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Abstract. Computing the Discrete Fourier Transform (DFT) of signals

over some �nite �eld Fq often requires an extension to a large �eld Fqn

containing an appropriate primitive root of unity. The Algebraic Discrete
Fourier Transforms (ADFTs) avoid the extension of the base�eld Fq and

can be used to compute the spectrum of the DFT. We derive a com-

plete parametrization of ADFT matrices and show how this knowledge
can be employed to derive VLSI realizations with low implementation

complexity.

1 Introduction

The results presented in this paper are part of a long term research project called

IDEAS [2]. The main goal of IDEAS is the development of an intelligent environ-

ment supporting the design of algorithms and architectures in signal processing.

Our design environment deals with three levels of abstraction: VLSI technology,

abstract modelling of digital circuits, and algebraic speci�cation using computer

algebra systems. In the early years we started with the development of soft-

ware products for hardware compilers and computer algebra software. Nowa-

days, there are powerful tools available and we can focus on the algebraic topics.

Comparable environments are described in [9, 10]. One of the main di�erences

is the integration of commercial products avoiding an enormous implementation

overhead.

This paper is concerned with the so-called Algebraic Discrete Fourier Trans-

forms, their algebraic structure, and integrated circuit implementation. These

transforms are closely related to the general discrete Fourier transforms as de-

scribed for example in the chapter on STIPS machines in [9, chap. 5].

This paper is organized as follows. In the next paragraph we summarize some

de�nitions from the theory of �nite �elds. In x3 we recall the conjugacy properties
of the Discrete Fourier Transform. A novel approach to the ADFT is given in x4.
A complete parametrization of all ADFT matrices is derived in x5. The bene�t
of choosing an ADFT with low implementation complexity is discussed in xx6-7.
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2 Basic De�nitions

Recall that computing the DFT of length N signal vectors over the �nite �eld

with q elements Fq typically a�ords an extension to a larger �eld that contains a

primitive N th root of unity. This requires that the characteristic of Fq does not

divide the signal vector length N . We emphasize here that the degree of such an

extension Fqn=Fq can be quite large, since the existence of a primitive N th root

of unity in Fqn implies that N is a divisor of qn � 1. Typically, there are many

di�erent choices for the basis of the extension �eld. As we will see in the sequel,

a well-chosen basis can be used to reduce implementation complexity.

For each basis f�1; : : : ; �ng of the extension Fqn=Fq there exists a uniquely

determined dual basis f�1; : : : ; �ng that satis�es

tr (�k�l) =

�
0 for k 6= l

1 for k = l

where tr (x) := trFqn=Fq (x) = x + xq + � � �+ xq
n�1

denotes the trace function of

the extension Fqn=Fq. We will use the trace function to express the coordinates

of the elements in Fqn . Suppose that an element u 2 Fqn is of the form

u =

nX
i=1

ui�i; ui 2 Fq:

Then the coordinates of u with respect to the basis f�1; � � � ; �ng can be expressed
with the help of its dual basis f�1; � � � ; �ng by

uk = tr (�ku) =

nX
i=1

ui tr (�k�i) : (1)

We will be interested in basis that are of the following form

B = f�; �q; : : : ; �qn�1g:

Such a basis is called a normal basis; it is known that this type of basis exists

for all extensions Fqn=Fq [8]. Note that the elements of B are conjugates and

are linearly independent over Fq. A Galois automorphism merely permutes this

basis, hence the coordinates of conjugate elements. Finally,we recall the following

remarkable fact, cf. [6, 8]:

Lemma1. The dual basis of a normal basis is again a normal basis.

3 Conjugacy Properties

Denote by ! 2 Fqn a primitiveN th root of unity. The DFT matrix can be written

in the form (!jk)j;k=0::N�1. Applying an automorphism of the Galois group

Gal (Fqn=Fq) to the components of the DFT matrix results in a permutation of

the rows (or columns) of this matrix. As a result one obtains the well-known

conjugacy properties of the DFT [7]:



Lemma2. Let (s0; : : : ; sN�1) be a signal vector in (Fq)
N . Denote by Sj the jth

spectral coe�cient

Sj =

N�1X
k=0

!jksk: (2)

Applying the Frobenius automorphism x 7! xq to the spectral coe�cient Sj yields

the spectral coe�cient Sjq mod N ; that is, Sj
q = Sjq mod N .

