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1 Introduction

Wavelets are versatile tools in signal analysis and representation, comple-

menting existing tools from harmonic analysis. In recent years, an upsurge

of interest in wavelet methods in
uenced the area of image processing.

Wavelet techniques combine traditional methods from imaging and har-

monic analysis, thus yealding powerful and e�cient algorithms for various

applications.

Using wavelet transforms it is possible to build highly reliable compres-

sion schemes for pictures, providing bandwidth economic preview and

browsing schemes. Taking the underlying semantics of the signal into ac-

count, a comprehensive description of the signal can also be obtained

by an adapted coding of the occurring elementary features or objects.

Using this semantics leads to a high level description of the signal. For

this reason an image preprocessing step, a feature extraction has to be

involved, which can again be achieved by using wavelet methods, e.g. for

edge detection and segmentation. In this paper we discuss wavelet based

feature extraction methods and we describe an optical implementation

using di�ractive elements.

2 Wavelets

We brie
y recall some basic notions from wavelet analysis. The elemen-

tary building blocks of wavelet analysis are obtained by translations and

unitary dilations from a single square integrable function  { the wavelet.

A square integrable signal s 2 L2(IR) can then be analysed by the scalar

products

s 7�!
�

1p
a
 

� � � b

a

� ���� s� ; a; b 2 IR; a > 0: (1)

The wavelet  is usually assumed to be a function that is su�ciently

localized in time as well as in frequency and has some vanishing moments.
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A typical example for a wavelet is given by the mexican hat function

 (x) = (x2 � 1)e�x
2=2:

The continuous wavelet transform (1) can be generalized to higher dimen-

sions where we have in addition to the dilation and translation operations

a rotation operation. Clearly, the rotation is super
uous, if rotation sym-

metric wavelets are use. For example, a rotation symmetric 2D mexican

hat function is given by (kxk2
IR
2 � 2) � exp(�kxk2

IR
2 =2) We will use this

wavelet later in an optical implementation for edge detection.

The continuous wavelet transform (1) is rarely used in applications be-

cause it leads in general to a highly redundant representation of the signal

that is rather expensive from a computational point of view. Typically,

only a part of the wavelet coe�cients is necessary for feature detection.

For example, in edge detection applications only a few scales have to be

considered.

Compression applications lead to a natural interest in non-redundant rep-

resentations of a signal. The most compact way is to express the sig-

nal with respect to a basis of the Hilbert space L2: A particularly nice

class of wavelets leads to biorthogonal wavelet bases of the Hilbert space

L2(IR): A biorthogonal wavelet basis is given by a Riesz basis of the form

 j;k(x) = 2�j=2 (2�jx�k); with j; k 2 Z; that has a dual basis1 e j;k of the
same form. A pair of biorthogonal wavelet bases allows the representation

of a signal as follows:

s =
X
j;k2Z

h e j;k j si j;k = X
j;k2Z

h j;k j si e j;k:
3 Compression

Radiologic image data in the order of at least several peta bytes comes up

every year. Clearly, there is a natural demand for e�ective compression

methods, since archiving of radiologic images over several years is legally

obliged. Wavelets can be used successfully in radiologic image compression

applications. We sketch the main ideas of a wavelet based compression

method in this section.

The basic principle of a wavelet based compression scheme can be sub-

divided into three major steps: the input signal is transformed in order

to decorrelate adjacent signal samples, then the entropy of the resulting

coe�cients is reduced by quantization. In a �nal step the redundancy is

removed by passing the quantized coe�cients through an entropy coder.

1 A Riesz basis of a Hilbert space H is a family of linear independent vectors vi; i 2 I;

that constitute a frame. The dual basis is de�ned as usual by h j;k j e l;m i = �j;l �k;m.



Wavelets and Waves in Optical Signal Preprocessing 9

An implementation of this scheme should be as fast as possible. If we

use scalar quantization, i. e. a quantization operation that can be applied

independently to each coe�cient, then the quantization has linear com-

plexity. The entropy coding can for example be done by arithmetic coding.

