
�1 0
0 1

�
=

�
0 1
1 �1

�
2 GL(2;Z=256Z[z; 1=z]):

The �lter pair ea(z);eb(z) corresponding to this polyphase matrix is given by�ea(z);eb(z)� = (1; z�1)Hp(z
2) = (1; z�1)

�
0 1
1 �1

�
=
�
z�1; 1� z�1

�
:

We will use this particularly simple �lter pair in our compression application.
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Figure 2. This �gure shows the usual tensor �lter approach on the left side. A hardware optimized approach is
shown on the right.
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Figure 3. A realization of the right side of Figure 2 with �lter pair ea(z) = z�1 and eb(z) = 1� z�1.

4. ARCHITECTURES

In this section we derive architectures for the decomposition of images by successively �ltering rows and columns
respectively. Our main interest is to �nd a decomposition structure that is amenable to VLSI implementation.

We consider 8 bit monochrome images. Lossless compression is basically achieved by �rst transforming the image
with a �lter bank followed by arithmetic encoding of the individual subbands. A natural choice for 8 bit images is
to employ Z=256Z arithmetic. We use the simple �lters (ea(z);eb(z)) = (z�1; 1� z�1) in order to minimize the wrap-
around e�ects due to modular arithmetic. Note that in two's complement number representation the subtraction
modulo 256 can be realized by a single subtractor, cf. [19].

Assume that the image signal is fed into the circuit row-by-row. A horizontal decomposition is realized as follows.
The �rst �lter, a simple dirac sequence, and the �rst decimation step just select every other sample. The second
�lter subtracts neighboring samples and the corresponding decimation step selects every other of these di�erences.
A vertical decomposition with these �lters is more expensive as it requires one linebu�er to compute the di�erence
of vertically neighoring samples.

In the usual tensor product approach the horizontal �ltering is followed by a vertical �ltering of both subbands,
as is shown in Figure 2 (left). Unfortunately, this requires two linebu�ers in order to compute the vertical di�erences.
Only one linebu�er is necessary in the decompostion shown in Figure 2 (right). As the linebu�ers occupy most of
the silicon area, this leads to considerable savings. The simulation results in Table 2 show that both decomposition
types yield comparable compression e�cieny. The output of the dirac \low-pass" �lter (marked with an asterisk in
Figure 2) is transformed recursively using the same scheme. The output of the �lter bank after a single decomposition
step is illustrated in Figure 6.

Figure 3 sketches the structure of one decomposition step. The circuit consists of two modulo 256 subtracters
and a linebu�er. The linebu�er stores one line of the downsampled image (output of �lter ea). Output 2 is used as
input signal for the next recursive decomposition. The size of the linebu�ers decreases logarithmically with each
decomposition step. Figure 7 shows the �nal layout for three decomposition steps. The layout is designed for a 1�
CMOS process. The linebu�ers are composed of static 8-bit registers (each 8-bit register is of size 80 � 250�2). A
decomposition step can be realized with two subtractors (250 � 150�2), a line bu�er, and one additional register.



The architecture is fully scaleable and all wireing channels are integrated in the base-cells mentioned above. In many
applications it may be advantageous to use dynamic registers, reducing the area consumption considerably.

5. LOSSLESS COMPRESSION

The �rst step employs a �lter bank to reduce the entropy of the image signal. We use the �lter pair described in the
previous section. The distribution of the coe�cients in a typical subband is shown in Figure 4. One observes that
most of the coe�cients are \near" zero and many possible values do not occur at all. The individual subbands are
entropy encoded using a technique similar to lossless JPEG.20
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Figure 4. This �gure shows the distribution of coe�cients in a typical subband.

We subdivide the range of the coe�cients into buckets of di�erent size. A bucket is a �nite ordered set of coe�cient
values. Each coe�cient value can be represented uniquely by bucket number and position. More concretely, we use
the buckets in Table 1. For instance, the value 22 is represented by bucket 11 and o�set 3 = (011)2. Buckets are
encoded with an adaptive model conditioned by several contexts.21,22 The context is computed by averaging the
bucket numbers of the neighboring pixels, as shown in Figure 5. The o�sets are encoded bitwise using a binary
model. Note that the number of these bits depends on the size of the bucket. A hardware implementation of an
arithmetic coder was published in [23].

b

xa

c d

Figure 5. The context for encoding pixel x is computed by averaging the bucket numbers of pixels a; : : : ; d.

Table 2 shows compression results for various images. Our methods U3 and HW3 perform better than GIF and
GNU ZIP for all test images. Lossless JPEG performs better on the images clock2, modern, and cathedral. Note that
for some images the simpli�ed hardware implementation HW3 performs even better than the usual decomposition
scheme U3.

6. CONCLUSIONS

We applied �lter banks over �nite rings to lossless compression of monochrome images. Our method outperforms
standard compression methods. We expect further improvements by introducing prediction as used in the S+P



bucket ordered value set
0 0

1 1, -1
2 2, -2

3 3, -3
4 4, -4

5 5, -5, 6, -6
6 7, -7, 8, -8

7 9, -9, 10, -10
8 11, -11, 12, -12

9 13, -13, 14, -14, 15, -15, 16, -16
10 17, -17, 18, -18, 19, -19, 20, -20

11 21, -21, 22, -22, 23, -23, 24, -24
12 25, -25, 26, -26, 27, -27, 28, -28

13 29, -29, 30, -30, . . . , 36, -36
14 37, -37, 38, -38, . . . , 44, -44
15 45, -45, 46, -46, . . . , 52, -52

16 53, -53, 54, -54, . . . , 60, -60
17 61, -61, 62, -62, . . . , 76, -76

18 77, -77, 78, -78, . . . , 92, -92
19 93, -93, 94, -94, . . . , 108, -108

20 109, -109, 110, -110, . . . , 124, -124
21 125, -125, 126, -126, 127, -127, 128

Table 1. Buckets used for the encoding of coe�cient values.

LJPG GNUZIP GIF U3 HW3

window 3.665 3.553 4.135 3.254 3.265
clock 4.047 3.718 4.357 3.694 3.679

clock2 4.814 5.466 6.504 4.894 4.905
balconies 4.004 4.096 4.655 4.040 3.983

gable 4.692 4.712 5.687 4.422 4.359
old window 4.691 4.556 5.192 4.372 4.325

modern 3.846 4.155 4.715 4.001 3.926
cathedral 5.743 6.403 7.997 5.859 5.852

windmill 4.395 4.394 5.188 4.158 4.057
mission 4.084 3.963 4.626 3.698 3.587

Table 2. A comparison of di�erent lossless compression schemes for various images. The table entries denote the
average number of bits per pixel in the compressed image. The left side shows the standard compression methods
lossless JPEG (LJPG), GNU ZIP, and GIF. Our compression schemes are shown on the right side, namely the usual
deomposition with three recursion steps (U3) and the hardware optimized scheme (HW3) as implemented.



Figure 6. The original `clock' image is shown on the left. The output of the usual decomposition in shown in the
middle image. The right image shows the output of the hardware-optimized decomposition.

Figure 7. The layout for a decomposition of recursion depth three. The design is for a 1� CMOS technology.



transform.24 Generalizing the S+P transform, there is another promising research direction using lifting techniques
to construct non-linear integer-to-integer wavelet transforms.25 Further applications of �lter banks over commutative
rings12 still need to be explored.
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