Proof. The values sk are elements of the base�eld Fq by assumption. Therefore,

they remain �xed under the action of the Frobenius automorphism, yielding

Sj
q =

 
N�1X
k=0

!jksk

!q

=

N�1X
k=0

!(jq)ksk = Sjq mod N : ut

Thus, it is su�cient to compute one spectral coe�cient for each conjugacy class.

If we express the DFT matrix coe�cients with respect to a normal basis, then

the conjugate spectral coe�cients can be obtained by mere permutation. More

speci�cally, we get the following result (keeping the notations as above):

Lemma3. Assume that the coe�cients of the spectral coe�cient Sj w.r.t. the

normal base B are given by (u0; u1; : : : ; un�1) 2 Fn
q , that is, Sj =

Pn�1
k=0 uk�

qk .

Then the coe�cients of Sjq w.r.t. B are given by (un�1; u0; : : : ; un�2).

Proof. Suppose that the spectral coe�cient Sjq is expressed with respect to the

basis B =
n
�; �q; : : : ; �qn�1

o
as Sjq =

Pn�1
k=0 vk�

qk ; where vk 2 Fq: Then we

have

Sj
q =

n�1X
k=0

uk�
qk+1 =

n�1X
k=0

uk�1 mod n�
qk =

n�1X
k=0

vk�
qk = Sjq :

Comparing coe�cients yields the result. ut

4 Algebraic Discrete Fourier Transforms

We remarked in the previous section that computing the DFT of signal vectors

with values in the base�eld Fq amounts to compute only one spectral coe�cient

of each conjugacy class (cf. Lemma 2). To put it di�erently, suppose we are

given only a single spectral coe�cient of each conjugacy class, then we can still

reconstruct the original base�eld signal from this knowledge. Essentially, it is

this property that is exploited e. g. in transform decoding techniques of BCH

codes [7]. From a computational perspective it is highly attractive to express

the coe�cients with respect to a normal basis, since then the coordinates of

conjugate coe�cients are obtained by cyclic shifting (Lemma 3).



Example 1. Consider the DFT for signal vectors of length 7 with values in F2.

The de�nition of the DFT a�ords an extension to the �eld F23. However, since the

signals merely take values in the much smaller �eld F2, we only have to compute

the value of the spectral coe�cients S0; S1; and S3 given by equation (2). The

other coe�cients can be computed by means of Lemma 2, namely

S2 = S21 ; S4 = S22 ; S6 = S23 ; S5 = S26 :

Thus, the spectral coe�cients can be grouped according to the cyclotomic cosets,

that is, the orbits of x 7! (2x mod 7) in the set [0::6].

In order to understand why some orbits are of smaller length than others, we

will focus on the values that a spectral coe�cient may take, as the signal values

si vary. Denote by Fq(Sj) the value �eld of the spectral coe�cient Sj over Fq,

that is, the �eld obtained by adjoining all possible values of the jth spectral

coe�cient to the base�eld Fq:

Fq(Sj) = Fq(!
j) = Fq

 (
N�1X
k=0

!jksk

���� sk 2 Fq

)!
:

This �eld is a normal sub�eld of Fqn . By elementary Galois theory it is clear

that the number of coe�cients conjugate to the spectral coe�cient Sj coincides

with the degree of the value �eld Fq(Sj) = Fq(!
j) over Fq. This fact is best

appreciated with the help of a small example.

Example 2. Consider again the DFT of length 7 for signals with values in F2,

which requires an extension to F23 = F2(!), where ! is a primitive 7th root of

unity with minimal polynomial x3 + x + 1. Clearly, Fq(S0) = Fq(!
0) coincides

with the base�eld Fq, therefore S0 has no conjugates. The value �eld of S1 is

given by Fq(!), hence is of degree 3 over Fq. The value �eld of S3 is given

by Fq(!
3). It can be checked that the minimal polynomial of !3 is given by

x3 + x2 + 1. Therefore, the spectral coe�cient S3 has three conjugates.