A method with particular high throughput was developed recently at the

authors' institution [9]. It remains to give a fast algorithm for the wavelet

transform.

All well-behaved biorthogonal wavelet bases can be constructed with the

help of multiresolution analyses. For compactly supported biorthogonal

wavelets this construction leads directly to a fast algorithm for the discrete

wavelet transform. For the ease of exposition we leave out some details

that can be found for example in [8] and mainly focus on the points that

are relevant for our application.

A multiresolution analysis of L2(IR) is a sequence of nested closed sub-

spaces Vj � Vj�1 of L
2(IR) such that

T
j2ZVj = f0g and Sj2Z Vj is dense

in L2: Moreover, the subspaces are linked by f(x) 2 Vj , f(2x) 2
Vj�1 and the subspace V0 is supposed to have a Riesz basis of the form

'(x� k); k 2 Z: The function ' is called scaling function. We use again

the convenient abbreviation 'j;k(x) to denote the dilated and trans-

lated functions 2�j=2'(2�jx � k): The scaling function manifests the

connection between two di�erent scales through the following formula:

'(x=2) =
P

n2Z hn
p
2'(x� n); which can be written in Fourier space as

'̂(2!) = m0(!)'̂(!); with m0(!) = 2�1=2
P
hne

�in! : We call m0(!) the

scaling �lter associated with ':

A pair of multiresolution analyses Vj and fVj of L2(IR) is called biorthog-

onal with compactly supported dual scaling functions i� the scaling func-

tions ', e' are dual in the sense that h'(x)j e'(x� k)i = �k;0 holds and '

and e' are compactly supported functions. Such a pair of multiresolution

analyses allows us to de�ne the functionsb (2!) = e�i!m0(! + �)b'(!); be (2!) = e�i! em0(! + �)be'(!);
where we used f̂ to denote the Fourier transform of a function f ; m0; em0

denote the scaling �lters associated to '; e': It turns out that j;k; j; k 2 Z;

is a Riesz basis of L2(IR) with dual b j;k; see [6] for a proof. Thus, we can

construct biorthogonal wavelet bases from multiresolution analyses.

The structure of the multiresolution analysis allows in a natural way to

de�ne certain approximations to the signal. For all s 2 L2(IR) a projection
on Vj in the direction of eV ?j is given by

Pjs =
X
k2Z

h e'j;k j s i'j;k:
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The details missing in a coarse approximation can be described by wave-

lets; this is the key idea of Mallat's fast wavelet transform algorithm.

Given a �ne approximation of a signal s; say in terms of the coe�cients

sj�1;k = h e'j�1;k j s i; k 2 Z; then it is possible to calculate e�ciently the

coe�cients sj;k = h e'j;k j s i and dj;k = h e j;k j s i: In fact, the correspond-

ing operations can be realized by a 2-channel perfect reconstruction �lter

bank. Similarly, we can again calculate e�ciently the coe�cients sj+1;k
and dj+1;k from the coe�cients sj;k : The data
ow of Mallat's algorithm

is shown in Figure 1.

(dj+1;k)

(sj+1;k)(sj;k)

(dj;k)

(sj�1;k)

Figure 1. Data
ow of Mallat's fast wavelet transform algorithm.

This algorithm can be extended without any di�culty to higher dimen-

sions using tensor products. It is very convenient from a practical point

of view that smooth signals give wavelet coe�cients dj;k near zero, pro-

vided the wavelet is smooth enough. Hence, after the quantization a large

part of the wavelet coe�cients is zero, so that for a proper choice of the

wavelet we obtain a compact description of the signal. The results of such

a compression scheme are exempli�ed in Figure 2 for a medical image.

For the same compression ratio, the JPEG compression standard leads

to signi�cantly higher degradation of the image. Wavelet compression is

in terms of peak-signal-to-noise-ratio 2dB better.