Up to now we exploited the conjugacy properties of the DFT. Roughly speak-

ing, a \large value �eld" leads to many conjugates, and thus to considerable sav-

ings. Now we want to show that, loosely speaking, a \small value �eld" leads to

structure in the coordinate repesentation which can be exploited too. Eventually,

this will lead us to the de�nition of the Algebraic Discrete Fourier Transform [1],

which takes advantage of both properties.

The Galois group of Fqn=Fq is a �nite cyclic group of order n, generated by

the Frobenius automorphism x 7! xq. Hence, the Galois group of Fqn=Fq(Sj) is

generated by a power of the Frobenius automorphism, say G = hx 7! xq
k

i. In
more elementary terms this means that the coordinates of the spectral coe�cient

Sj with respect to the normal basis B have the following structure:

(u0; : : : ; un�1) = (u0; : : : ; uk�1| {z }; u0; : : : ; uk�1| {z }; : : : : : : ; u0; : : : ; uk�1| {z }):



This structure is guaranteed for all inputs (s0; : : : ; sN�1) 2 FN
q by the de�nition

of the value �eld. Moreover, it is not possible to re�ne this structure (meaning

that no blocks smaller than k can be obtained for all inputs), since this would

imply that even more Galois automorphism �x the value �eld Fq(Sj). Moreover,

elementary Galois theory tells us that the order ofGmultipliedwith the degree of

Fq(Sj)=Fq equals the degree of Fqn=Fq. Thus, there are exactly k automorphisms,

namely x 7! x; x 7! xq; : : : ; x 7! xq
k�1

; that map Sj to its conjugate spectral

coe�cients Sj ; Sjq; : : : ; Sjqk�1 .

To summarize, for each conjugacy class of spectral coe�cients with k elements

we have to compute only the �rst k coe�cients u0; : : : ; uk�1 of Sj with respect

to a normal basis B. In view of Lemma 3 this is the same as computing the �rst

coordinate of each spectral coe�cient with respect to the normal basis B.

De�nition4. Let N > 0 be an integer and Fq a �nite �eld. We assume that

the characteristic of Fq does not divide N . Suppose further that Fqn is a �nite

extension of Fq that contains a primitive N th root of unity. Denote by

B =
n
�; �q; : : : ; �qn�1

o
; B0 =

n
�; �q ; : : : ; �q

n�1
o

a normal base B with dual base B0 of Fqn=Fq. The Algebraic Discrete Fourier

Transform of length N with respect to the normal basis generator � is de�ned

by the N �N -matrix

ADFT� =
�
tr
�
�!ij

��
i;j=0;:::;N�1

:

Let us restate the de�nition of the ADFT in less technical terms. Recall

that the function x 7! tr (�x) maps an element x 2 Fqn to its �rst coordinate

with respect to the basis B; we have noticed this general property of dual bases

in equation (1) above. Thus, the ADFT is obtained from the DFT-matrix by

expressing each matrix entry !ij 2 Fqn with respect to B. This yields a vector

vi;j of length n over Fq for each entry !ij . The �rst component of this vector

vi;j coincides the (i; j)-entry of the ADFT-matrix.

Example 3. Consider the DFT of length 7 for signals over F2. The extension

F23 = F2(!) is generated by a primitive 7th root of unity ! with minimal

polynomial x3 + x+ 1. A normal base for F23=F2 is given by B = f!5; !3; !6g.
If we express the coe�cients !ij with respect to B, then the DFT-matrix reads

as follows: 0
BBBBBBBB@

[1; 1; 1] [1; 1; 1] [1; 1; 1] [1; 1; 1] [1; 1; 1] [1; 1; 1] [1; 1; 1]

[1; 1; 1] [1; 0; 1] [1; 1; 0] [0; 1; 0] [0; 1; 1] [1; 0; 0] [0; 0; 1]

[1; 1; 1] [1; 1; 0] [0; 1; 1] [0; 0; 1] [1; 0; 1] [0; 1; 0] [1; 0; 0]

[1; 1; 1] [0; 1; 0] [0; 0; 1] [1; 1; 0] [1; 0; 0] [1; 0; 1] [0; 1; 1]

[1; 1; 1] [0; 1; 1] [1; 0; 1] [1; 0; 0] [1; 1; 0] [0; 0; 1] [0; 1; 0]

[1; 1; 1] [1; 0; 0] [0; 1; 0] [1; 0; 1] [0; 0; 1] [0; 1; 1] [1; 1; 0]

[1; 1; 1] [0; 0; 1] [1; 0; 0] [0; 1; 1] [0; 1; 0] [1; 1; 0] [1; 0; 1]

1
CCCCCCCCA
:



Viewing the DFT as a transform for signals over F2 yields a 7� 21-matrix over

F2. The ADFT with respect to the normal basis generator !5 of B is obtained

by reading o� the �rst components [�; ; ], thus yielding a 7� 7-matrix over F2:

0
BBBBBBBB@

1 1 1 1 1 1 1

1 1 1 0 0 1 0

1 1 0 0 1 0 1

1 0 0 1 1 1 0

1 0 1 1 1 0 0

1 1 0 1 0 0 1

1 0 1 0 0 1 1

1
CCCCCCCCA
:

Remark. We de�ned the ADFT only for DFTs over �nite �elds Fqn=Fq: More

generally, one can de�ne the ADFT for arbitrary �elds. For example, the dis-

crete Hartley transform can be viewed as a special case of ADFTs over the real

numbers. An even wider class of base�eld transforms is studied in [5].

5 Parametrization

The ADFT is by no means uniquely determined by a given base�eld and DFT-

matrix. After �xing a speci�c extension Fqn=Fq, we can still choose freely some

normal basis generator. We exploit this freedom to optimize ADFTs for speci�c

needs.

Lemma5. Let B = (�; �q; : : : ; �qn�1)t be a normal basis of Fqn=Fq and let

T 2 GL(n; Fq) a base change matrix. Then TB is a normal basis of Fqn=Fq if

and only if T is a circulant matrix.

Proof. Suppose that T is of the form T = (cl�k mod n)k;l=0;:::;n�1. Then TB =

(0; : : : ; n�1)
t is a basis of the form

k =

n�1X
l=0

cl�k mod n�
ql =

 
n�1X
l=0

cl�k mod n �
ql�k

!qk

=

 
n�1X
l=0

cl mod n�
ql

!qk

:

This reduces to k = 
qk

0 . Therefore TB is a normal basis, as claimed. The other

direction follows directly from the normal basis property. ut

Remark. The inverse of a circulant matrix is again circulant. Therefore, a coor-

dinate change from one normal basis to another is achieved by multiplying with

some invertible matrix (dj�imod n)i;j .

Theorem6. Assume that Fqn is a �nite �eld containing a primitive N th root

of unity ! 2 Fqn . Denote by � a generator of a normal basis of the extension



Fqn=Fq. Then all ADFT matrices derived from (!ij)i;j=0;:::;N�1 2 GL(N;Fqn)

for signals over the base�eld Fq can be written in the following form:

 
n�1X
`=0

d`tr
�
�q

`

!ij
�!

i;j=0;:::;N�1

where the coe�cients d0; d1; : : : ; dn�1 are elements of Fq that generate an in-

vertible circulant matrix (dj�i)i;j 2 GL(n; Fq).

Proof. After �xing an extension Fqn=Fq and a DFT matrix (!ij) [mind that the

choice of the primitive root ! is somewhat arbitrary], all ADFT matrices are

given by the set��
tr
�
 !ij

� �
i;j=0;:::;N�1

���  is a normal basis generator of Fqn=Fq

�

According to the previous Lemma, the coordinate change from

Vij :=
�
tr
�
�!ij

�
; tr
�
�q!ij

�
; : : : ; tr

�
�q

n�1

!ij
��t

to

Wij :=
�
tr
�
!ij

�
; tr
�
q!ij

�
; : : : ; tr

�
q

n�1

!ij
��t

is realized by multiplying Vij with an invertible circulant matrix T = (dj�i)i;j,

that is, Wij = TVij holds for all i; j 2 f0; : : : ; N � 1g. More explicitly, we obtain

tr
�
q

k

!ij
�
=

n�1X
`=0

d`�k tr
�
�q

`

!ij
�
:

In particular, this yields for the �rst coordinate

tr
�
!ij

�
=

n�1X
`=0

d` tr
�
�q

`

!ij
�
;

as desired. ut

6 Optimization

The theorem in the previous paragraph shows that an enumeration of invertible,

circulant matrices in GL(n; Fq) yields an enumeration of all ADFT matrices.