4 Optical Signal Preprocessing

In recent image processing applications large amount of data has to be

manipulated under hard time constraints, especially in real time or med-

ical applications. Fast digital algorithms for signal preprocessing have

been developed and proposed but for high resolution applications the

needed performance has not been reached yet. For this reason alterna-

tive highly parallel methods like optical signal processing seems to be a

promising new way. Nowadays optical preprocessing becomes in range of
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Figure 2. Computer tomographic image of a human body. Left: original

image. Right: wavelet compressed image with rate 17.8:1.

f f f f

input signal 
plane

lens DE lens output signal
plane

Figure 3. 4f -setup

current technology due to fast and high resolution spatial light modula-

tors (SLM), which are already commercially available.

In principle every linear transform in L2(IR2) can be implemented by an

optical setup [1]. The input, a complex two dimensional signal, is repre-

sented as a wave front on which the optical system operates at highest

possible parallelism. Convolutional operators are of special interest in sig-

nal preprocessing. These operators can be build in an optical system by

the well-known 4f -setup, which is based on the convolutional theorem of

the Fourier transform. A schematic view of a 4f -setup is given in Fig-

ure 3. A monochromatic, coherent, two dimensional input signal from

the left is propagated through a lens with focus f , performing the Fourier

transform. In the Fourier plane at the distance 2f a pre-calculated di�rac-

tive element (DE) performs the pointwise multiplication in the frequency

space and can be viewed as an adaptable �lter. There are several types
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of di�ractive elements, which modulate the amplitude and/or phase of

an incoming wavefront. The second lens on the right realizes a second

Fourier transform.

Due to the practical restrictions of manufacturing of DEs only phase or

amplitude modulating elements can be produced. Because of the light

e�ciency phase-only elements are preferred.

In general the kernel of the intendend convolution is a complex valued

function with non-constant amplitude and thus can not be realized by

a phase-only DE. A method to overcome this problem is to search for a

phase-only DE with the same impulse response in a given detection area

(or output signal window). Because the impulse response outside of the

signal window can freely be chosen, we gain some parameters of freedom

for the design of the DE.

Given an impulse response h0(x; y) in the domain S (the signal window)

we search for a bandlimited signal h(x; y) which is equal to h0 in S and

satis�es the conditions

�
F�1h

�
(u; v) =

(
ei'(u;v) if (u; v) 2 D
0 else,

(2)

where D describes the domain of the di�ractive element. The calculation

of h(x; y) is an ill-posed problem in the sense of Hadamard, because in

general all conditions for well-posed problems can be violated [3]. In spite

of the freedom outside the signal window normally no solution exists and

therefore we are interested in a good approximation. Furthermore, for a

given impulse response inside the signal window there might exist several

di�ractive elements, where the impulse responses di�er only outside the

signal window.

After this preparation we are ready to give an iterative algorithm based

on generalized projections for calculating phase-only DEs for the desired

�lter transfer function. One special method is the so-called IFTA algo-

rithm [10] (Iterative Fourier Transform Algorithm) which is a slight mod-

i�cation of the Gerchberg-Saxton Algorithm [4] for DEs. The main idea of

these algorithms is the following: We consider one arbitrary initial point

f0 and two convex sets M1;M2, Mc := M1 \M2 6= ; in a Hilbert space,

with two projections P1;P2 onto the two sets. Applying one projection

on the initial point, it is mapped into the corresponding set. In the se-

quel the alternating use of both projection converges to some point in the

intersection Mc. Thus fn+1 = P1fn and fn+2 = P2fn+1 imply

lim
n!1

jjPcfn � fnjj = 0 (3)
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for the unknown projection Pc on Mc [5].