Enumeration gets unfeasible for large base�elds or large extensions. To rem-

edy the situation, we describe now a heuristic optimization technique to derive

ADFT matrices with low implementation cost. Before we do so, we discuss some

examples to illustrate the bene�t of these methods.



Example 4. Consider the DFT of signal vectors of length 9 over F2. This requires

an extension to F26. Let � be a primitive element of F26 with minimal polynomial

x6+ x4+ x3+ x+ 1. Then ! = �7 is a primitive 9th root of unity with minimal

polynomial x6 + x3 + 1. The element �23 with minimal polynomial x6 + x6 + 1

generates a normal basis; another normal basis is generated by the element

�6 with minimal polynomial x6 + x5 + x4 + x2 + 1. The matrices ADFT1 =

(tr
�
�23!ij

�
)i;j=0;:::;8 and ADFT2 = (tr

�
�6!ij

�
)i;j=0;:::;8 read then as follows:

ADFT1 =

0
BBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 0 0

1 1 0 0 0 0 1 1 0

1 1 0 1 1 0 1 1 0

1 0 0 1 0 1 0 0 1

1 1 0 0 1 0 1 0 0

1 0 1 1 0 1 1 0 1

1 0 1 1 0 0 0 0 1

1 0 0 0 1 0 1 1 0

1
CCCCCCCCCCCCA
; ADFT2 =

0
BBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1

1 1 0 0 0 1 1 1 1

1 0 0 1 1 1 0 1 1

1 0 1 1 0 1 1 0 1

1 0 1 0 1 0 1 1 1

1 1 1 1 0 1 0 1 0

1 1 0 1 1 0 1 1 0

1 1 1 0 1 1 1 0 0

1 1 1 1 1 0 0 0 1

1
CCCCCCCCCCCCA
:

The �gure shows a standard cell implementation of the transforms ADFT1 and

ADFT2. Although both transforms can be used to compute the spectrum of the

DFT for signals of length 7 over the base�eld F2, the implementation of the

ADFT1 requires less active elements. This reduction in silicon area was achieved

by searching for an ADFT matrix with many zero-entries, which resulted in the

transform ADFT1. The ADFT2 was obtained by an initial guess of a normal

basis generator.



Example 5. Consider the DFT of length 12 signals over the base�eld F5. This

requires an extension to F52. Denote by � a primitive element of F52 with min-

imal polynomial x2 + 4x + 2. In this �eld there are four primitive 12th roots

of unity, namely �2; �10; �14; and �22; let us choose ! = �22, an element with

minimal polynomial x2 + 2x + 4. A normal basis for F52=F5 is generated by �

or alternatively by �10. Then the matrices ADFT1 = (tr
�
�!ij

�
)i;j=0;:::;11 and

ADFT2 = (tr
�
�10!ij

�
)i;j=0;:::;11 read as follows:

ADFT1 =

0
BBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1

1 3 0 3 4 0 4 2 0 2 1 0

1 0 4 4 0 1 1 0 4 4 0 1

1 3 4 2 1 3 4 2 1 3 4 2

1 4 0 1 4 0 1 4 0 1 4 0

1 0 1 3 0 3 4 0 4 2 0 2

1 4 1 4 1 4 1 4 1 4 1 4

1 2 0 2 4 0 4 3 0 3 1 0

1 0 4 1 0 4 1 0 4 1 0 4

1 2 4 3 1 2 4 3 1 2 4 3

1 1 0 4 4 0 1 1 0 4 4 0

1 0 1 2 0 2 4 0 4 3 0 3

1
CCCCCCCCCCCCCCCCCCA

; ADFT2 =

0
BBBBBBBBBBBBBBBBBB@

2 2 2 2 2 2 2 2 2 2 2 2

2 4 4 1 2 2 3 1 1 4 3 3

2 4 2 3 1 3 2 4 2 3 1 3

2 1 3 4 2 1 3 4 2 1 3 4

2 2 1 2 2 1 2 2 1 2 2 1

2 2 3 1 1 4 3 3 2 4 4 1

2 3 2 3 2 3 2 3 2 3 2 3

2 1 4 4 2 3 3 4 1 1 3 2

2 1 2 2 1 2 2 1 2 2 1 2

2 4 3 1 2 4 3 1 2 4 3 1

2 3 1 3 2 4 2 3 1 3 2 4

2 3 3 4 1 1 3 2 2 1 4 4

1
CCCCCCCCCCCCCCCCCCA

The left �gure shows the layout of ADFT1 using 2266� 4936�m2 silicon area.

The right �gure shows the implementation of ADFT2 requiring an area of 2266�
6347�m2. Both realizations are designed for a 1� CMOS technology.



For our heuristic optimization we consider the circulant base change matrix

(dj�i)i;j as a matrix with elements of the ring Fq[d1; : : : ; dn�1] in the indetermi-

nates di. This yields the Parametrized Algebraic Discrete Fourier Transform:

PADFT :=

 
n�1X
`=0

d`tr
�
�q

`

!ij
�!

i;j=0;:::;N�1

:

Let us illustrate this construction for signals of length 7 over F2. The DFTmatrix

given in Example 3 translates directly into the following PADFT:0
BBBBBBBB@

ds ds ds ds ds ds ds
ds d0 + d2 d0 + d1 d1 d1 + d2 d0 d2
ds d0 + d1 d1 + d2 d2 d0 + d2 d1 d0
ds d1 d2 d0 + d1 d0 d0 + d2 d1 + d2
ds d1 + d2 d0 + d2 d0 d0 + d1 d2 d1
ds d0 d1 d0 + d2 d2 d1 + d2 d0 + d1
ds d2 d0 d1 + d2 d1 d0 + d1 d0 + d2

1
CCCCCCCCA
;

where ds denotes the term ds := d0+d1+d2. Note that all terms in the PADFT

are linear combinations of the parameters di.

Theorem 6 shows that all ADFT matrices can be obtained from the PADFT

by specializing the parameters d0; : : : ; dn�1 to values in Fq such that T =

(dj�i mod n)i;j is invertible. For instance, from the PADFT matrix above one de-

rives the ADFT given in Example 3 by choosing the parameters d0 := 1; d1 := 0;

and d2 := 0; the circulant matrix T yields for these parameters a permutation

matrix, which is of course invertible.

The generic representation of the ADFT matrix allows to compute for exam-

ple sparse ADFT matrices. The following algorithm searches for a specialization

that leads to a high number of zero-entries. The algorithm proceeds in a greedy

way and tries to specialize the terms that occur most often to zero. This is done

by constructing a system of linear equations, which represent constraints on the

specialization parameters. The aim is to �nd a specialization � of the parame-

ters di that yields an invertible matrix � (T ) = (� (dj�imod n))i;j and satis�es as

many contraints as possible.

# Input: a PADFT matrix M in the indeterminates di over Fq

# Output: an ADFT matrix

H := list of terms occuring as entries in M,

sorted by number of occureny;

E := [];

for i from 1 to length(H) do

LinearEq := append(E,H[i]=0);

T := solve(LinearEq);

if f� j � 2 T ; det(� (T )) 6= 0g 6= ; then E:= LinearEq; fi;

od;

T := solve(E); � := choose(f� j � 2 T ; det(� (T )) 6= 0g);
return(� (M ));



This algorithm presents the basic idea of heuristical optimization: the trans-

form is determined by implementation issues. The same idea can be used for

more elaborate optimization algorithms.

7 Conclusion

We have presented general results on Algebraic Discrete Fourier Transforms.

We have shown that these results can be used to �nd e�cient implementations

of those transforms. The computation of sparse matrices in only one speci�c

example. It is possible to combine our methods with implementations strategies

as described in [3, 4].
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