In our special application the set of all desired impulse responses with

the �xed signal window and the set of the Fourier transformed phase-

only elements represent the two sets M1;M2. The projection operators

P1 and P2 are given by

(P1g) (x; y) :=

(
h0(x; y) if (x; y) 2 S
g(x; y) else,

(4)

P2 := FP 02F�1 with (5)�
P 02bh� (u; v) :=

8<:
bh(u;v)
jbh(u;v)j if bh(u; v) 6= 0

1 else.
(6)

At this point we have to mention that in this special case the set M1 is

not convex and we even can not guarantee that the intersection Mc is

not empty. For this reason we have to consider a generalized version to

non convex sets [7], for which the convergence can not be guaranteed,

too. This lack of convergence is partially compensated by the use of the

square distance error, which can be minimized in the iteration process.

For the projections

hn = P1gn and gn+1 = P2hn (7)

we use the squared distance errors SDEMi
(f) := jjf � Pif jj, i = 1; 2

related to M1 and M2 and it holds

SDEM1
(gn+1) � SDEM1

(gn) and SDEM2
(hn+1) � SDEM2

(hn): (8)

At this point of our discussion we posses an iterative tool to calculate a

phase-only DE for a desired convolutional �lter.

We now consider implementations of �lter functions, which promise great

advantages, e.g., in the area of medical imaging: the optical wavelet trans-

forms. One main advantage of using wavelet transforms in image prepro-

cessing is their signal analysing properties at di�erent scales and orien-

tations. For example, di�erent kinds of vertices, sharp or smooth ones,

can be detected in di�erent scales. With the knowledge of this kind of

information succeeding image processing steps like feature extraction can

be made more e�cient.

In the previously described design process of the DEs was restricted to

one �lter function, but for a multiresolution analysis a family of wavelets

has to be used. In the optical implementation we overcome this problem

by tiling the signal output of the di�erent wavelets spatially in the signal
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window. Because a translation in the spatial domain results in a linear

phase shift in the frequency domain of the DEs we only have to add linear

phases to the corresponding wavelet �lter functions and superpose them.

Taking a two dimensional version of the continuous wavelet transform (1)

results in an impulse response

W (x) =
nX

j=1

 j(x) � �(x� tj); (9)

which leads to a �lter function

cW (u) =
nX

j=1

b j(u)e2�iutj ; (10)

in the plane of the DE, where tj stands for the translation vector of the

di�erent tiles in the signal window.

In the following example we use the mexican hat wavelet, de�ned in sec-

tion 2, with four di�erent scales a = 8; 4; 2;
p
2, which can immediately

be seen in the rightmost image from the upper left to the bottom right.

Also in the amplitude image of the complex �lter the superposition of

the four scaled mexican hats are visible as rings with di�erent diameters.

This �lter function or rather its Fourier transform serves as the initial

point h0 for the calculation of the phase-only DE shown in the middle of

�gure 4. Remark that edges contained in the input signal transforms to

nullstellen in the output signal.

Figure 4. Left: Amplitude of complex �lter. Center: Calculated phase-

only DE. Right: Output signal window.

The calculated DE is producable using standard techniques, e.g. with

lithographic methods. Using spatial light modulators (SLM) is another,



Wavelets and Waves in Optical Signal Preprocessing 15

more 
exible way to realize the DE, because of the dynamical optical or

electronical addressing possibilities of SLMs.

5 Conclusion

Wavelets are a 
exible language to describe signals. We sketched how they

can be used for an e�cient signal representation in compression applica-

tions. So wavelet bases can be interpreted as \universal dictionary" for

signal and image description. If we restrict our interest to special features

of the images it may be adequate to use a more expressive \specialized

dictionary".

We described an optical implementation of the wavelet transform that

allows an extremely fast image preprocessing. This implementation is

suitable for pattern recognition applications such as texture analysis or

feature extraction. Intelligent medical imaging systems require more elab-

orated non-linear image processing transforms. This can be achieved with

a combination of optical and traditional computation technologies. Some

promising experiments with such an hybrid opto-electronical setup have

been performed at the authors` institution [2].
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